§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0408201001032600
DOI 10.6846/TKU.2010.00092
論文名稱(中文) 光放射光譜對化學汽相沉積法合成鑽石薄膜之研究
論文名稱(英文) Optical emission spectrum study in grow diamond films by CVD
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 物理學系碩士班
系所名稱(英文) Department of Physics
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 98
學期 2
出版年 99
研究生(中文) 呂理暐
研究生(英文) Lie-Wei Lu
學號 695210574
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2010-07-12
論文頁數 130頁
口試委員 指導教授 - 林諭男(inanlin@mail.tku.edu.tw)
委員 - 葉炳宏(phyeh331@mail.tku.edu.tw)
委員 - 柳克強(kcleou@ess.nthu.edu.tw)
關鍵字(中) 鑽石
化學汽相沈積法
奈米線
氮氣
超耐米晶鑽石膜
關鍵字(英) MPCVD
MCD
UNCD
Nanorods
Diamonds
Nitrogen
第三語言關鍵字
學科別分類
中文摘要
本研究主要是利用微波電漿化學汽相沉積系統中用純氫氣、氬氣與氮氣的三種氣氛下沉積鑽石薄膜並在製成過程中,用光發射光譜(opical emission spectropy) 觀察電漿成分及變化,藉此討論電漿與成長鑽石薄膜的關聯性。(i)在甲烷/氫氣電漿中主要是成長出0.5-1um柱狀的鑽石結構也發現隨著壓力變化,大晶粒比例開始變多,而且非鑽石之碳物種以外其他物種比例也開始變多。(ii)在甲烷/氬氣電漿中可成長出2-10 nm的超奈米球鑽石結構。壓力變化下雖然表面形貌與內部結構都相似,但是以150 torr的表面形貌看起來較密集。(iii)在甲烷/氮氣電漿中成功的長出鑽石薄膜,其結構為50-100 nm針狀鑽石結構。另外,也發現2-10 nm的超奈米球結構,在80 torr以後有發現參雜效果增加,在氮氣電漿會產生參雜的效果,導致在氮氣電漿成長之鑽石薄膜有較好的場發射特性。
英文摘要
This research discussed to growth behaviar of diamond films in methane /argon, methane/hydrogen or methane/nitrogen plasma by MPCVD (microwave plasma chemical vapor depositon)。We examined the optical emission spectrum as to investigate the correlation between plasma and characteristics of diamond films。(i)With methane/hydrogen plasma, we obtianed columnar like diamond films which grain size about 0.5~1 um, besides We found that the relative proportion of larger grains and non-diamond carbonspecies is increasing with pressure。(ii)With methane/argon plasma, we obtained ultrananocrystalline diamond film count grain size about 2~10 nm. With methane/nitrogen plasma, we obrained acicular diamond films crystalline grain size about 50-100 nm, coexisting with the ultrananocrystalline diamond grains with size about 2~10 nm。In addition, we found acicular diamond grains in 80 torr, where the doping effect operating。The diamond films have better field emission value due to doping effect in the methane and nitrogen plasma。
第三語言摘要
論文目次
誌謝.......................................................I
中文摘要..................................................II
英文摘要.................................................III
目錄......................................................IV
表目錄...................................................VII
圖目錄................................................. VIII
第一章 緒論................................................1
1.1 前言...................................................1
1.2 鑽石的特性.............................................1
1.2.1 鑽石晶體結構.........................................2
1.2.2 石墨晶體結構.........................................2
1.2.3 鑽石的特性與應用.....................................3
1.2.4 鑽石薄膜在場發射特性上之應用.........................7
1.2.5 鑽石的負電子親和力特性...............................9
1.3 論文概要..............................................11
第二章 文獻回顧...........................................21
2.1 化學汽相沉積法的鑽石合成理論..........................21
2.1.1 化學汽相沉積法(CVD method)..........................21
