§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0408201410185000
DOI 10.6846/TKU.2014.00119
論文名稱(中文) 含吡啶腙基配位子銀錯合物之金屬超分子研究
論文名稱(英文) Metallo-Supranolecules Based on Silver Complexes with Pyridine-Hydrazone Deviative Ligands
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 2
出版年 103
研究生(中文) 李俊暉
研究生(英文) Chun-Hui Li
學號 600160351
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2014-07-07
論文頁數 68頁
口試委員 指導教授 - 王文竹
委員 - 林志彪
委員 - 賴重光
關鍵字(中) 超分子
銀錯合物
自組裝
螺旋錯合物
腙基
關鍵字(英) Supramolecule
Silver complex
Self-assembly
Helicate
Hydrazone
第三語言關鍵字
學科別分類
中文摘要
在本研究中,合成了亞胺腙基吡啶型配位子L1、L2、L3、L4以及L5,與銀離子配位得到[Ag2L22](BF4)2 (1)、{[Ag4L32(H2O)2](BF4)4‧2H2O}∞ (2)、[Ag3L52]2(PF6)5 (3)、[Ag2L52](PF6)2 (4)對其特性進行研究。

    L2可與銀鹽形成Ag2L2的錯合物(1),配位子上氧原子擔任架橋同時配位兩個銀離子;L3可與銀鹽進一步形成coordination polymer的錯合物(2);L5根據合成方式的不同,能夠形成雙核以及三核的雙股螺旋錯合物,並且銀-銀距離皆小於銀離子凡得瓦半徑合,靠著分子間的π-π作用力進一步形成無限的一維金屬線

    L5的核磁共振光譜滴定實驗與錯合物3的核磁共振光譜比較,觀察出即使錯合物是Ag3L52
,在溶液態中需要更大量的銀才能維持穩定的結構,並且藉由變溫核磁共振光譜實驗可得知溫度的改變會使錯合物2、3的結構扭曲。

    在研究分子自組裝方面,利用UV-Vis滴定測量以銀鹽滴定配位子的光譜變化,再以SPECFIT計算得知分子的反應機制是以L、AgL、AgL2、Ag4L2、。

    固態結構與自組裝反應的實驗結果一致,證明此系列的配位子在與銀形成錯合物時,可自組裝形成穩定的錯合物。
英文摘要
In this research, a series of new ligands (L1、L2、L3、L4 and L5) containing hydrazone and derivative pyridine moiety were synthesized. Four silver complexes, [Ag2L22](BF4)2 (1)、{[Ag4L32(H2O)2](BF4)4‧2H2O}∞ (2)、[Ag3L52]2(PF6)5 (3)、[Ag2L52](PF6)2 (4) have been prepared and characterized by X-ray diffraction study. 

	Complex 1 synthesis from L2 and silver salt, the oxygen atoms were bridge two silver ions. Complex 2 can further form coordination polymer. According to different synthesis, L5 can form Ag3L52 and Ag2L52 complexes. The Ag-Ag distance smaller than the sum of Van der Waals radii of silver ion.  The π−π stacking interaction to form polymeric superstructure.

	Compare with NMR titration of L5 and NMR of complex 3, we found that even if the formation of complex 3 is Ag3L52, complex 3 need more silvers to stabilize the structure in solution state, and we found that the structure of complex 2 and 3 will distorted by using the VTNMR studys.

The self-assembling process and reaction mechanism were studied by UV-Vis titration. The step-wise and overall ability constant of L、AgL、AgL2、AgL2、Ag4L2 were investigated by systematic measurement.

