淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0408201023212200
中文論文名稱 應用於染料敏化太陽能電池對電極之鉑-聚(3,4-乙烯基二氧噻吩)/聚(苯乙烯磺酸鹽)導電奈米複合薄膜的製備與性質分析
英文論文名稱 Preparation and Characterization of PEDOT:PSS-Pt Conducting Nano-Composite Film for the Application of Counter Electrode of Dye Sensitized Solar Cell
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 江明泰
研究生英文姓名 Ming-Tai Jiang
學號 697400793
學位類別 碩士
語文別 英文
口試日期 2010-07-22
論文頁數 83頁
口試委員 指導教授-張正良
共同指導教授-張朝欽
委員-段葉芳
委員-林正嵐
委員-游洋雁
中文關鍵字 染料敏化太陽能電池 
英文關鍵字 PEDOT:PSS 
學科別分類
中文摘要 本論文染料敏化太陽能電池,使用N719染料-TiO2工作電極、碘離子電解液與白金對電極光電轉換效率可達3.2%,然而染料敏化太陽能電池使用奈米白金混摻導電高分子PEDOT:PSS導電奈米複合薄膜對電極已可得光電轉換效率3.02%。藉由循環伏安法,比例為22Wt%奈米白金於PEDOT:PSS導電高分子中且經1200C, 20分鐘熱處理,厚度為450 nm之導電奈米複合薄膜對其碘離子電解液有最佳氧化還原特性。由SEM與AFM可發現具有表面孔洞的導電奈米複合薄膜與粗糙度的增加,皆可提升PEDOT:PSS-Pt導電奈米複合薄膜對碘離子電解液的氧化還原能力。熱處理最佳化是必須的,過高溫之熱處理會破壞PEDOT:PSS庫倫作用力而使導電度下降,過低溫熱處理將無法完全移除溶劑。同樣地,膜厚也影響PEDOT:PSS-Pt導電奈米複合薄膜對電極氧化還原表現,藉由極化曲線可得知較厚之導電奈米複合薄膜具有較高面電阻值,然而膜厚較薄之導電奈米複合薄膜又易出現pin hole。22Wt%奈米白金於PEDOT:PSS奈米複合薄膜再經由交流阻抗分析證實其對碘離子電解液具有最小之電子交換阻抗。最後經由電化學Randles-Sevcik法證實PEDOT:PSS-Pt導電奈米複合薄膜對碘離子的氧化還原為質傳控制,代表碘離子的氧化還原速率決定步驟為碘離子之本身擴散。
染料敏化太陽能電池使用PEDOT:PSS-Pt導電奈米複合薄膜對電極其開路電壓發現有下降之趨勢當使用22Wt%奈米白金於PEDOT:PSS奈米複合薄膜中,其可歸因於質傳過電壓損失與電子交換過電壓損失之存在,當短路電流相對提升時,由歐姆定律可得知其過電壓損失昰增加的。填充因子有增加的趨勢,當奈米白金量的使用量增加時,這與 PEDOT:PSS-Pt導電奈米複合薄膜面電阻質之改善有關。
英文摘要 The application of the platinum nanoparticles added in PEDOT:PSS conducting polymer as the counter electrode for DSSC, which was made by depositing PEDOT:PSS-Pt on FTO substrate by spin coating method, following the low temperature heat process was conducted, and thus the PEDOT:PSS-Pt counter electrode assembled with N719-TiO2 photo-electrode and employed I-/I3- mediator as electrolyte. The heat process and film thickness influence the PEDOT:PSS-Pt counter electrode electrocatalytical activity significantly. The thickness 450 nm of conductive PEDOT:PSS matrix contained 22 wt% platinum nanoparticles after 120 0C heat process exhibited best photo-conversion efficiency 3.02% under Am 1.5 illumination in comparison with the device assembled with thermal decomposition of H2PtCl6 counter electrode which photo-conversion efficiency 3.2% was obtained. The SEM and AFM images proved that the presence of pores and the increased surface roughness enhancing the cell performance remarkably. Impedance measurement demonstrated that the charge transfer resistance was improved as increasing the amount of platinum nanoparticles. Additionally, the diffusion control was also confirmed when use of the PEDOT:PSS-Pt counter electrode in I-/I3- mediator electrolyte by Randles-Sevcik method.
In this work, the material cost and energy-consuming of PEDOT:PSS-Pt counter electrode were drastically reduced compared with the thermal decomposition of H2PtCl6 counter electrode. The DSSC using PEDOT:PSS-Pt counter electrode had obtained acceptable performance, which suggested that the nanocomposite film PEDOT:PSS-Pt is a promising candidate to replace of the platinum for DSSC counter electrode and to develop a bifacial flexible DSSC.
論文目次 Table of Contents
Page
Chapter 1: Introduction......................................................................1
1.1 Background of DSSC Counter Electrode and Research Object................................1
1.2 Theory of DSSC and Development.....................................................................3
Chapter 2: Literature Review……………………………...……............................7
2.1 The Pt Counter Electrode of DSSC………………………………….…..........7
2.1.1 DSSC Using Pt Counter Electrode……………………………………..…...........7
2.1.2 Characteristics and Preparation of Platinum Nanoparticles…………..................10
2.2 Introduction of Poly(3,4-etheylenedioxytiophene):Poly(styrenesulfonate)……….13
2.2.1 Poly(3,4-etheylenedioxytiophene):Poly(styrenesulfonate)...................................13
2.2.2 Conductivity Modification on PEDOT:PSS…......….........................…...............18
2.2.3 Applications of PEDOT:PSS............…………………………...............................20
Chapter 3 Experiments……………………………………................23
3.1 Materials………………………………………….......................…..……...........23
3.2 Experimental Procedures………………….…......................................................26
3.3 Characterizations…………..…..……………….…...............................................28
Chapter 4 Results and Discussion……………………………...........................33
4.1 The Synthesis of Platinum Nanoparticles………………………………….…..........33
4.1.1 Optimization of Synthesis of Platinum Nanoparticles.........................................33
4.1.2 Morphology and Characterization…....................................................................36
4.2 Preparation and Characterization of PEDOT:PSS-Pt Nanocomposite film...................40
4.2.1 The Influence of Pt Nanoparticles Contents on the PEDOT:PSS Matrix stability...40
4.2.2 Thermal Gravimetric Analysis……......................................................................43
4.2.3 The Structure of PEDOT:PSS-Pt Nanocomposite Film………............................45
4.2.4 Optimization of the Coating Process………........................................................49
4.2.5 Optimization of the Heating Process……............................................................51
4.2.6 The Influence of Pt Nanoparticle Contents in the PEDOT:PSS Nanocomposite Film Electrocatalytic Activity................................................................................53
4.2.7 The Morphology of the PEDOT:PSS-Pt Nanocomposite Film............................54
4.2.8 The Influence of Crystal Structure of PEDOT:PSS-Pt Nanocomposite film on Conductivity...........................................................................................................62
4.3 Characterization of PEDOT:PSS-Pt Nanocomposite Counter Electrode....................64
4.3.1 The Influence of Charge Transfer Resistance on the PEDOT:PSS-Pt Nanocomposite Counter Electrodes Performance……………................................................64
4.3.2 The Influence of Mass Transfer Resistance on the PEDOT:PSS-Pt Nanocomposite Counter Electrodes Performance….................................................................66
4.3.3 Photo-Conversion Efficiency…..............................................................................70
Chapter 5 Conclusion.............................................................................................73
Reference.............................................................................................................................75
Appendix..............................................................................................................................80



























