 |
系統識別號 |
U0002-0408201001032600 |
中文論文名稱
|
光放射光譜對化學汽相沉積法合成鑽石薄膜之研究 |
英文論文名稱
|
Optical emission spectrum study in grow diamond films by CVD |
校院名稱 |
淡江大學 |
系所名稱(中) |
物理學系碩士班 |
系所名稱(英) |
Department of Physics |
學年度 |
98 |
學期 |
2 |
出版年 |
99 |
研究生中文姓名 |
呂理暐 |
研究生英文姓名 |
Lie-Wei Lu |
學號 |
695210574 |
學位類別 |
碩士 |
語文別 |
中文 |
口試日期 |
2010-07-12 |
論文頁數 |
130頁 |
口試委員 |
指導教授-林諭男 委員-葉炳宏 委員-柳克強
|
中文關鍵字 |
鑽石 
化學汽相沈積法 
奈米線 
氮氣 
超耐米晶鑽石膜 
|
英文關鍵字 |
MPCVD 
MCD 
UNCD 
Nanorods 
Diamonds 
Nitrogen 
|
學科別分類 |
學科別>自然科學>物理
|
中文摘要 |
本研究主要是利用微波電漿化學汽相沉積系統中用純氫氣、氬氣與氮氣的三種氣氛下沉積鑽石薄膜並在製成過程中,用光發射光譜(opical emission spectropy) 觀察電漿成分及變化,藉此討論電漿與成長鑽石薄膜的關聯性。(i)在甲烷/氫氣電漿中主要是成長出0.5-1um柱狀的鑽石結構也發現隨著壓力變化,大晶粒比例開始變多,而且非鑽石之碳物種以外其他物種比例也開始變多。(ii)在甲烷/氬氣電漿中可成長出2-10 nm的超奈米球鑽石結構。壓力變化下雖然表面形貌與內部結構都相似,但是以150 torr的表面形貌看起來較密集。(iii)在甲烷/氮氣電漿中成功的長出鑽石薄膜,其結構為50-100 nm針狀鑽石結構。另外,也發現2-10 nm的超奈米球結構,在80 torr以後有發現參雜效果增加,在氮氣電漿會產生參雜的效果,導致在氮氣電漿成長之鑽石薄膜有較好的場發射特性。 |
英文摘要 |
This research discussed to growth behaviar of diamond films in methane /argon, methane/hydrogen or methane/nitrogen plasma by MPCVD (microwave plasma chemical vapor depositon)。We examined the optical emission spectrum as to investigate the correlation between plasma and characteristics of diamond films。(i)With methane/hydrogen plasma, we obtianed columnar like diamond films which grain size about 0.5~1 um, besides We found that the relative proportion of larger grains and non-diamond carbonspecies is increasing with pressure。(ii)With methane/argon plasma, we obtained ultrananocrystalline diamond film count grain size about 2~10 nm. With methane/nitrogen plasma, we obrained acicular diamond films crystalline grain size about 50-100 nm, coexisting with the ultrananocrystalline diamond grains with size about 2~10 nm。In addition, we found acicular diamond grains in 80 torr, where the doping effect operating。The diamond films have better field emission value due to doping effect in the methane and nitrogen plasma。 |
論文目次 |
誌謝.......................................................I
中文摘要..................................................II
英文摘要.................................................III
目錄......................................................IV
表目錄...................................................VII
圖目錄................................................. VIII
第一章 緒論................................................1
1.1 前言...................................................1
1.2 鑽石的特性.............................................1
1.2.1 鑽石晶體結構.........................................2
1.2.2 石墨晶體結構.........................................2
1.2.3 鑽石的特性與應用.....................................3
1.2.4 鑽石薄膜在場發射特性上之應用.........................7
1.2.5 鑽石的負電子親和力特性...............................9
1.3 論文概要..............................................11
第二章 文獻回顧...........................................21
