淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0408201414241500
中文論文名稱 利用逆微胞法製備具有二氧化矽奈米粒子材料之結構與性質研究
英文論文名稱 The structures and properties of nanosilica materials prepared via reverse micelle method
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 102
學期 2
出版年 103
研究生中文姓名 洪笠尊
研究生英文姓名 Li-Tzuen Hong
學號 601400707
學位類別 碩士
語文別 中文
口試日期 2014-07-15
論文頁數 101頁
口試委員 指導教授-賴偉淇
委員-陳信龍
委員-童世煌
中文關鍵字 界面活性劑  逆微胞  水解縮合  二氧化矽 
英文關鍵字 AOT surfacant  reverse micelle  hydrolysis and condensation reaction  silica 
學科別分類
中文摘要 本研究以丁二酸二辛酯磺酸鈉(AOT)/水/正己烷構成的逆微胞系統,將其視為微型反應器,在系統中加入二氧化矽的前驅物正矽酸乙酯(Tetraethylorthosilicate;TEOS)於鹼性環境之下進行水解縮合反應,因此逆微胞可以作為模板,控制二氧化矽在內部形成的結構,之後再以溶劑揮發的方式讓系統轉變成高濃度的凝膠材料。
由FTIR分析,可以觀察到凝膠內二氧化矽在465、792、1102 cm-1波數位置的特徵吸收峰,證明二氧化矽的生成。由流變儀分析逆微胞在內部加入 TEOS水解縮合後,內部生成二氧化矽會導致gel-like態逆微胞由多重鬆弛模數(Multi relaxatuon model)轉變成無論在任何頻率掃描下G’永遠大於G”的凝膠態,且材料在越高AOT濃度、TEOS添加量越多及越小wo值下有較佳的固體彈性性質。由SAXS分析AOT/H2O/Hexane逆微胞系統發現AOT濃度在6m時,其結構為圓柱無規則排列結構;當濃度提升至72m時為圓柱體六角最密堆積(HCP)結構;然而加入TEOS進行水解縮合反應後,無論在低濃度或高濃度均呈現圓柱無規則排列結構。由POM、TEM觀察逆微胞在高濃度時可以看到一束束排列的圓柱狀纖維束;當內部生成二氧化矽後可以看到排列的纖維束較不規整。由TGA分析材料熱穩定性,發現隨著wo值越大,有較差的熱穩定性,推測過量的水會使AOT與二氧化矽在內部排列較鬆散所以有較弱的交互作用力造成熱穩定性下降;隨著TEOS添加量越多,最後殘留二氧化矽也越多,表示TEOS轉化成二氧化矽的比例較高。
英文摘要 In this study, sodium bis(2-ethylhexyl) sulfosuccinate (AOT) / water / hexane reverse micelle system was regarded as microreactor ,and then adding the precursor of silica,Tetraethylorthosilicate(TEOS),into the reverse micelle system then hydrolysis and condensation reaction occurred in alkaline conditions .Therefore,reverse micelles was regarded as a template which can control the growth structure of silica,then evaporating the solvent to change the system into high concentration gel material.
By FTIR analysis,we observed the characteristic peaks of the silica in the gel at the band 465 ,792,and 1102cm-1 which means the formation of the silica.By rheometer analysis,the rheological property transformed from gel-like state (Multi relaxatuon model) to gel state (G’>G”at all frequency)after the formation of silica in the reverse micelle.Whith increase of AOT concentration,the amount of TEOS,and lower value of wo,the material has better solid elastic properties(G’).By SAXS analysis,when AOT/water/ hexane reverse micelle system in 6m AOT concentration ,the structure of reverse micelle is no long-range cylindrical structure.When AOT concentration increase to 72m,the structure transform to hexagonally closed-packed cylindrical structure.However,the SAXS results showed no long-range cylindrical structure after the hydrolysis and condensation reaction at low and high concentration .By POM and TEM analysis,the fiber bundle which composed of cylindrical fiber were found at high concentration AOT reverse micelle system .As the silica was generated in reverse micelle,the fiber bundle were randomly oriented.By TGA analysis, with increase of wo value ,the material had poor thermal stability because excess water caused AOT and silica arranged loosely and had weakened interation between each other. With the addition of more TEOS, the more residual silica,which means that the more convertion ratio of silica.