LIST OF FIGURES
Figure 1-1 The energy level of DSSC with and without illumination.
.................................................3
Figure 1-2 Series tandem DSSC............................................................................................4
Figure 1-3 Monolithic type.......... ................................. .......................................................5
Figure 1-4 Centrosymmetric (w-type) ................................. ................................................5
Figure 1-5 Centroasymmetric type.......... ........................................ ....................................6
Figure 1-6 Parallel DSSC module.......... ................................. ........... ........... .....................6
Figure 2-1 SEM pictureof sputtering Pt on TCO........... ..........................................................9
Figure 2-2 Mechanism of triorganohydroborate reduction method... ....................................10
Figure 2-3 The reduction potential of metal species in ethylene at both carbon electrode and platinum electrode at room temperature. The oxidation potential of ethylene glycol is also given......... ....................................................................................12
Figure 2-4 The Poly(3,4-ethylenedioxythiophene).... .................................. ....................15
Figure 2-5 The non-conductive (reduced) state and conductive (oxidized) state..............15
Figure 2-6 The gel particles of PPEDOT:PSS dispersed in the water....... .......................15
Figure 2-7 The PEDOT:PSS chemical synthesis mechanism........ ........... .......................16
Figure 2-8 The interaction of PEDOT with the PSS chains......... .....................................16
Figure 2-9 The bond alternation of polyacetylene................. ........... ........... .....................16
Figure 2-10 The sigma bond with localized electron polyethylene..... ........... .....................16
Figure 2-11 The π*-π band gap decreases with the conjugated electron length....................17
Figure 2-12 The three mechanism carrier mobility in conjugated polymer..........................17
Figure 2-13 The proposed three stage thermal degradation mechanism of PEDOT:PSS....18
Figure 2-14 The OLED structure....... ................................. ...............................................21
Figure 3-1 The DSSC fabrication with PEDOT:PSS-Pt nanocomposite counter electrode.27
Figure 3-2 Three-electrode system for cyclic voltammetry measurement...........................28
Figure 3-3 The symmetric device used for the EIS measurement.. ........................................30
Figure 3-4 An RC element in Nyquist plot..............................................................................30
Figure 3-5 An RC element in series with resistance in Nyquist plot.......................................30
Figure 3-6 The symmetric device used for the J-V measurement...........................................32
Figure 4-1 Nucleation and growth mechanism base on LaMer’s model. (a) poly-disperse particles. (b) mono-disperse particles.................................................................34
Figure 4-2 The polyol-derived Pt particle size as a function of reacting temperature.......35
Figure 4-3 TEM images of platinum nanoparticles synthesized at 90 °C for 4 h. (a) without removing of water. (b) magnified part section of (a)...........................................37
Figure 4-4 TEM images of platinum nanoparticles synthesized at 90 °C for 4 h. with removing of water by concentration at 60 0C, 0.5h.............................................38
Figure 4-5 The UV-Vis spectrum absorption of (a) PtCl6- and (b) Pt nanoparticles. The concentration were both 0.0001M.......................................................................39
Figure 4-6 The FTIR spectrum of PEDOT precipitate...........................................................41
Figure 4-7 The SEM images of PEDOT-Pt nanocomposite precipitates...............................41
Figure 4-8 The representation of platinum nanoparticles incorporated in high and low weight ratio of [PSS]/[PEDOT] matrix................................................................42
Figure 4-9 The (a) weight loss diagram for PSS, PEDOT:PSS and PEDOT:PSS blended with platinum nanoparticles and (b) differential thermogravimetry..................44
Figure 4-10 The TEM images of pristine PEDOT:PSS...........................................................46
Figure 4-11 The TEM images of PEDOT:PSS prepared with ethylene glycol solvent........47