2.1 化學汽相沉積法的鑽石合成理論..........................21
2.1.1 化學汽相沉積法(CVD method)..........................21
2.1.2 電漿輔助化學汽相沉積法..............................22
2.1.3 微波電漿輔助化學汽相沈積技術........................23
2.1.4 電漿基本原理........................................24
2.2 鑽石薄膜的分類........................................27
2.2.1 微米晶鑽石膜與超奈米晶鑽石膜的比較..................27
2.2.2 鑽石薄膜的孕核的方法................................30
2.2.3 超音波振盪法-鑽石/鈦懸浮液(UM)......................32
第三章 研究方法與實驗步驟.................................35
3.1 實驗設備與方法........................................36
3.1.1 實驗流程 ...........................................36
3.1.2 實驗方法............................................36
3.2 實驗設備..............................................39
3.2.1 製程設備............................................39
3.3 分析設備..............................................40
3.3.1 掃描式電子顯微鏡(Scanning Electron Microscope,SEM)..40
3.3.2 穿透式電子顯微鏡( Transmission Electron Microscope,TEM)...........................................42
3.3.3 拉曼光譜分析(Raman Spectrum)........................43
3.3.4 電子場發射特性之量測(Field Emission,F-E)........... 45
3.3.5 光放射光譜之量測(Optical Emission Spectrum,OES).....46
第四章 光發射光譜觀察氫氣/氬氣/氮氣電漿不同壓力成長鑽石薄膜之研究
4.1 甲烷/氫氣電漿中用不同壓力成長鑽石薄膜.................57
4.1.1 光放射光譜 (Optical Emission Spectrum) 電漿成份分析........................................................58
4.1.2 掃描式電子顯微鏡(Scanning Electron Microscopy)表面形態探........................................................59
4.1.3 可見光拉曼光譜分析(Visible Raman spectrum)..........59
4.1.4 場發射特性量測 (Field Emission)....................59
4.1.5 結果與討論..........................................60
4.2 甲烷/氬氣電漿中用不同壓力成長鑽石薄膜.................60
4.2.1 光放射光譜 (Optical Emission Spectrum) 電漿成份分析........................................................61
4.2.2 掃描式電子顯微鏡(Scanning Electron Microscopy)表面形態探........................................................62
4.2.3 可見光拉曼光譜分析(Visible Raman spectrum)..........62
4.2.4 場發射特性量測 (Field Emission)....................63
4.2.5 結果與討論..........................................63
4.3 甲烷/氬氣電漿中用不同壓力成長鑽石薄膜.................64
4.3.1 光放射光譜 (Optical Emission Spectrum) 電漿成份分析........................................................64
4.3.2 掃描式電子顯微鏡(Scanning Electron Microscopy)表面形態探........................................................65
4.3.3 穿透式電子顯微鏡(Transmission ElectronMicroscopy)結構探討......................................................66
4.3.4 可見光拉曼光譜分析(Visible Raman spectrum)..........67
4.3.5 場發射特性量測 (Field Emission)....................68
4.3.6 成長機制的研究......................................68
4.3.7結果與討論...........................................69
4.4 加總流量後甲烷/氬氣電漿中用不同壓力成長鑽石薄膜.......70
4.4.1 光放射光譜 (Optical Emission Spectrum) 電漿成份分析........................................................70
4.4.2 掃描式電子顯微鏡(Scanning Electron Microscopy)表面形態探........................................................71
4.4.3可見光拉曼光譜分析(Visible Raman spectrum)...........71