論文目次 目錄
中文摘要I
英文摘要II
目錄IV
圖目錄VII
表目錄XII
第一章 緒論1
1-1前言1
1-2研究動機2
第二章理論基礎4
2-1 流變學4
2-1-1 黏彈模型4
2-1-2 剪切黏度7
2-1-3 動態流變性質 8
2-2小角度X光散射儀(Small angle X-ray scattering;SAXS)9
2-3 界面活性劑與逆微胞11
2-3-1 界面活性劑11
2-3-2 逆微胞13
2-4 製備無機奈米粒子方法15
2-4-1 水熱法15
2-4-2 溶膠凝膠法15
2-4-3 微胞法16
2-5膠體(colloid)17
2-5-1 凝膠17
第三章文獻回顧19
3-1以界面活性劑製備有機凝膠19
3-2逆微胞法合成無機奈米粒子28
第四章實驗33
4-1 實驗藥品33
4-2 實驗器材35
4-3樣品配製37
4-3-1配製逆微胞37
4-3-2利用逆微胞法合成高濃度二氧化矽凝膠37
4-3-3樣品表39
4-4儀器操作41
4-4-1傅立葉轉換紅外線光譜儀(FTIR)41
4-4-2流變儀(Rheometer)41
4-4-3 穿透式電子顯微鏡(TEM)41
4-4-4 小角度X光散射儀(SAXS)42
4-4-5 偏光顯微鏡(POM)42
4-4-6 熱重分析儀(TGA)42
第五章結果與討論43
5-1樣品相態觀察43
5-1-1 AOT/H2O/Hexane逆微胞系統43
5-1-2 AOT/H2O/Hexane/TEOS二氧化矽凝膠系統45
5-2 傅立葉紅外線光譜儀(FTIR)鑑定48
5-3流變性質53
5-3-1 AOT/H2O/Hexane振幅掃描(amplitude sweep)53
5-3-2 AOT/H2O/Hexane頻率掃描55
5-3-3 AOT/H2O/Hexane/TEOS二氧化矽凝膠系統振幅掃描60
5-3-4 AOT/H2O/Hexane/TEOS二氧化矽凝膠系統頻率掃描62
5-4 小角度X-光散射(SAXS)分析68
5-5 偏光顯微鏡(POM)與穿透式電子顯微鏡(TEM)分析81
5-5-1偏光顯微鏡(POM)81
5-5-2 穿透式電子顯微鏡(TEM)分析二氧化矽結構87
5-6熱重分析儀(TGA)分析91
第六章結論94
第七章參考文獻96 
圖目錄
圖1-1 AOT結構圖1
圖1-2 逆微胞製備二氧化矽凝膠流程圖3
圖2-1 彈性模式5
圖2-2 黏性模式5
圖2-3 Maxwell模式 5
圖2-4 Voigt-Kelvin模式6
圖2-5 物質結構探測示意圖9
圖2-6 界面活性劑分子示意圖11
圖2-7 CTAB分子結構示意圖11
圖2-8 AOT分子結構示意圖12
圖2-9 Lecithin分子結構示意圖12
圖2-10 TX-100分子結構示意圖12
圖2-11 微胞示意圖(a)微胞(b)逆微胞13
圖2-12 微胞形成圖14
圖2-13 微胞結構(a)球狀(b)圓柱狀(c)六角堆積14
圖2-14 DBS分子結構示意圖17
圖2-15 AOT / P-chlorophenol凝膠堆疊式意圖18
圖3-1 Lecithin/SDC/cyclohexane B0=0.35、0.45之流變頻率掃描圖 19
圖3-2 Lecithin/SDC/cyclohexane 之B0對Gp、tR關係圖20
圖3-3 固定AOT濃度10mM改變SDC濃度流變頻率掃描圖20
圖3-4 固定濃度比值AOT/SDC為0.2 之流變頻率掃描 21
圖3-5 AOT/p-chlorophenol有機膠分子堆疊示意圖 21
圖3-6 0.3M AOT/0.3M p-chlorophenol和0.3M AOT/0.3M p-chlorophenol加入水後(wo=4)之SAXS圖 22
圖3-7 不同濃度AOT/ p-chlorophenol有機膠SAXS圖23
圖3-8AOT/ p-chlorophenol 有機凝膠自組裝示意圖23
圖3-9 不同濃度AOT/H2O/Hexane(wo=2)流變頻率掃描圖24