2.1.2 電漿輔助化學汽相沉積法..............................22
2.1.3 微波電漿輔助化學汽相沈積技術........................23
2.1.4 電漿基本原理........................................24
2.2 鑽石薄膜的分類........................................27
2.2.1 微米晶鑽石膜與超奈米晶鑽石膜的比較..................27
2.2.2 鑽石薄膜的孕核的方法................................30
2.2.3 超音波振盪法-鑽石/鈦懸浮液(UM)......................32
第三章 研究方法與實驗步驟.................................35
3.1 實驗設備與方法........................................36
3.1.1 實驗流程 ...........................................36
3.1.2 實驗方法............................................36
3.2 實驗設備..............................................39
3.2.1 製程設備............................................39
3.3 分析設備..............................................40
3.3.1 掃描式電子顯微鏡(Scanning Electron Microscope,SEM)..40
3.3.2 穿透式電子顯微鏡( Transmission Electron Microscope,TEM)...........................................42
3.3.3 拉曼光譜分析(Raman Spectrum)........................43
3.3.4 電子場發射特性之量測(Field Emission,F-E)........... 45
3.3.5 光放射光譜之量測(Optical Emission Spectrum,OES).....46
第四章 光發射光譜觀察氫氣/氬氣/氮氣電漿不同壓力成長鑽石薄膜之研究
4.1 甲烷/氫氣電漿中用不同壓力成長鑽石薄膜.................57
4.1.1 光放射光譜 (Optical Emission Spectrum) 電漿成份分析........................................................58
4.1.2 掃描式電子顯微鏡(Scanning Electron Microscopy)表面形態探........................................................59
4.1.3 可見光拉曼光譜分析(Visible Raman spectrum)..........59
4.1.4 場發射特性量測 (Field  Emission)....................59
4.1.5 結果與討論..........................................60
4.2 甲烷/氬氣電漿中用不同壓力成長鑽石薄膜.................60
4.2.1 光放射光譜 (Optical Emission Spectrum) 電漿成份分析........................................................61
4.2.2 掃描式電子顯微鏡(Scanning Electron Microscopy)表面形態探........................................................62
4.2.3 可見光拉曼光譜分析(Visible Raman spectrum)..........62
4.2.4 場發射特性量測 (Field  Emission)....................63
4.2.5 結果與討論..........................................63
4.3 甲烷/氬氣電漿中用不同壓力成長鑽石薄膜.................64
4.3.1 光放射光譜 (Optical Emission Spectrum) 電漿成份分析........................................................64
4.3.2 掃描式電子顯微鏡(Scanning Electron Microscopy)表面形態探........................................................65
4.3.3 穿透式電子顯微鏡(Transmission ElectronMicroscopy)結構探討......................................................66
4.3.4 可見光拉曼光譜分析(Visible Raman spectrum)..........67
4.3.5 場發射特性量測 (Field  Emission)....................68
4.3.6 成長機制的研究......................................68
4.3.7結果與討論...........................................69
4.4 加總流量後甲烷/氬氣電漿中用不同壓力成長鑽石薄膜.......70
4.4.1 光放射光譜 (Optical Emission Spectrum) 電漿成份分析........................................................70
4.4.2 掃描式電子顯微鏡(Scanning Electron Microscopy)表面形態探........................................................71
4.4.3可見光拉曼光譜分析(Visible Raman spectrum)...........71
4.4.4 場發射特性量測 (Field  Emission)....................71
4.4.5結果與討論...........................................72
第五章 總結..............................................105
附錄一 ..................................................121
附錄二 ..................................................129