4.4.4 場發射特性量測 (Field Emission)....................71
4.4.5結果與討論...........................................72
第五章 總結..............................................105
附錄一 ..................................................121
附錄二 ..................................................129
表目錄
表1-1 鑽石基本特性.........................................................................................14
表1-2 鑽石跟其他材料硬度質比較.................................................................16
表1-3 鑽石跟其他材料摩擦係數.....................................................................17
表1-4 鑽石跟其他材料的熱傳導係數的比較.................................................18表 2-1微米晶鑽石與超奈米微晶鑽石的特性比較………………………….34
表4-1 甲烷/氫氣 的實驗參數……………………………………………….73
表4-2 甲烷/氬氣 的實驗參數……………………………………………….78
表4-3 甲烷/氮氣 總流量100 sccm 實驗參數……………………………83
表4-4 60 toor到90 torr 內部結構與晶粒大小的比較圖………………96
表4-5 甲烷/氮氣 總流量141.4 sccm 實驗參數…………………………97
表4-6 氮氣電漿 總流量100 sccm 與 141.4 sccm 之比較……………104
表5-1 氫氣、氬氣與氮氣 電漿之比較……………………………………106
圖目錄
圖1-1面心立方晶體鑽石結構。………………………………………………12
圖1-2 (a) 立方晶鑽石原子結構。(b) 六方晶鑽石的原子結構。…………13
圖1-3石墨的原子結構。…………………………………………………….....13
圖1-4 金屬-真空能帶示意圖:(a).未加電場 (b)外加高電場………………..19
圖1-5 鉬尖端的薄膜場發射陰極…………………………………………….32
圖1-6 典型的半導體能帶圖:(a).正電子親合力……………………………...20
圖2-1低壓化學汽相沉積系統反應示意圖。………………………………….33
圖2-2 壓力與電子(Te)、離子(Ti)及中性粒子(Tn)溫度關係………………...33
圖2-3 超音波振盪法………………………………………………………….35
圖3-1 合成鑽石薄膜實驗流程圖…………………………………………….48
圖3-2 IPLAS 微波電漿化學汽相沉積系統示意圖………………………….49
圖3-3 本論文所採用IPLAS 微波電漿化學汽相沉積系統…………………50
圖3-4 掃描式電子顯微鏡(SEM)……………………………………………..51
圖3-5 穿透是電子顯微鏡(TEM)……………………………………………..52
圖3-6 穿透式電子顯微鏡的基本構造……………………………………….53
圖3-7 圖 3-7 拉曼(Raman)系統……………………………………………..54
圖3-8 拉曼系統示意圖……………………………………………………….54
圖3-9 電子場發射特性量測示意圖………………………………………….55
圖3-10 光放射光譜量測原理示意圖………………………………………...56
圖3-11 光放射光譜量測與腔體相對位置示意圖…………………………...56
圖4-1 甲烷/氫氣電漿的OES光譜 ………………………………………….73
圖4-2 物種變化與壓力關係圖……………………………………………….74
IX
圖4-3 為甲烷/氫氣CH光強度隨著壓力變化與氣體反應室的剖面相對位置圖……………………………………………………………………………….74
圖4-4 45 torr時CH光強度與氣體反應室的俯視相對位置圖………………75
圖4-5 55 torr時CH光強度與氣體反應室的俯視相對位置圖………………75
圖4-6 65 torr時CH光強度與氣體反應室的俯視相對位置圖………………75
圖4-7 75 torr時CH光強度與氣體反應室的俯視相對位置圖………………75
圖4-8 85 torr時CH光強度與氣體反應室的俯視相對位置圖………………75
圖4-9 95 torr時CH光強度與氣體反應室的俯視相對位置圖………………75
圖4-10 甲烷/氫氣 電漿45 torr到95 torr 的SEM圖……………………..…76
圖4-11 甲烷/氫氣 電漿可見光拉曼…………………………………………77
圖4-12 甲烷/氫氣 場發射特性圖……………………………………………77
圖4-13 甲烷/氫氣電漿的OES光譜…………………………………………78
圖4-14 物種變化與壓力關係圖……………………………………………...79
圖4-15 甲烷/氬氣CH光強度隨著壓力變化與氣體反應室的剖面相對位置圖…………………………………………………………………………….....79
圖4-16 120 torr時CH光強度與氣體反應室的俯視相對位置圖……………80
圖4-17 130 torr時CH光強度與氣體反應室的俯視相對位置圖……………80
圖4-18 140 torr時CH光強度與氣體反應室的俯視相對位置圖……………80
圖4-19 150 torr時CH光強度與氣體反應室的俯視相對位置圖……………80
圖4-20 160 torr時CH光強度與氣體反應室的俯視相對位置圖……………80
圖4-21 170 torr時CH光強度與氣體反應室的俯視相對位置圖……………80
圖4-22 甲烷/氫氣 電漿120 torr到170 torr 的SEM圖……………………81
圖4-23 甲烷/氬氣 電漿可見光拉曼…………………………………………81
X
圖4-24 甲烷/氫氣 場發射特性圖……………………………………………82
圖4-25 甲烷/氮氣電漿的OES光譜 …………………………………………83