The results were consistent for the crystal and titration of L2 with AgPF6. Overall, double helical structure is the most stable conformation of L2 silver complex.
第三語言摘要
論文目次
目錄
中文摘要
英文摘要

第一章  緒論                       1
  1-1  超分子化學                  1
  1-2  超分子的特色                1
  1-3  超分子應用於分子導線         2
  1-4  金屬離子的選擇               4
  1-5  配位子的設計                 5

第二章  實驗                        7
  2-1  實驗藥品                     7
  2-2  光譜量測                     7
     2-2.1  核磁共振光譜            7
     2-2.2  元素分析                8
     2-2.3  電子吸收光譜儀          8
     2-2.4  SPECFIT Simulation      9
     2-2.5  X-射線晶體結構解析      9
  2-3  化合物合成                  10
  2-4  錯合物合成                   13

第三章  合成與鑑定                   15
  3-1  L1、L2、L3、L4配位子合成       15
  3-2  L5配位子合成                  19

第四章  固態結構                     20
  4-1  X-ray 結構解析                20
  4-2  配位子晶體結構                25
  4-3 錯合物晶體結構                 29
  4-4 錯合物之比較                    44

第五章  溶液態性質探討                47
  5-1  核磁共振光譜滴定實驗           47
      5-1.1以AgPF6滴定配位子L5        47
      5-1.2 [Ag3L52]加入AgPF6         50
  5-2  核磁共振光譜變溫實驗            51
      5-2.1 配位子L5加入過當量AgPF6    52
      5-2.2 [Ag3L52]三核錯合物         54
      5-2.3 [Ag2L2]雙核錯合物          56
  5-2 電子吸收光譜實驗                 58
      5-2.1 配位子L1                   58
      5-2.2 配位子L2                   59
      5-2.3 配位子L3                   60
      5-2.4 銀鹽(AgClO4)滴定配位子L1   62

第六章  結論                           65

參考文獻                               66

附錄                             


圖目錄

Figure 1-1. Combination of various boilding units for accessing convex polygons and cononacal polygons.    2
Figure 1-2. The formation of M-DNA by metal ion binding to B- DNA.         3
Figure 1-3. The formation of (a) Pb(II) (b) Ag(I) complexes by using the same ligand.          4
Figure 1-4. Solid state molecular structure of pentanuclear double-helical complex from Bpy-(HC2H-Bpy)2.    5
Figure 1-5. Solid state molecular structure of copper (II) complex with pyridine carboxylic hydrazone series ligand.
       6
Figure 1-6. Solid state molecular structure of trinuclear double-helical complex from py-hyz-py-hyz-py.    6
Figure 3-1. 300 MHz 1H-NMR spectrum of the L1 in DMSO-d6.           16
Figure 3-2. 300 MHz 1H-NMR spectrum of the L2 in DMSO-d6            17
Figure 3-3. 300 MHz 1H-NMR spectrum of the L2 in DMSO-d6            17
(only shown the aromatic part)              
Figure 3-4. 300 MHz 1H-NMR spectrum of the L3 in DMSO-d6            18
Figure 3-5. 600 MHz 1H-NMR spectrum of the L4 in DMSO-d6.           18
(only shown the aromatic part)
Figure 3-6. 600 MHz 1H-NMR spectrum of the L5 in DMSO-d6            19
(only shown the aromatic part) 
Figure 4-1. ORTEP of the L1, thermal ellipsoids drawn at the 50% probability level,          25
H atoms are omitted
Figure 4-2. Presentation of distance between pyridine and pyridine.                        25
Figure 4-3. Molecule structure of L1. Presentation of the π- π interactionbetween pyridine      26
and hydrazone
Figure 4-4. ORTEP of the L4, thermal ellipsoids drawn at the 50% probability level,          27
H atoms are omitted.
Figure 4-5. Presentation of the π- π interaction between benzene and benzene.               28
Figure 4-6. ORTEP of the [Ag2L22](BF4)2, thermal elipsoids drawn at the 50% probablkity     30
level H atoms and anion are omitted
Figure 4-7. Packing diagram of [Ag2L22](BF4)2 . Presentation of the π- π interaction          30
          between pyridine and pyridine
Figure 4-8. ORTEP presentation of the {[Ag4L32(H2O)2](BF4)4‧2H2O}∞, thermal elipsoids   32                      
          drawn at the 50% probablkity level, H atoms and anion are omitted
Figure 4-9. Molecular structure of {[Ag4L32(H2O)2](BF4)4‧2H2O}∞                                 32
Figure 4-10. Molecular structure of {[Ag4L32(H2O)2](BF4)4‧2H2O}∞                                 32                                 
Figure 4-11. O−H‧‧‧F and C−H‧‧‧F hydrogen bond of the {[Ag4L32(H2O)2](BF4)4‧2H2O}∞      33
Figure 4-12. ORTEP presentation of the [Ag3L52]2(PF6)5 ‧CH3OH, thermal ellipsoids         35
drawn at the 50% probablkity level, anion and H atoms are omitted.
Figure 4-13. Silver coordination sphere of [Ag3L52]2(PF6)5 ‧CH3OH                     35
Figure 4-14. Molecular structure of [Ag3L52]2(PF6)5 ‧CH3OH viewd along a axis,       36
presentation of Ag+-Ag+ distances and π-π interaction.
Figure 4-15. Crystal packing diagram of [Ag3L52]2(PF6)5 , presentation of (a) b axis (b) a axis   37
           (c) c axis (d) intramolecular π- π stacking.
Figure 4-16. ORTEP presentation of the [Ag2L52](PF6)2‧2CH3OH, thermal elipsoids drawn    39
at the 50% probablkity level, anion and H atoms are omitted.
Figure 4-17. Silver coordination sphere of[Ag2L52](PF6)2‧2CH3OH                       39
Figure 4-18. Molecular structure of [Ag2L52](PF6)2‧2CH3OH viewd along b axis,            40
presentation of Ag+-Ag+ distances and π-π interaction.
Figure 4-19. Crystal packing diagram of[Ag2L52](PF6)2‧2CH3OH , presentation of           40
(a) b axis (b) a axis (c) c axis
Figure 4-20. ORTEP presentation of the [Ag3L52]2(PF6)2(BF4)2 ‧CH3OH, thermal ellipsoids    42
drawn at the 50% probablkity level, anion and H atoms are omitted.
Figure 4-21. Silver coordination sphere of [Ag3L52]2(PF6)2(BF4)2 ‧CH3OH.                 42
Figure 4-22. Molecular structure of [Ag3L52]2(PF6)2(BF4)2 ‧CH3OH viewd along b axis,       43
          presentation ofAg+-Ag+ distances and π-π interaction.