表目錄
表1-1 鑽石基本特性.........................................................................................14
表1-2 鑽石跟其他材料硬度質比較.................................................................16
表1-3 鑽石跟其他材料摩擦係數.....................................................................17
表1-4 鑽石跟其他材料的熱傳導係數的比較.................................................18表 2-1微米晶鑽石與超奈米微晶鑽石的特性比較………………………….34
表4-1 甲烷/氫氣 的實驗參數……………………………………………….73
表4-2 甲烷/氬氣 的實驗參數……………………………………………….78
表4-3 甲烷/氮氣 總流量100 sccm 實驗參數……………………………83
表4-4 60 toor到90 torr 內部結構與晶粒大小的比較圖………………96
表4-5 甲烷/氮氣 總流量141.4 sccm 實驗參數…………………………97
表4-6 氮氣電漿 總流量100 sccm 與 141.4 sccm 之比較……………104
表5-1 氫氣、氬氣與氮氣 電漿之比較……………………………………106



圖目錄
圖1-1面心立方晶體鑽石結構。………………………………………………12
圖1-2 (a) 立方晶鑽石原子結構。(b) 六方晶鑽石的原子結構。…………13
圖1-3石墨的原子結構。…………………………………………………….....13
圖1-4 金屬-真空能帶示意圖:(a).未加電場 (b)外加高電場………………..19
圖1-5 鉬尖端的薄膜場發射陰極…………………………………………….32
圖1-6 典型的半導體能帶圖:(a).正電子親合力……………………………...20
圖2-1低壓化學汽相沉積系統反應示意圖。………………………………….33
圖2-2 壓力與電子(Te)、離子(Ti)及中性粒子(Tn)溫度關係………………...33
圖2-3 超音波振盪法………………………………………………………….35
圖3-1 合成鑽石薄膜實驗流程圖…………………………………………….48
圖3-2 IPLAS 微波電漿化學汽相沉積系統示意圖………………………….49
圖3-3 本論文所採用IPLAS 微波電漿化學汽相沉積系統…………………50
圖3-4 掃描式電子顯微鏡(SEM)……………………………………………..51
圖3-5 穿透是電子顯微鏡(TEM)……………………………………………..52
圖3-6 穿透式電子顯微鏡的基本構造……………………………………….53
圖3-7 圖 3-7 拉曼(Raman)系統……………………………………………..54
圖3-8 拉曼系統示意圖……………………………………………………….54
圖3-9 電子場發射特性量測示意圖………………………………………….55
圖3-10 光放射光譜量測原理示意圖………………………………………...56
圖3-11 光放射光譜量測與腔體相對位置示意圖…………………………...56
圖4-1 甲烷/氫氣電漿的OES光譜 ………………………………………….73
圖4-2 物種變化與壓力關係圖……………………………………………….74
IX
圖4-3 為甲烷/氫氣CH光強度隨著壓力變化與氣體反應室的剖面相對位置圖……………………………………………………………………………….74
圖4-4 45 torr時CH光強度與氣體反應室的俯視相對位置圖………………75
圖4-5 55 torr時CH光強度與氣體反應室的俯視相對位置圖………………75
圖4-6 65 torr時CH光強度與氣體反應室的俯視相對位置圖………………75
圖4-7 75 torr時CH光強度與氣體反應室的俯視相對位置圖………………75
圖4-8 85 torr時CH光強度與氣體反應室的俯視相對位置圖………………75
圖4-9 95 torr時CH光強度與氣體反應室的俯視相對位置圖………………75
圖4-10 甲烷/氫氣 電漿45 torr到95 torr 的SEM圖……………………..…76
圖4-11 甲烷/氫氣 電漿可見光拉曼…………………………………………77
圖4-12 甲烷/氫氣 場發射特性圖……………………………………………77
圖4-13 甲烷/氫氣電漿的OES光譜…………………………………………78
圖4-14 物種變化與壓力關係圖……………………………………………...79
圖4-15 甲烷/氬氣CH光強度隨著壓力變化與氣體反應室的剖面相對位置圖…………………………………………………………………………….....79
圖4-16 120 torr時CH光強度與氣體反應室的俯視相對位置圖……………80
圖4-17 130 torr時CH光強度與氣體反應室的俯視相對位置圖……………80
圖4-18 140 torr時CH光強度與氣體反應室的俯視相對位置圖……………80
圖4-19 150 torr時CH光強度與氣體反應室的俯視相對位置圖……………80
圖4-20 160 torr時CH光強度與氣體反應室的俯視相對位置圖……………80
圖4-21 170 torr時CH光強度與氣體反應室的俯視相對位置圖……………80
圖4-22 甲烷/氫氣 電漿120 torr到170 torr 的SEM圖……………………81
圖4-23 甲烷/氬氣 電漿可見光拉曼…………………………………………81
X
圖4-24 甲烷/氫氣 場發射特性圖……………………………………………82