Figure 4-12 TEM images of PEDOT:PSS prepared with 22 Wt% platinum nanoparticles....48
Figure 4-13 The Proposed structure of PEDOT:PSS-Pt nanocomposite.................................48
Figure 4-14 The effect of the film thickness and various platinum contents on the I3- ion reduction current density peaks.... ....................................................................50
Figure 4-15 The J-V characteristic of different thickness of PEDOT:PSS prepared 22 Wt% Pt............................................................................................................................50
Figure 4-16 The influence of heat treatment for 20 min. on the films’ reduction current density peaks... ................................. .........................................................52
Figure 4-17 The CV of I-/I3- redox reactions at PEDOR:PSS-Pt counter electrodes with various platinum nanoparticles loading. The electrolyte was acetonitrile solution containing 10 mM LiI, 1mM I2 and 0.1M LiClO4 (supporting electrolyte). The area of the PEDOT:PSS-Pt modified electrode was 2 cm2. the scan rate = 20 mv/s............................................................................................54
Figure 4-18 The EDAX of the PEDOT:PSS-Pt nanocomposite prepared with 22 Wt% of Pt.. ................................. ................................. ...................................................56
Figure 4-19 The SEM images of the PEDOT:PSS-Pt 22 Wt% film with 120oC heat treatment, 450 nm thickness..................................................................................................57
Figure 4-20 The SEM images of pristine PEDOT:PSS film with 120oC heat treatment (a)100K and (b)150K..........................................................................................................57
Figure 4-21 The surface of PEDOT:PSS prepared using 50 Wt% ethylene glycol with 120oC heat treatment, 450 nm thickness.........................................................................58
Figure 4-22 The AFM images of PEDOT:PSS-ethylene glycol film with 120oC heat treatment, 450 nm thickness..................................................................................................59
Figure 4-23 The AFM images of PEDOT:PSS film with 120oC heat treatment.....................59
Figure 4-24 The AFM image of TEC7 substrate.....................................................................60
Figure 4-25 The SEM image of TEC7 substrate......................................................................60
Figure 4-26 The AFM images of (a) PEDOT:PSS-EG, (b) 5.5 Wt % Pt, (c) 11 Wt% Pt, (d) 22 Wt % Pt with heat treatment at 120 oC for 20 min...............................................61
Figure 4-27 The XRD spectra of(a) 5.5 Wt% Pt (b) 11Wt% Pt, (c) 22 Wt% Pt, (d) thermal decomposition of H2PtCl6.........................................................63
Figure 4-28 The J-V characteristic of PEDOT:PSS prepared 50 wt% ethylene glycol and 22 wt% platinum nanoparticles, both of two layers are 450 nm. .............................63
Figure 4-29 The Nyquist plot of PEDOT:PSS electrode prepared with different metallic platinum nanoparticle content............................................................................65
Figure 4-30 The Equivalent circuit diagram fits the observed impedance result in Fig. 4-29...65
Figure 4-31 The mediator redox mechanism of DSSC............................................................66
Figure 4-32 The CV of iodide species on PEDOT:PSS-EG with various scan rate in acetonitrile solution of 10 mM LiI, 1mM I2, and 1 M LiClO4...........................68
Figure 4-33 The relationship between cathodic peak currents and anodic peak currents as a function of the scan rate1/2 of PEDOT:PSS- EG..................................................68
Figure 4-34 The CV of iodide species on PEDOT:PSS- Pt 22wt% with various scan rate in acetonitrile solution of 10 mM LiI, 1mM I2, and 1 M LiClO4...........................69
Figure 4-35 The relationship between cathodic peak currents and anodic peak currents as a function of the scan rate1/2 of PEDOT:PSS-Pt 22%.............................................69
Figure 4-36 The J-V characteristics of DSSC using PEDOT:PSS with various metallic platinum nanoparticles content as counter electrode...........................................71
Figure 4-37 The dependence of (a) Voc, (b) Jsc, (c) FF and (d) PCE on the different weight ratio of [Pt]/[PEDOT:PSS]...........................................................................................72