圖3-10 72m AOT 不同wo流變頻率掃描圖 25
圖3-11 逆微胞凝膠增加水量結構改變示意圖25
圖3-12 6、12、18、36、72m AOT(wo=2)SAXS圖26
圖3-13 72m不同wo值SAXS圖26
圖3-14 鐵奈米粒子(a)未超音波震盪(b)超音波震盪後28
圖 3-15 具有多孔性結構二氧化矽SEM圖29
圖3-16 不同時間TEOS水解之產物TEM圖(a)15min(b)30min(c)1hr(d)2hr 30
圖3-17 (A、C、E)氨水濃度8.94% ,R分別為0.5、1、2 31
(B、D、F)氨水濃度26.5% ,R分別為0.5、1、2 31
圖3-18 纖維狀二氧化矽SEM與TEM圖32
圖3-19 纖維狀二氧化矽生長示意圖32
圖4-1 AOT結構式33
圖4-2 TEOS結構式34
圖4-3 逆微胞製備流程圖37
圖4-4 二氧化矽凝膠製備流程圖 38
圖4-5 二氧化矽凝膠樣品圖38
圖5-1 6m逆微胞樣品圖 (a)wo=1(b)wo=3(c)wo=5 44
圖5-2 72m逆微胞樣品圖 (a)wo=1(b)wo=3(c)wo=5 44
圖5-3 AOT/H2O/Hexane逆微胞系統樣品三相圖44
圖5-4改變AOT濃度wo=1 (AOT/H2O/Hexane/TEOS) (TEOS=0.25ml)47
(a)6m(b)36m(c)72m47
圖5-5 72m( AOT/H2O/Hexane/TEOS)(TEOS=0.25ml)47
(a) wo=1 (b) wo=3 (c) wo=5 47
圖5-6 6m,wo=1 AOT/H2O/Hexane 47
(a)TEOS=0.15ml(b) TEOS=0.25ml (c) 0.35ml 47
圖5-7 AOT界面活性劑之FTIR圖譜48
圖5-8 TEOS之FTIR圖譜49
圖5-9 6m,wo=1,AOT/H2O/Hexane/TEOS二氧化矽凝膠系統不同反應時間FTIR圖譜50
圖5-10 AOT模板去除後二氧化矽粉體FTIR圖譜51
圖5-11不同濃度逆微胞凝膠(wo=3)振幅掃描54
圖5-12固定濃度72m逆微胞凝膠(wo=1、3、5)振幅掃描54
圖5-13逆微胞濃度6m頻率掃描圖 55
圖5-14不同AOT濃度圖(wo=3)流變頻率掃描圖57
圖5-15 18m逆微胞wo=1、3、5流變頻率掃描圖57
圖5-16 36m逆微胞wo=1、3、5流變頻率掃描圖58
圖5-17 72m逆微胞wo=1、3、5流變頻率掃描圖58
圖5-18不同濃度AOT凝膠(TEOS添加量0.25ml)振幅掃描60
圖5-19 72m,wo=1、3、5 AOT凝膠(TEOS添加量0.25ml)振幅掃描61
圖5-20 6m,wo=1AOT凝膠(TEOS添加量0.35ml)振幅掃描61
圖5-21 72m AOT不同wo凝膠(TEOS添加量0.25ml) G’和G”流變頻率掃描圖 62
圖5-22不同濃度 AOT凝膠(TEOS添加量0.25ml)流變頻率掃描圖 63
圖5-23 18m AOT不同wo凝膠(TEOS添加量0.25ml)流變頻率掃描圖64
圖5-24 36m AOT不同wo凝膠(TEOS添加量0.25ml)流變頻率掃描圖65
圖5-25 72m AOT不同wo凝膠(TEOS添加量0.25ml)流變頻率掃描圖65
圖5-26 6m AOT凝膠(TEOS添加量0.35ml)流變頻率掃描圖66
圖5-27 72m,wo=1 改變TEOS添加量AOT凝膠流變頻率掃描圖67
圖5-28 0.1m AOT(TEOS添加量0.25ml)SAXS圖68
圖5-29 6m ,wo=1、3、5逆微胞SAXS圖69
圖5-30 6m,wo=1、3、5 AOT溶液(TEOS添加量0.25ml)SAXS圖70
圖5-31逆微胞水解縮合反應前後變化圖71
圖5-32逆微胞直徑方向分子數目估算示意圖 71
圖5-33改變wo凝膠結構變化示意圖72