圖4-25 甲烷/氮氣電漿的OES光譜 …………………………………………83
圖4-26 物種變化與壓力關係圖……………………………………………...84
圖4-27 CN光強度隨著壓力變化與氣體反應室的剖面相對位置圖………..84
圖4-28 30 torr時CN光強度與氣體反應室的俯視相對位置圖……………..85
圖4-29 40 torr時CN光強度與氣體反應室的俯視相對位置圖…………….85
圖4-30 50 torr時CN光強度與氣體反應室的俯視相對位置圖……………..85
圖4-31 60 torr時CN光強度與氣體反應室的俯視相對位置圖……………..85
圖4-32 70 torr時CN光強度與氣體反應室的俯視相對位置圖……………..85
圖4-33 80 torr時CN光強度與氣體反應室的俯視相對位置圖……………..85
圖4-34 90 torr時CN光強度與氣體反應室的俯視相對位置圖…………….86
圖4-35 100 torr時CN光強度與氣體反應室的俯視相對位置圖……………86
圖4-36 110 torr時CN光強度與氣體反應室的俯視相對位置圖…………….86
圖4-37 甲烷/氮氣 總流量100 sccm電漿50 torr到100 torr 的SEM圖……87
圖4-38 甲烷/氮氣 總流量100 sccm電漿50 torr到100 torr 的SEM圖與TEM 明場相比較圖…………………………………………………………...88
圖4-39 60 torr時選區繞射圖的線性分析…………………………………....89
圖4-40 70 torr時選區繞射圖的線性分析…………………………………....89
圖4-41 80 torr時選區繞射圖的線性分析………………………………….....89
圖4-42 90-1 torr時選區繞射圖的線性分析……………………………….....89
圖4-43 90-2 torr時選區繞射圖的線性分析………………………………….89
圖4-44 甲烷氮氣電漿100 sccm 60 torr針狀鑽石的HRTEM的影像………90
圖4-45 甲烷氮氣電漿100 sccm 60 torr針狀鑽石邊緣HRTEM影像….......90
XI
圖4-46 甲烷氮氣電漿100 sccm 70 torr針狀鑽石的HRTEM的影像………91
圖4-47 甲烷氮氣電漿100 sccm 70 torr針狀鑽石邊緣HRTEM影像………91
圖4-48 甲烷氮氣電漿100 sccm 80 torr針狀鑽石的HRTEM的影像………92
圖4-49 甲烷氮氣電漿100 sccm 80 torr針狀鑽石邊緣HRTEM影像….......92
圖4-50 甲烷氮氣電漿100 sccm 90-1 torr針狀鑽石的HRTEM的影像…….93
圖4-51 甲烷氮氣電漿100 sccm 90-2 torr針狀鑽石邊緣HRTEM影像……93
圖4-52 甲烷/氮氣電漿60 torr到90 torr對針狀鑽石邊緣作整張FFT圖….94
圖4-53 甲烷/氮氣 總流量100 sccm的紫外光拉曼光譜……………………95
圖4-54 甲烷/氮氣 總流量100 sccm的場發射特性圖………………………95
圖4-55 甲烷/氮氣 100 sccm 電漿中CN自由基的光強度與場發射的起始電場作比對圖………………………………………………………………….....96
圖4-56 甲烷/氮氣總流量141.4 sccm電漿OES光譜 ………………………97
圖4-57 物種變化與壓力關係圖……………………………………………...98
圖4-58 為甲烷/氮氣總流量141.4 sccm CN光強度隨著壓力變化與氣體反應室的剖面相對位置圖……………………………………………………….....98
圖4-59 30 torr時CN光強度與氣體反應室的俯視相對位置圖…………….99
圖4-60 40 torr時CN光強度與氣體反應室的俯視相對位置圖…………….99
圖4-61 50 torr時CN光強度與氣體反應室的俯視相對位置圖…………….99
圖4-62 60 torr時CN光強度與氣體反應室的俯視相對位置圖…………….99
圖4-63 70 torr時CN光強度與氣體反應室的俯視相對位置圖…………….99
圖4-64 80 torr時CN光強度與氣體反應室的俯視相對位置圖…………….99
圖4-65 90 torr時CN光強度與氣體反應室的俯視相對位置圖……………100
圖4-66 100 torr時CN光強度與氣體反應室的俯視相對位置圖…………100
XII
圖4-67 110 torr時CN光強度與氣體反應室的俯視相對位置圖…………100
圖4-68 甲烷/氮氣總流量141.4 sccm電漿50 torr到100 torr的SEM圖…..101
圖4-69 甲烷/氮氣 總流量141.4 sccm的紫外光拉曼光譜………………...102
圖4-70 甲烷/氮氣 總流量141.4 sccm的場發射特性圖…………………...102
圖4-71 甲烷/氮氣 總流量100與141.4 sccm的場發射特性圖……………103
圖4-72 甲烷/氮氣 141.4 sccm 電漿中CN自由基的光強度與場發射的起始電場作比對圖………………………………………………………………...103
圖5-1 氫氣、氬氣與氮氣電漿之光發射光譜比較………………………….105
圖5-2 氫氣、氬氣與氮氣電漿之拉曼光譜比較…………………………….107
圖5-3 氫氣、氬氣與氮氣電漿之場發射特性比較………………………….107
參考文獻
[1].S. T. Lee, Z. Lin, X. Jiang, CVD diamond films: nucleation and growth, Mater. Sci. Eng. R, 25 (1999) 123.