LIST OF TABLES
Page
Table 2-1 Results of the impedance measurement on different Pt deposition method..............9
Table 4-1 Synthesis parameters and products of the polyol process, concentration 0.01M, reaction time 4 h.......................................................................................................35
Table 4-2 Specification of commercial PEDOT:PSS...............................................................42
Table 4-3 The data for electrochemical reversibility of I-/I3- mediator carried out by CV.......54
Table 4-4 The relationship of RMS of film in various Pt content.......................................61
Table 4-5 The DSSC performance using the PEDOT:PSS-Pt nanocompositecounter electrode...................................................................................................................72














LIST OF Appendixes
Page

Appendix 1 Platinum particle synthesized at 110 °C for 4 h................................................80
Appendix 2 platinum nanoparticles synthesized at90 °C .................................................80
Appendix 3 platinum nanoparticles synthesized at 85 °C for 4 h.....................................80
Appendix 4 The DLS of PEDOT:PSS primary article.....................................................81
Appendix 5 The XRD spectra of (a) FTO.......................................................................81
Appendix 6 Sputtering Pt (100nm) cathodic peaks and anodic peaks as a function of scan.82
Appendix 7 The characterization of I-V curve...................................................................82
Appendix 8 The DSSC performance used PEDOT:PSS-Pt counter electrode without EG correcting...........................................................................................................83
Appendix 9 The cyclic voltammetry experiment for PEDOT:PSS-Pt (5.5 Wt% and 11 Wt% Pt without EG corrected)........................................................................................83
Appendix 10 The influence of Pt content on the film conductivity…………………………...83

參考文獻 Reference

[1] 張正華,陵嵐, “機太陽能電池”,五南出版社.

[2] 黃惠良,“蕭錫鍊,太陽電池”,五南出版社.