圖5-34 72m,wo=1、3、5逆微胞凝膠SAXS圖74
圖5-35 72m,wo=1、3、5 AOT凝膠(TEOS添加量0.25ml)SAXS圖74
圖5-36不同濃度wo=1 AOT凝膠(TEOS添加量0.25ml)SAXS圖77
圖5-37改變wo凝膠結構變化示意圖77
圖5-38 6m,wo=1改變TEOS添加量之AOT凝膠SAXS圖78
圖5-39改變TEOS添加量凝膠結構變化示意圖78
圖5-40 72m,wo=1改變TEOS添加量之AOT凝膠SAXS圖79
圖5-41不同濃度逆微胞POM圖(a)6m(b)18m(c)72m,wo=1 82
圖5-42不同濃度AOT凝膠,TEOS=0.25mlPOM圖83
(a)6m (b)18m(c)72m,wo=1 83
圖5-43 72mAOT逆微胞凝膠POM圖(a)wo=1(b)wo=3(c)wo=5 84
圖5-44 72m AOT凝膠,TEOS=0.25mlPOM圖(a)wo=1(b)wo=3(c)wo=5 85
圖5-45 72m AOT,wo=1凝膠POM圖86
(a) TEOS=0.15ml (b) TEOS=0.25ml (c) TEOS=0.35ml86
圖5-46清洗掉AOT(改變濃度TEOS=0.25ml)後二氧化矽粒子觀察 88
(a)6m (b) 18m(c)72m,wo=1 (25k)88
圖5-47清洗掉AOT(72m TEOS=0.25ml改變wo)後二氧化矽粒子觀察 (a)wo=1 (b) wo=3(c)wo=5(25k)89
圖5-48清洗掉AOT(72m,wo=1改變TEOS添加量)後二氧化矽粒子觀察 (a)TEOS=0.15ml(b) TEOS=0.25ml (c)TEOS=0.35ml(10K)90
圖5-49不同wo值AOT凝膠(TEOS添加量0.25ml)熱重損失圖92
圖5-50不同TEOS添加量AOT凝膠熱重損失圖93
表目錄
表3-1 SAXS之qm、dm、ξ關係表23
表3-2 不同AOT濃度與wo值之q值、dspacing、r(半徑)關係表27
表4-1 AOT逆微胞系統樣品表39
表4-2 AOT逆微胞/二氧化矽樣品表(固定TEOS含量)40
表4-3 AOT逆微胞/二氧化矽樣品表(改變TEOS含量)40
表5-1 AOT/H2O/Hexane/TEOS二氧化矽凝膠系統46
(固定TEOS前驅物添加量0.25ml)相態表46
表5-2 AOT/H2O/Hexane/TEOS二氧化矽凝膠系統46
(改變TEOS前驅物添加量)相態表 46
表5-3 AOT特性吸收峰51
表5-4 矽氧烷類特性吸收峰52
表5-5不同AOT濃度逆微胞(wo=3)鬆弛時間比較59
表5-6 固定AOT濃度逆微胞(wo=1、3、5)鬆弛時間比較59
表5-7 6m逆微胞反應前後dspacing比較72
表5-8 72m不同wo逆微胞反應前後dspacing、r(半徑)比較75
表5-9不同濃度wo=1 AOT凝膠(TEOS添加量0.25ml)dspacing比較表77
表5-10不同TEOS添加量(wo=1) AOT凝膠dspacing比較表78
表5-11 72m不同TEOS添加量(wo=1) AOT凝膠dspacing比較表 79
表5-12 AOT/H2O/Hexane逆微胞加入TEOS反應前後相態結構與性質比較80
表5-13不同wo值AOT凝膠(TEOS添加量0.25ml)熱裂解溫度表92



參考文獻 [1]B. Baruah, J.M. Roden, M. Sedgwick, N.M. Correa, D.C. Crans, N.E. Levinger,
When is water not water? Exploring water confined in large reverse micelles
using a highly charged inorganic molecular probe, J. Am. Chem. Soc. 128 (2006)
12758–12765.