[2].Robert F. Davis, Diamond Films and Coatings Development, Properties, and Applications, Noyes Publications, Park Ridge, New Jersey, 1992.

[3].Huimin Liu and David S. Dandy, Diamond Chemical Vapor Deposition Nucleation and Early Growth Stages, Noyes Publications, Park Ridge, New Jersey, 1995.

[4].A.Lettington and J. W. Steeds, Thin Film Diamond, Chapman & Hall, New York, 1994.

[5].http://www.chm.bris.ac.uk/motm/diamond/diamprop.htm

[6].W. Zhu, “Vacuum microelectronics”, John Wiley & Sons (2001). 

[7].Han, N. Lee, S. W. Lee, S. H. Kim, “Field emission of nitrogen-doped diamond films”, J. Vac. Sci. Technol. B, 16(4), 2052 (1998)

[8].W. Zhu, G. P. Kochanski, S. Jin, “Low-Field Electron Emission from Undoped Nanostructured Diamond”, SCIENCE, 282, 1471 (1998)

[9].Chiharu Kimura, Satoshi Koizumi, Mutsukazu Kamo, Takashi Sugino, “Behavior of electron emission from phosphorus-doped epitaxial diamond films”, Diamond and Related Materials, 8, 759 (1999)

[10].Robert Gomer, Field emission and field ionization, American Institute of Physics, 21~29 (1993)

[11].V. Baranauskas, B. B. Li, A. Peterlevitz, M. C. Tosin, and S. F. Durrant, “Nitrogen-doped diamond films”, J. Appl. Phys., 85, 7455 (1999)

[12].S. B. Wang, H. X. Zhang, P. Zhu, and K. Feng, “Structural and electrical properties of chemical vapor deposited diamond films doped by B+ implantation”, J. Vac. Sci. Technol. B, 18(4), 1997 (2000)

[13].W. B. Choi, J. J. Cuomo, V. V. Zhirnov, A. F. Myers and J. J. Hren, “ Field emission from silicon and molybdenum tips coated with diamond powder by dielectrophoresis”, Appl. Phys. Lett., 68, pp720 (1996)

[14].Nan Lin, Kuoguang Preng, Lien-Hsin Lee, Chuan-Feng Shih, and Kuo-Shung Liu, “Comparison of the effect of boron and nitrogen incorporation on the nucleation behavior and electron-field-emission properties of chemical-vapor-deposited diamond films”, Appl. Phys. Lett, 77, 1277 (2000)

[15].X. Jiang, P Willich, M. Paul, and C-P. Klages, “In situ boron doping of chemical-vapor-deposited diamond films”, Journal of Materials Research, 14, 3211 (1999)

[16].Z. H. Huang, P. H. Culter, N. M. Miskovsky, and T. E. Sullivan, “Theoretical-Study of Field-Emission from Diamond”, Appl. Phys. Lett., 65, 2562 (1994)

[17].V. V. Zhirnov, E. I. Givargizov, and P. S. Plekhanov, “Field-Emission from Silicon Spikes with Diamond Coatings”, J. Vac, Sci. Technol, B 13, 418 (1995)

[18].D. A. Buck and K. R. Shoulders, “An approach to microminiature systems”, in Proc. Eastern Joint Computer Conf., pp55-59 (AIEE, New York (1958).

[19].H. Liu and D. S. Dandy, “Diamond Chemical Vapor Deposition: Nucleation and Early Growth Stages”, Noyes Publications. New Jersey. 1995

[20].Edited by K. E. spear and J. P. Dismukes, “Synthetic Diamond: Emerging CVD Science and Technology”, John Wiley & Sons, Inc., New York, 1994, pp.3-90, 390-393

[21].W. G. Eversole, Synthesis of diamond, U. S. Patent, 3,030,188 (April 17, 1962).

[22].Robert F. Davis, “Diamond Films and Coatings Development, Properties, and Applications”, Noyes Publications, Park Ridge, New Jersey, 1992.

[23].A.Grill, Cold Plasma in Materials Fabrication-From Fundamentals to Application, IEEE Press, NY, 1994.

[24].H. V. Boenig, Plasma Science and Technology, Cornell University Press, 1982.

[25].翁志強, 順流式遠端電漿對單層有機金屬表面應機制之研究, 私立中原大學醫學工程系碩士論文, 2001.