Figure 4-23. Crystal packing diagram of [Ag3L52]2(PF6)2(BF4)2 ‧CH3OH , presentation of     43
(a) b axis(b) a axis (c) c axis
Figure 4-24. Molecule structure of complexes with different anion.                       46
Figure 5-1. 300 MHz 1H-NMR titration spectrum of L5 in d6-DMSO with AgPF6in d4-MeOH   48
         (only shown the aromatic part)
Figure 5-2. 400 MHz 1H-NMR titration of pyrimidine ligand with AgBF418b.                49
(only shown the aromatic part)
Figure 5-3. 600 MHz 1H-NMR spectrum of Ag3L52 complex in d6-DMSO after addition of     51
AgPF6 in d4-MeOH. ( only shown the aromatic part ).
Figure 5-4. 600 MHz 1H-NMR variation temperature spectrum of the ligand in d6-DMSO      53
after addition of 9 eq. AgPF6 in d4-MeOH. (only shown the aromatic part)
Figure 5-5. Calculated ring current effect of benzene (shielding surfaces at 0.1 ppm in yellow,   53
at 0.5 ppm in green, at 1 ppm in green-blue, at 2 ppm in cyan, at 5 ppm in blue, respectively; deshielding surfaces at 0.1 ppm in red). View from perpendicular to 
the molecule and in the plane of molecule24.
Figure 5-6. 600 MHz 1H-NMR variation temperature spectrum of Ag3L52 complex in        55
d6-DMSO(only shown the aromatic part)
Figure 5-7. Variation of chemical shift of Ag3L52 with different temperature.                55
Figure 5-8. 600 MHz 1H-NMR variation temperature spectrum of Ag2L52 complex in         56
d6-DMSO(only shown the aromatic part)
Figure 5-9. Variation of chemical shift of Ag2L52 with different temperature                 57
Figure 5-10. Variable-concentration UV-Vis spectra of L1 in DMSO.                       58
Figure 5-11. Variable-concentration UV-Vis spectra of L2 in DCM.                        59
Figure 5-12. Variable-concentration UV-Vis spectra of L3 in DCM.                        60
Figure 5-13. Variable-concentration UV-Vis spectra of L3 in Trifluoroethanol.               61
Figure 5-14. UV-Vis spectra of L3 in DCM and Trifluoroethanol                          52
Figure 5-15. (a)Variable of observed absorption (b)Corresponding speciation of L1 for the      63
spectrometric titration with AgClO4 in DMSO.