[2]R. Ganguly, N. Choudhury, Investigating the evolution of the phase behavior of
AOT-based w/o microemulsions in dodecane as a function of droplet volume
fraction, J. Colloid Interface Sci. 372 (2012) 45–51.
[3]M. Kotlarchyk, J.S. Huang, S.H. Chen, Structure of AOT reversed micelles
determined by small-angle neutron scattering, J. Phys. Chem. 89 (1985)
4382–4386.
[4]J. Eastoe, T.F. Towey, B.H. Robinson, J. Williams, R.K. Heenan, Structures of metalbis(2-ethylhexylsulfosuccinate) aggregates in cyclohexane, J. Phys. Chem. 97
(1993) 1459–1463.
[5]E. Bardez,N.C.Vy,T.Zemb,Counter ion-driven sphere to cylinder transition
in reverse micelles: a small angle x-ray scattering and conductometric study,
Langmuir 11 (1995) 3374–3381.
[6]T.Li.,J.Moon, A. A. Morrone, J. J. Mecholsky, D. R. Talham, J. H. Adair,Preparation of Ag/SiO2 nanosize composites by a reverse micelle and sol-gel technique.Langmuir15.13 (1999),4328-4334
[7]D.S.Bae,K.S.Han,J. H.Adair,Synthesis of platinum/silica nanocomposite particles by reverse micelle and sol–gel processing,J. Am. Ceram. Soc. 85(5), (2002)1321-1323.
[8]A.Martino,S.A.Yamanaka,J.S.Kawola,D.A.Loy,.Encapsulationof gold nanoclusters insilica materials via an inverse micelle/sol-gel synthesis.Chemistry of materials,9(2), (1997)423-429.
[9]D.M.Togashi,S.M.B.Costa, Absorption,fluorescence and transienttriplet–triplet absorption spectra of zinc tetramethylpyridylporphyrin inreverse micelles and microemulsions of aerosol OT – (AOT), Phys. Chem. Chem.Phys. 2 (2000) 5437–5444.
[10]S.-S. Hong, M.S. Lee, S.S. Park, G.-D. Lee, Synthesis of nanosized TiO2/SiO2
particles in the microemulsion and their photocatalytic activity on the decompositionof p-nitrophenol, Catal. Today 87 (2003) 99–105.
[11]C.Harris,P.V.Kamat ,Photocatalysis with CdSe Nanoparticles in Confined Media: Mapping Charge Transfer Events in the Subpicosecond to Second Timescale,ACS nano,3(3), 682-690.
[12]W.C.Lai,Amethod for preparing self-assembled gels from opaque solutions with high concentrations of AOT.Colloids Surf., A ,433, (2013)139-144.
[13]K.C.Huang,R.Vittal, K.C.Ho,.Effects of crown ethers in nanocomposite silica-gel electrolytes on the performance of quasi-solid-state dye-sensitized solar cells.Sol. Energy Mater. Sol. Cells ,94(4), (2010)675-679.
[14]P.Wang,S.M.Zakekruddin,P.Comte,I.Exnar,M.Gratzel,Gelationofionicliquid-based electrolytes with silica nanoparticles for quasi-solid-statedye-sensitized solar cells,J.Am.Chem.Soc.Commun.125(2003)1166–1167.
[15]L.W.Hinze,I.Uemasu,F.Dai,J.M.Braun,Analytical and related applicationsof organogels.Current Opinion in Colloid & Interface Science,1(4), (1996)502-513.