[26].D.M. Gruen, “Nanocrystalline diamond films”, Annu. Rev. Mater. Sci. 29 211 (1999).

[27].J. Birrell, J. A. Carlisle, O. Auciello, D. M. Gruen, and J. M. Gibson, “ Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond”, Applied Physics Letters, 81 (12), 2235 (2002).

[28].S. Jiao, A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, “Microstructure of ultrananocrystalline diamond films grown by microwave Ar–CH4 plasma chemical vapor deposition with or without added H2”, Journal of Applied Physics, 90, 118 (2001).

[29].X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, and J. A. Carlisle, “Low temperature growth of ultrananocrystalline diamond”, Journal of Applied Physics, 96 (4) 2232 (2004).

[30].D. A. Homer, L. A. Curtiss, and D. M. Gruen, “ A theoretical study of the energetics of insertion of dicarbon (C) and vinylidene into methane C-H bonds2”, Chemical Physics Letters, 233 243 (1995).

[31].K. Subramaniana, W. P. Kanga, J. L. Davidsona, R. S. Takalkara, B. K. Choia, M. Howella and D.V. Kerns, “ Enhanced electron field emission from micropatterned pyramidal diamond tips incorporating CH/H/N plasma-deposited nanodiamond”, Diamond and Related Materials, 15 1126 (2006).

[32].T. K. Ku, C.D. Yang, F.G. Tarntair, C.C. Wang, H.C. Cheng, S.H. Chen, N.J. She, I. J. Hsieh, “Enhanced electron emission from phosphorus- and boron-doped diamond-clad Si field emitter arrays”, Thin Solid Films, 290 176 (1996).

[33].Yongde Xia, Gavin S. Walker, David M. Grant, Mokaya, Robert , “Hydrogen storage in high surface area carbons: experimental demonstration of the effects of nitrogen doping”, Journal of the American Chemical Society, 131 16493 (2009).

[34].H. Yoshikawa, C. Morel, and Y. Koga, “Synthesis of nanocrystalline diamond films using microwave plasma CVD Diamond and Related Materials”, 10 1588 (2001).

[35].J. Lee, R. W. Collins, R. Messier, and Y. E. Strausser, “Low temperature plasma process based on CO-rich CO/H2 mixtures for high rate diamond film deposition”, Applied Physics Letters, 70 1527 (1997).

[36].N. Jiang, K. Sugimoto, K. Nishimura, Y. Shintani, and A. Hiraki, “Synthesis and structural study of nano/micro diamond overlayer films”, Journal of Crystal Growth, 242 362 (2002).

[37].T. Sharda, M. Vmeno, T. Soga, and T. Jimbo, “CJrowth of nanocrystalline diamond films by biased enhanced microwave plasma chemical vapor deposition: A different regime of growth”, Applied Physics Letters, 77 (26) 4304 (2000).

[38].W. Zhu, G P. Kochanski, and S. Jin, “Low-field emission from undopednanostructured diamond”, Science, 282 1471 (1998)

[39].A. Göhl, A. N. Alimova, T. Habennann, A. L. Mescheryakova, and G Huller,“Integral and local field emission analyses of nanodiamond coating for power applications”, J. Vac. Sci. Technol. B, 17 670 (1999).

[40].B. V. Derjaguin, D. V. Fedoseev, “The synthesis of diamond at low pressure”, Scientific American, 5 233 (1975) pp.102.

[41].S. Matsumoto, Y. Matsui, “Electron microscopic observation of diamond particle grown from the vapor phase”, J. Mater. Sci., 18 (1983) 1785.

[42].W. A. Yarbrough and Russell Messier, “Current issues and problems in the chemical vapor deposition of diamond”, Science, 247 4943 (1990) pp.688-696.

[43].W. A Yarbrough, “Current research problems and opportunities in the vapor phase synthesis of diamond and cubic boron nitride”, J. Vac. Sci. Technol. A, 39 (1991) pp.1145-1152

[44].J. F. Parins, “Non-CVD method of diamond growth at low pressure”,     Diamond Relat. Mater., 2 (1993) pp.646-655.

[45].A. Badrezj and T. Badrezj, “Diamond homoepitaxy by chemical  vapor deposition”, Diamond Relat. Mater., 2 (1993) pp.147-157.