Figure 5-16. (a) Experiment (b) Calculation UV-Vis spectra of 3.73 × 10-5 ML1 with          64
addition of 0.0-4.0 equivalent AgClO4 in DMSO.
Figure 5-17. Calculation UV-Vis spectra of 3.73 × 10-5 M L1 with different metal-ligand ratio   64
          species of silver complex.


表目錄

Table 4-1. Summary of Crystal Structures.                       20
Table 4-2. Crystal Structure Refinement Data                             22
參考文獻
1. Schneider, H.-J.; Yatsimirsky, A. Principles and Methods in Supramolecular Chemistry; John Wiley: New York, 2000.
2. Lehn, J.-M. Supramolecular Chemistry, VCH: Weinheim, 1995.
3. Leong, W.E.; Vittal, J. J. Chem. Rev. 2011, 111, 688.
4. (a) Hoss, R.; Vogtle, F. Angew. Chem. Int. Ed. Engl. 1994, 33, 375.
  (b) Constable, E. C.;Smith, D., Chemistry in Britain, 1995, 33.
5. (a) Uppadine, L. H.; Lehn, J.-M. Angew. Chem. Int. Ed. 2004, 43, 240. 
(b) Rojo, J.; Romero-Salguero, F. J.; Lehn, J.-M.; Baum, G.; Fenske, D. Eur. J. Inorg. Chem. 1999, 1421.
6. Mezei, G..; Kampf, J. W.; Pan, S.; Poeppelmeier, K. R.; Watkins, B.; Pecoraro, V. L.  Chem. Commun. 2007, 1148.
7. (a) Constable, E. C.; Edwards, A. J.; Martines-Manez, R.; Raithby, P. R. J. Chem. Soc. Dalton Trans., 1995, 3253. 
(b) Barley, M.; Constable, E. C.; Corr, S.; McQueen, R. C.; Nutkins, J. C.; Ward, M. D.; Drew, M. G. B. J. Chem. Dalton Trans. 1988, 2655.
8. Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Chem. Rev. 2011, 111, 6810.
9. Kalny,D.; Elhabiri, M.; Moav, Y.; Vaskevich, A.; Rubinstein, I.; Shanzer, A.;
  Albrecht-Gary, A.-M. Chem. Commun. , 2002, 1426.
10. Sun, D.; Cao, R.; Weng, J.; Hong, M.; Liang, Y. J. Chem. Soc., Dalton Trans., 2002, 291.
11. (a) Mochizuki, T.; Nogami, T.; Ishida, T. Inorg. Chem. 2009, 48, 2254.
   (b) Cangussu, D.; Pardo, E.; Dul, M.-C.; Lescouezec, R.; Herson, P.; Journaux, Y.; Pedroso, E. F.; Pereira, C. L. M.; Stumpf, H. O.; Munoz, M. C.;
Rafael, R.-G.; Cano, J.; Julve, M.; Lloret, F. Inorganica Chimica Acta, 2008, 361, 3394.
12. Amendola, V.; Fabbrizzi, L.; Pallavicini, P.; Sartirana, E.; Taglietti, A. Inorg. Chem. 2003, 42, 1632.
13. Brun, A. M.; Harriman, A. J. Am. Chem. Soc. 1992, 114, 3656-3660.
14. (a) Latimer, L. J.; Reid, R. S.; Lee, J. S. Biochem Cell Biol. 1993, 71, 162.
   (b) Aich, P.; Labiuk, S. L.; Tari, L. W.; Delbaere, L. J.; Roesler, W. J.; Falk, K. J.; Steer, R. P.; Lee, J. S. J. Biomol. Struct. Dynam. 2002, 20, 93.
15. Hasenknopf, B.; Lehn, J.-M.; Boumediene, N.; Annick D.-G.; A. V.; Kneisel, B.; Fenske, D. J. Am. Chem. Soc. 1997, 119, 10956.
16. Cui, F.; Li, S.; Jia, C.; Mathieson, J. S.; Cronin, L.; Yang, X.-J.; Wu, B. Inorg. Chem. 2012, 51, 179.
17. (a) Chen,C. Y.; Zeng, J. Y.; Lee, H. M. Inorg. Chim. Acta, 2007, 360, 21.
 (b) Kammer, S.; Kelling, A.; Baier, H.; Mickler, W.; Dosche, C.; Rurack, K.; Kapp, A.; Lisdat, F.; Holdt, H.-J. Eur. J. Inorg. Chem. 2009, 31, 4648.
18. (a) Stadler, A.-M.; Kyritsakas, N.; Graff, R.; Lehn, J.-M. Chem. Eur. J. 2006, 12, 4503.
   (b)Stadler, A.-M.; Kyritsakas, N.; Graff, R.; Lehn, J.-M. Chem. Eur. J. 2007, 13, 59.
19. Zheng, X.-D.; Jiang, L.; Feng, X.-L.; Lu, T.-B. Inorg. Chem. 2008, 47, 10858.
20. (a) Cheng, C.-C.; Hung, S.-M.; Yeh, C.-Y.; Chang, C.-S.; Wang, W.-J. 
      J. Chin. Chem. Soc. 2003, 50, 189.
   (b) Wang, W.-J.;Wang, Y.-C.; Kao, H.-C. J. Chin. Chem. Soc. 2010, 57, 876.
   (c) 張清森,淡江大學化研所博士論文
   (d) 湯上慰,淡江大學化研所博士論文
   (e) 何季廷, 淡江大學化研所碩士論文
21. (a) Motaleb, A.; Ramadan M. Trans . Metal. Chem. 2005, 30, 471.
   (b) Carcelli, M.; Mazza, P.; Pelizzi, C.; Pelizzi, G.; Zani, F. J. lnorg Biochem.
1995, 57, 43.
22. (a) Wester, D.; Palenik, G. J. Inorg. Chem. 1976, 15, 755.
   (b) Liu, G.-F.; Durr K., Puchta R.; Heinemann F. W.; van Eldik R.; Ivanović-Burmazović I. Dalton Trans. 2009, 6292.