圖4-26 物種變化與壓力關係圖……………………………………………...84
圖4-27 CN光強度隨著壓力變化與氣體反應室的剖面相對位置圖………..84
圖4-28 30 torr時CN光強度與氣體反應室的俯視相對位置圖……………..85
圖4-29 40 torr時CN光強度與氣體反應室的俯視相對位置圖…………….85
圖4-30 50 torr時CN光強度與氣體反應室的俯視相對位置圖……………..85
圖4-31 60 torr時CN光強度與氣體反應室的俯視相對位置圖……………..85
圖4-32 70 torr時CN光強度與氣體反應室的俯視相對位置圖……………..85
圖4-33 80 torr時CN光強度與氣體反應室的俯視相對位置圖……………..85
圖4-34 90 torr時CN光強度與氣體反應室的俯視相對位置圖…………….86
圖4-35 100 torr時CN光強度與氣體反應室的俯視相對位置圖……………86
圖4-36 110 torr時CN光強度與氣體反應室的俯視相對位置圖…………….86
圖4-37 甲烷/氮氣 總流量100 sccm電漿50 torr到100 torr 的SEM圖……87
圖4-38 甲烷/氮氣 總流量100 sccm電漿50 torr到100 torr 的SEM圖與TEM 明場相比較圖…………………………………………………………...88
圖4-39 60 torr時選區繞射圖的線性分析…………………………………....89
圖4-40 70 torr時選區繞射圖的線性分析…………………………………....89
圖4-41 80 torr時選區繞射圖的線性分析………………………………….....89
圖4-42 90-1 torr時選區繞射圖的線性分析……………………………….....89
圖4-43 90-2 torr時選區繞射圖的線性分析………………………………….89
圖4-44 甲烷氮氣電漿100 sccm 60 torr針狀鑽石的HRTEM的影像………90
圖4-45 甲烷氮氣電漿100 sccm 60 torr針狀鑽石邊緣HRTEM影像….......90
XI
圖4-46 甲烷氮氣電漿100 sccm 70 torr針狀鑽石的HRTEM的影像………91
圖4-47 甲烷氮氣電漿100 sccm 70 torr針狀鑽石邊緣HRTEM影像………91
圖4-48 甲烷氮氣電漿100 sccm 80 torr針狀鑽石的HRTEM的影像………92
圖4-49 甲烷氮氣電漿100 sccm 80 torr針狀鑽石邊緣HRTEM影像….......92
圖4-50 甲烷氮氣電漿100 sccm 90-1 torr針狀鑽石的HRTEM的影像…….93
圖4-51 甲烷氮氣電漿100 sccm 90-2 torr針狀鑽石邊緣HRTEM影像……93
圖4-52 甲烷/氮氣電漿60 torr到90 torr對針狀鑽石邊緣作整張FFT圖….94
圖4-53 甲烷/氮氣 總流量100 sccm的紫外光拉曼光譜……………………95
圖4-54 甲烷/氮氣 總流量100 sccm的場發射特性圖………………………95
圖4-55 甲烷/氮氣 100 sccm 電漿中CN自由基的光強度與場發射的起始電場作比對圖………………………………………………………………….....96
圖4-56 甲烷/氮氣總流量141.4 sccm電漿OES光譜 ………………………97
圖4-57 物種變化與壓力關係圖……………………………………………...98
圖4-58 為甲烷/氮氣總流量141.4 sccm CN光強度隨著壓力變化與氣體反應室的剖面相對位置圖……………………………………………………….....98
圖4-59 30 torr時CN光強度與氣體反應室的俯視相對位置圖…………….99
圖4-60 40 torr時CN光強度與氣體反應室的俯視相對位置圖…………….99
圖4-61 50 torr時CN光強度與氣體反應室的俯視相對位置圖…………….99
圖4-62 60 torr時CN光強度與氣體反應室的俯視相對位置圖…………….99
圖4-63 70 torr時CN光強度與氣體反應室的俯視相對位置圖…………….99
圖4-64 80 torr時CN光強度與氣體反應室的俯視相對位置圖…………….99
圖4-65 90 torr時CN光強度與氣體反應室的俯視相對位置圖……………100
圖4-66 100 torr時CN光強度與氣體反應室的俯視相對位置圖…………100
XII
圖4-67 110 torr時CN光強度與氣體反應室的俯視相對位置圖…………100
圖4-68 甲烷/氮氣總流量141.4 sccm電漿50 torr到100 torr的SEM圖…..101
圖4-69 甲烷/氮氣 總流量141.4 sccm的紫外光拉曼光譜………………...102
圖4-70 甲烷/氮氣 總流量141.4 sccm的場發射特性圖…………………...102
圖4-71 甲烷/氮氣 總流量100與141.4 sccm的場發射特性圖……………103
圖4-72 甲烷/氮氣 141.4 sccm 電漿中CN自由基的光強度與場發射的起始電場作比對圖………………………………………………………………...103
圖5-1 氫氣、氬氣與氮氣電漿之光發射光譜比較………………………….105
圖5-2 氫氣、氬氣與氮氣電漿之拉曼光譜比較…………………………….107
圖5-3 氫氣、氬氣與氮氣電漿之場發射特性比較………………………….107 |
參考文獻 |
[1].S. T. Lee, Z. Lin, X. Jiang, CVD diamond films: nucleation and growth, Mater. Sci. Eng. R, 25 (1999) 123.
[2].Robert F. Davis, Diamond Films and Coatings Development, Properties, and Applications, Noyes Publications, Park Ridge, New Jersey, 1992.
[3].Huimin Liu and David S. Dandy, Diamond Chemical Vapor Deposition Nucleation and Early Growth Stages, Noyes Publications, Park Ridge, New Jersey, 1995.
[4].A.Lettington and J. W. Steeds, Thin Film Diamond, Chapman & Hall, New York, 1994.