[46].M. I. Landstrass, M. A. Plano, M. A. Moreno, S. McWilliams, L. S. Pan, D. R. Kania and S. Han, “Device properties ofhomoepitaxially grown diamond”, Diamond Relat. Mater., 2 (1993) pp.1033-1037.

[47].C. Lai, J. B. Wachtmn, Jr., G. H. Sigel, Jr. and P. Lu. etc. “Effects of substrate pretreatments on growth of polycrystalline diamond thin films on Si(100) substrates”, Mat. Res. Soc. Symp. Proc. Vol. 280 (1993) pp.689-694.

[48].H. Meada, S. Ilari and S. Masuda, etc. “Effect of substrate pretreatment on diamond deposition”, Diamond Relat. Mater., 2 (1993) pp.758-761.

[49]. P. Karve, S. R. SainKar and S. T. Kshirsagar, “Role of Surface features in CVD diamond nucleation on surface-pretreated substrates”, Mater. Lett., 34 (1998) pp.387-391.

[50].Debabrata Pradhan, Li-Ju Chen, Yen-Chih Lee, Chi-Young Lee, Nyan-Hwa Tai, I-Nan Lin, “Effect of titanium metal in the prenucleation of ultrananocrystalline diamond film growth at low substrate temperature”, Diamond and Related Materials, 15 1779 (2006).

[51].J. H. Je and G. Y. Lee, “Microstructures of diamond films deposited on (100) silicon wafer by microwave plasma-enhanced chemical vapor- deposition”, Journal of Materials Science, 27 (23) 6324 (1992).

[52].T. Sharda and S. Bhattacharyya, “Advances in nanocrystalline diamond”, Encyclopedia of Nanoscience and Nanotechnology, X, I (2003).

[53].C.J. Rennick, A.G. Smith, J.A. Smith, J.B. Wills, A.J. Orr-Ewing, M.N.R. Ashfold, Yu.A. Mankelevich, N.V. Suetin, “Improved characterization of C2 and CH radical number density distributions in a DC arc jet used for diamond chemical vapour deposition” Diamond and Related Materials 13, 561-568(2004). 

[54].Stephen J. Harris, “Mechanism for diamond growth from methyl radicals”, Appl. Phys. Lett. 56 2298 (1990).

[55].Chuan-Sheng Wang, Huang-Chin Chen, Hsiu-Fung Cheng, and I-Nan, Lin, “Growth behavior of nanocrystalline diamond films on ultranano crystalline diamond nuclei: the transmission electron microscopy studies”, J. Appl. Phys. 105 124311 (2009).

[56].James Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, D. M. Gruen, and J. A. Carlisle, “ Bonding structure in nitrogen doped ultrananocrystalline diamond”, J. Appl. Phys. 93 5606 (2003).

[57].A. C. Ferrari and J. Robertson , “Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond”, Phys. Rev. B 63 121405(R) (2001).

[58].C. Z. Wang, K. M. Ho, “ Structure, dynamics, and electronic properties of diamond-like amorphous carbon”, Phys. Rev. Lett. 71 (8) 1184 (1993).

[59].K. Wu, E.G. Wang, Z.X. Cao, Z.L. Wang, X. Jiang, “ Microstructure and its effect on field electron emission of grain-size-controlled nanocrystalline diamond films”, J. Appl. Phys. 88 2967 (2000).

[60].A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D.C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, M.Q. Ding, “Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices” Diamond and Related Materials 10, 1952-1961(2001). 

[61].Gruena, A.R. Kraussa, P. Zapola, R.P.H. Changb P.F. Cleri, P. Keblinski, L. Colombo, D. Wolf, S.R. Philpot, Europhys. Lett. 46 (1999) 671.Diamond and Related Materials 11 (2002) 43–48.

[62].M. Park, A.T. Sowers, C. Lizzul Rinne, et al., J. Vac. Sci.Technol. B 17 (1999) 734.

[63].Sobia Allah Rakha, Guojun Yu ⁎, Jianqing Cao, Suixia He, Xingtai ZhouDIAMAT-05347; No of Pages 4 Diamond-graphite nanorods produced by microwave plasma chemical vapor deposition


[64].Lajunen L.H.J. Spectrochemical Analysis by Atomic Absorption and Emission (RSC, 1998) .P19-21

[65].周麗新 薄膜工程第四章電漿放電基本原理

[66].李佳璘 La0.85Zr0.15MnO 薄膜各項異性磁電阻之研究 p53,54
論文全文使用權限
校內
紙本論文於授權書繳交後3年公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信