[16]A.Petri,T.Gambicorti,P.Salvadori,.Covalent immobilization of chloroperoxidase on silica gel and properties of the immobilized biocatalyst. J. Mol. Catal. B: Enzym. , (2004)27(2), 103-106.
[17]D.Avnir, S.Braun,O.Lev,M.Ottolenghi,. Enzymes and other proteins entrapped in sol-gel materials.Chem.Mater,6(10), (1994)1605-1614.
[18]Q.Chen, G.L.Kenausis,A.Heller,Stability of oxidases immobilized in silica gels. J. Am. Chem. Soc. ,120(19), (1998) 4582-4585.
[19]C.Kang,L.Jing,T.Guo,H.Cui,J.Zhou,H.Fu,Mesoporous,SiO2-modified nanocrystalline TiO2 with high anatase thermal stability and large surface area as efficient photocatalyst,The Journal of Physical Chemistry C,113(3), (2008)1006-1013.
[20]F.J.Arriagada,K.Osseo-Asare. Synthesis of nanosize silica in a nonionicwater-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration. J. Colloid Interface Sci, 211(2), (1999) 210-220.
[21]L.Yao,G.Xu,W.Dou,Y.ai,. The control of size and morphology of nanosized silica in Triton X-100 based reverse micelle. Colloids Surf., A,316(1), (2008) 8-14.
[22]J.F.Steffe, Rheological methods in food process engineering. Freeman press. (1996).
[23]陳劉旺、丁金超,高分子加工,高粒圖書有限公司,2003.
[24]W.R.Schowalter,. Mechanics of non-Newtonian fluids. Oxford:Pergamon press. (1978) (pp. 144-147)
[25]H. Cao, K. Yu , K. Qian ,X. Sha ,Y. Chen, 'Shear-Thickening Behavior of Modified Silica Nanoparticles in Polyethylene Glycol', J. Nanopart. Res , 14(2012), 1–9.
[26]S.R.Raghavan, S.A.Khan,Shear-thickening response of fumed silica suspensions under steady and oscillatory shear. J. Colloid Interface Sci ,185(1), (1997)57-67.
[27]C. W. Macosko, Rheology: Principles, Measurements and Application, VCH, (1994).
[28]鄭有舜,X-光小角度散射在軟物質研究上應用,物理雙月刊((廿六卷二期),2004 .
[29]陳信龍,鄭有舜,小角度 X 光散射在高分子奈米結構解析之應用,科儀新知第二十九卷第二期,2007.
[30]趙承琛, 界面化學, 復文書局,1978.
[31]王鳳英, 界面活性劑的原理與應用, 高立圖書有限公司,1986.
[32]廖明隆, 界面化學與界面活性劑, 台灣文源書局,1978.
[33]賴柏翔, 以AOT 逆微胞系統製備有機凝膠及二氧化鈦奈米粒子之結構與性質研究, 淡江大學化學工程與材料工程研究所碩士論文,2010.
[34]曹恒光,連大成淺談為乳液,物理雙月刊((廿三卷四期),2001.
[35]L.Xi,Y.M.Lam,Y.P.Xu,L.J.Li,Synthesis and characterization of one-dimensional CdSe by a novel reverse micelle assisted hydrothermal method, J. Colloid Interface Sci ,320(2), (2008)491-500.
[36]C.J.Brinker, G.W.Scherer,Sol-gel science:the physics and chemistry of sol-gel processing. Gulf Professional Publishing. (1990)
[37]L.Qi,J.Ma,H.Cheng,Z.Zhao,.Reverse micelle based formation of BaCO3 nanowires.The J. Phys. Chem. B ,101(18), (1997)3460-3463.
[38]I.Capek,Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv. Colloid Interface Sci. ,110(1), (2004)49-74.
[39] R.J.Hunter,L.R.White,Foundations of Colloid Science, Vol. 1 Oxford University Press. New York,(1992)
[40]H.Hoffmann, W.Ulbricht,Surfactant gels.Current Opinion in Colloid & Interface Science,1(6),(1996)726-739.