[3] 張鼎張,“半導體元件物理學”,國立交通大學出版社.

[4] P. MonK, “foundamental of electroanalytical chemisty”, Wiley

[5] L. Lia, H. Chang, “Multiple nano-TiO2 layers to prevent dye/nano-TiO2 from photodegradation under a UV-exposure environment”, Applied Surface Science, 253, 2007, 3982–3986.

[6] 史光國, “半導體發光二極體及固態照明”,全華出版社.

[7] C. H. Wu, R. Williams, ”Limiting efficiencies for multiple energy-gap quantum devices”, Journal Application Physics, 54, 1983, 6721-6729.

[8] J. Wu, P. Li, “A polyblend electrolyte (PVP/PEG+KI+I2) for
dye-sensitized nanocrystalline TiO2 solar cells”, Electrochimica Acta, 2007, 52, 5334–5338.

[9] 蔡松雨, “工業技術研究院”,255期.

[10] 郭浩中, “LED原理與應用”, 五南出版社.

[11] H. Arakawa, “Series-connectedtandemdye-sensitized solarcell for improving efficiencyto morethan10%”, Solar Energy Materials & Solar Cells in public.

[12] J. Weng, Y. Su, “Design of DSC panel with efficiency more than 6%〞 , Solar Energy Materials & Solar Cells”, 2005,85,447–455.

[13] J. Baker, R. J. Potter, “Feasibility Study For The Volume Manufacture Of Dye-Sensitised Solar Cells On Flexible Substrates”, BERR Emerging Energy Technologies Programme.

[14] Y. Shibata, T. Kato, W. Takashima, “Quasi-solid-state dye-sensitized solar cells: Pt and PEDOT:PSS counter electrodes applied to gel electrolyte assemblies”, Chemical Communication,2003, 2730.

[15] A. Hauch, A. Geroge, “Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells”, Electrochimca Acta, 2001, 46, 3457-3466.

[16] T. N. Murakami, M. Gratzel, “Counter electrodes for DSC: Application of functional materials as catalysts”, Inorganica Chimica Acta, 2008, 361, 572–580.

[17] J. G. Oh, H. Kim, “Modification of polyol process for synthesis of highly platinum loaded platinum–carbon catalysts for fuel cells”, Journal of Power Sources, 2008, 183, 600–603.

[18] F. Bonet, C. Guery, “Electrochemical reduction of noble metal compounds in ethylene glycol”, International Journal of Inorganic Materials, 1999, 1, 47–51.

[19] Y. G. Hong, H. Kim, “Investigation of carbon-supported Pt nanocatalyst preparation by the polyol process for fuel cell applications”, Electrochimica Acta, 2007, 52, 7278–7285.

[20] 黃桂武, “導電性聚苯胺高分子光電技術運用探討,工業技術研究院”

[21] W. C. Chen, “ Electronic and Optoelectronic Polymers, Department of
Chemical Engineering Institute of Polymer Science and Engineering
National Taiwan University”, handout, Power point.

[22] E. Tamburria, S. Orlanduccia, “Growth mechanisms, morphology, and electroactivity of PEDOT layers produced by electrochemical routes in aqueous medium”, Synthetic Metals, (2008)

[23] M. C. Morvant, J. R. Reynolds, “In situ conductivity studies of poly(3,4-ethylenedioxythiophene)”, Synthetic Metals, 1998, 92, 57-61.



[24] A.M. Nardes, M. Kemerink, “Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol”, Organic Electronics, 2008, 9, 727–734.

[25] S. Timpanaro, M. Kemerink, “Morphology and conductivity of PEDOT/PSS films studied by scanning–tunneling microscopy”, Chemical Physics Letters, 2004, 394, 339–343.

[26] E. Vitoratos, S. Sakkopoulos, “Thermal degradation mechanisms of PEDOT:PSS”, Organic Electronics, 2009,10, 61–66.

[27] C. A. Dai, C. Chang, “Emulsion Synthesis of Nanoparticles Containing PEDOT Using Conducting Polymeric Surfactant: Synergy for
Colloid Stability and Intercalation Doping”, Wiley InterScience, 2007

[28] H. Okuzaki, S. Ashizawa, “Effect of solvent on carrier transport in poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate)”, Synthetic Metal, 2005, 153, 5-8..............................................................................