   (c)Sakamoto, M.; Matsumoto, N.; Okawa, H. Bull. Chem. Soc. Jpn. 1991, 64, 691.
   (d)Paolucci, G.; Marangoni, G.; Bandoli, G.; Clemente, D. A. 
     J. Chem. Soc., Dalton Trans., 1980, 459.
   (e)Cheesa, G.; Marangoni, G.; Pitteri, B.; Bertolasi, V.; Ferretti, V.; Gilli, G. 
     J. Chem. Soc., Dalton Trans. 1988, 1479.
23. Mckillop, A.; Kemp, D. Tetrahedron, 1989, 45, 3299.
24. (a) Chen, Z.; Wannere, C. S.; Corminboeuf, P.; Puchta, R.; Schleyer, P. R. Chem. Rev. 2005, 105, 3842.
   (b) Klod, S.; Kleinpeter, E. J. Chem. Soc., Perkin Trans. 2 2001, 1893.
   (c) Klod, S.; Koch, A.; Kleinpeter, E. J. Chem. Soc., Perkin Trans. 2, 2002, 1506.
25. Garrett, T. M.; Koert, U.; Lehn, J.-M. J. Phy. Org. Chem. 1992, 5, 529.
26. (a) Gampp, H.; Maeder, M.; Meyer, C. J.; Zuberbuhler, A. D. Talanta 1985, 32, 95–101. 
(b) Gampp, H.; Maeder, M.; Meyer, C. J.; Zuberbuhler, A. D. Talanta 1985, 32, 251–264.
(c) Gampp, H.; Maeder, M.; Meyer, C. J.; Zuberbuhler, A. D. Talanta 1985, 32, 1133–1139. 
(d) Gampp, H.; Maeder, M.; Meyer, C. J.; Zuberbuhler, A. D. Talanta 1986, 33, 943–951.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信