[41]W.C. Lai,C.H.Wu, Studies on the self‐assembly of neat DBS and DBS/PPG organogels. J. Appl. Polym. Sci. ,115(2), (2010)1113-11
[42]李易晉, 二苯亞甲基山梨醇與醇系統有機膠之結構與性質研究, 淡江大學
學工程與材料工程學系研究所碩士論文,2013
[43]B. A. Simmons, C. E. Taylor, F. A. Landis, V. T. John, G. L. McPherson, D. K. Schwartz, R. Moore, Microstructure Determination of AOT + Phenol Organogels Utilizing Small-Angle X-ray Scattering and Atomic Force Microscopy,J.Am Chem Soc, (2001)123, 2414
[44]L.W.Hinze,I.Uemasu,F.Dai,J.M.Braun,Analytical and related applicationsof organogels.Current Opinion in Colloid & Interface Science,1(4), (1996)502-513.
[45]S.H. Tung, Y.E.Huang, S.R.Raghavan,A new reverse wormlike micellar system: mixtures of bile salt and lecithin in organic liquids,J. Am. Chem. Soc,128(17), (2006)5751-5756.
[46]S.H.Tung, Y.E.Huang,S.R.Raghavan,Self-assembled organogels obtained by adding minute concentrations of a bile salt to AOT reverse micelles. Soft Matter,4(5), (2008)1086-1093.
[47]W.C.Lai, P.H.Lai,New Phases Found in Reverse Micelle Systems with HighConcentrations of AOT.,J. Phys. Chem.B,117(32), (2013)9568-9575.
[48]S.Li,G.C.Irvin, B.Simmons, S.Rachakonda,P.Ramannair, S.Banerjee , A.Bose , Structured materials syntheses in a self-assembled surfactant mesophase. Colloids Surf., A,174(1), (2000).275-281.
[49]C.Tao, J.Li, Morphosynthesis of microskeletal silica spheres templated by W/O microemulsion.Colloids Surf., A ,256(1), (2005)57-60.
[50]C.La Mesa ,L.Coppola, G.A.Ranieri, M.Terenzi, G.Chidichimo,Phase diagram and phase properties of the system water-hexane-Aerosol OT.Langmuir, 8(11), (1992)2616-2622.
[51]歐陽岱岳,改質二氧化矽/高分子複合材料之製備與物性分析,淡江大學化學工程與材料工程研究所碩士論文,2006.
[52]G.De,B.Karmakar,D.Ganguli,Hydrolysis–condensationreactionsof TEOS in the presence of acetic acid leading to the generation of glass-like silica microspheres in solution at room temperature.J. Mater.Chem ,10(10), (2000)2289-2293.
[53]M.I.Tejedor-Tejedor,L.Paredes, M.A.Anderson,. Evaluation of ATR-FTIR spectroscopy as an “in situ” tool for following the hydrolysis and condensation of alkoxysilanes under rich H2O conditions.,Chem.Mater.10(11), (1998)3410-3421.
[54]E.A.Wilder, C. K. Hall, R. J. Spontak, Effects of composition and matrix polarity on network development inorganogels of poly (ethylene glycol) and dibenzylidene sorbitol., Langmuir,19,(2003) 6004-6013.
[55]D.J.Mercurio, S. A. Khan, R. J. Spontak, Dynamic rheological behavior of DBS-induced poly (propylene glycol) physical gels,Rheol.Acta, 40, (2001)30-38.
[56]M.E.Catest, S. J. Candauj, Statics and dynamics of worm-like surfactant micelles. J. Phys. Condens .Mat, 2,(1990) 6869
[57]Y.Zhang,Z.Xu,Atomic radii of noble gas elements in condensed phases.Am.Mineral,80(7), (1995)670-675.
[58]S.Yan, J.Yin, J.Yang, X.Chen, Structural characteristics and thermal properties of plasticized poly (L-lactide)-silica nanocomposites synthesized by sol–gel method.Mater. Lett.,61(13), (2007)2683-2686.
[59]Y.L.Liu,C.Y.Hsu,W.L.Wei, R.J.Jeng, Preparation and thermal properties of epoxy-silica nanocomposites from nanoscale colloidal silica.Polymer,44(18), (2003)5159-5167.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2017-08-13公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-08-13起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信