[29] P. Vacca, M. Petrosino, “Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) ratio: Structural physical and hole injection properties in organic light emitting diodes”,
Available online at www.sciencedirect.com.

[30] C. J. Kang, Y. S. Kim, “Effect of P3HT:PCBM concentration in solvent on performances of organicsolarcells”, Solar Energy Materials & SolarCells.

[31] T. Yohannes, O. Ingana, “Photoelectrochemical study of the junction between Poly[3-(4-octylphenyl)thiophene] and a redox polymer electrolyte”, Solar Energy Material Solar Cells, 1998, 51, 193.

[32] Y. Saito, S. Yanagida, “A high-performance counter electrode based on poly(3,4-alkylenedioxythiophene) for dye-sensitized solar cells”, Journal Photochemistry Photobiology, 2004, 164, 153–157.

[33] S. Hayase, Y. Shibata, “Quasi-solid dye sensitised solar cells filled with ionic liquid—increase in efficiencies by specific interaction between conductive polymers and gelators”, Chemical Communication.
[34] H. Y. Weib, K. C. Ho, “Using modified poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) film as a counter electrode in dye-sensitized solar cells”, Solar Energy Materials & Solar Cells, 2007, 91, 1472–1477.
[35] G. Shi, “Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells”, Electrochemistry Communications, 2008, 10, 1555–1558.

[36] G. Khelashvili, S. Behrens, “Catalytic platinum layers for dye solar cells: A comparative study”, Thin Solid Films, 2006, 511 – 512, 342 – 348.

[37] M. Grätzel, S. Ito, ”Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%”, Thin Solid Films,2008, 516, 4613–4619.

[38] B. K. Park, S. Jeong, “Synthesis and size control of monodisperse copper nanoparticles by polyol method”, Journal of Colloid and Interface Science, 2007, 311, 417–424.

[39] J. Su, Y. Jia, “Mechanism of preparing ultrafine copper powder by polyol process”, Materials Letters, 2005, 59, 3933– 3936.

[40] J. Chen, B. Lim, “Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications”, Nano Today, 2009, 4, 81—95.

[41] J. Tang, X. Yang, “Green synthesis of monodisperse Pt nanoparticles and their catalytic properties”, colloids and Surfaces A: Physicochem. Eng. Aspects, 2007,302, 628–633.

[42] A. Balamurugan, K. C. Ho, ”One-pot synthesis of highly stable silver nanoparticles-conducting polymer nanocomposite and its catalytic application”,
Synthetic Metals,2009, 159, 2544–2549.

[43] J. Ouyang, Q. Xu, “On the mechanism of conductivity enhancement in
poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment”, Polymer, 2004,45, 8443–8450.

[44] J. de Mello, D.D.C. Bradley, “Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films”, Synthetic Metals, 2003, 139, 569–572.

[45] M. Kus, S. Okur, “Electrical characterization of PEDOT:PSS beyond humidity saturation”, Sensors and Actuators, 2009, 143, 177–181.
[46] N. Papageorgiou, “Counter-electrode function in nanocrystalline photoelectrochemical cell configurations”, Coordination Chemistry Reviews, 2004, 248, 1421–1446.

[47] K. K. Purushothaman, M. Dhanashankar, “Preparation and characterization of F doped SnO2 films and electrochromic properties of FTO/NiO films”,
Current Applied Physics, 2009, 9, 67–72.

[48] L. Kavan, N. Papageorgiou, M. Gratzel, “Optimization of parameters of an electrochemical photovoltaic regenerative solar cell”, Solar Energy Materials and Solar Cells, 1996, 43, 249-262.

[49] Y. Saito, W. Kubo, S. Yanagida, “ I−/I3− redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 153–157.

[50] N. Papageorgiou, M. Griitzel, P.P. Infelta, “On the relevance of mass transport in thin layer nanocrystalline photoelectrochemical solar cells”, Solar Energy Materials and Solar Cells, 1996, 44, 405-438.

[51] Y. Wanga, Y. Suna, B. Songa, “Ionic liquid electrolytes based on 1-vinyl-3-alkylimidazolium iodides for dye-sensitized solar cells”,
Solar Energy Materials & Solar Cells, 2008, 92, 660–666.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-08-11公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-08-11起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信