[5].http://www.chm.bris.ac.uk/motm/diamond/diamprop.htm
[6].W. Zhu, “Vacuum microelectronics”, John Wiley & Sons (2001).
[7].Han, N. Lee, S. W. Lee, S. H. Kim, “Field emission of nitrogen-doped diamond films”, J. Vac. Sci. Technol. B, 16(4), 2052 (1998)
[8].W. Zhu, G. P. Kochanski, S. Jin, “Low-Field Electron Emission from Undoped Nanostructured Diamond”, SCIENCE, 282, 1471 (1998)
[9].Chiharu Kimura, Satoshi Koizumi, Mutsukazu Kamo, Takashi Sugino, “Behavior of electron emission from phosphorus-doped epitaxial diamond films”, Diamond and Related Materials, 8, 759 (1999)
[10].Robert Gomer, Field emission and field ionization, American Institute of Physics, 21~29 (1993)
[11].V. Baranauskas, B. B. Li, A. Peterlevitz, M. C. Tosin, and S. F. Durrant, “Nitrogen-doped diamond films”, J. Appl. Phys., 85, 7455 (1999)
[12].S. B. Wang, H. X. Zhang, P. Zhu, and K. Feng, “Structural and electrical properties of chemical vapor deposited diamond films doped by B+ implantation”, J. Vac. Sci. Technol. B, 18(4), 1997 (2000)
[13].W. B. Choi, J. J. Cuomo, V. V. Zhirnov, A. F. Myers and J. J. Hren, “ Field emission from silicon and molybdenum tips coated with diamond powder by dielectrophoresis”, Appl. Phys. Lett., 68, pp720 (1996)
[14].Nan Lin, Kuoguang Preng, Lien-Hsin Lee, Chuan-Feng Shih, and Kuo-Shung Liu, “Comparison of the effect of boron and nitrogen incorporation on the nucleation behavior and electron-field-emission properties of chemical-vapor-deposited diamond films”, Appl. Phys. Lett, 77, 1277 (2000)
[15].X. Jiang, P Willich, M. Paul, and C-P. Klages, “In situ boron doping of chemical-vapor-deposited diamond films”, Journal of Materials Research, 14, 3211 (1999)
[16].Z. H. Huang, P. H. Culter, N. M. Miskovsky, and T. E. Sullivan, “Theoretical-Study of Field-Emission from Diamond”, Appl. Phys. Lett., 65, 2562 (1994)
[17].V. V. Zhirnov, E. I. Givargizov, and P. S. Plekhanov, “Field-Emission from Silicon Spikes with Diamond Coatings”, J. Vac, Sci. Technol, B 13, 418 (1995)
[18].D. A. Buck and K. R. Shoulders, “An approach to microminiature systems”, in Proc. Eastern Joint Computer Conf., pp55-59 (AIEE, New York (1958).
[19].H. Liu and D. S. Dandy, “Diamond Chemical Vapor Deposition: Nucleation and Early Growth Stages”, Noyes Publications. New Jersey. 1995
[20].Edited by K. E. spear and J. P. Dismukes, “Synthetic Diamond: Emerging CVD Science and Technology”, John Wiley & Sons, Inc., New York, 1994, pp.3-90, 390-393
[21].W. G. Eversole, Synthesis of diamond, U. S. Patent, 3,030,188 (April 17, 1962).
[22].Robert F. Davis, “Diamond Films and Coatings Development, Properties, and Applications”, Noyes Publications, Park Ridge, New Jersey, 1992.
[23].A.Grill, Cold Plasma in Materials Fabrication-From Fundamentals to Application, IEEE Press, NY, 1994.
[24].H. V. Boenig, Plasma Science and Technology, Cornell University Press, 1982.
[25].翁志強, 順流式遠端電漿對單層有機金屬表面應機制之研究, 私立中原大學醫學工程系碩士論文, 2001.
[26].D.M. Gruen, “Nanocrystalline diamond films”, Annu. Rev. Mater. Sci. 29 211 (1999).
[27].J. Birrell, J. A. Carlisle, O. Auciello, D. M. Gruen, and J. M. Gibson, “ Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond”, Applied Physics Letters, 81 (12), 2235 (2002).
[28].S. Jiao, A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, “Microstructure of ultrananocrystalline diamond films grown by microwave Ar–CH4 plasma chemical vapor deposition with or without added H2”, Journal of Applied Physics, 90, 118 (2001).
[29].X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, and J. A. Carlisle, “Low temperature growth of ultrananocrystalline diamond”, Journal of Applied Physics, 96 (4) 2232 (2004).
[30].D. A. Homer, L. A. Curtiss, and D. M. Gruen, “ A theoretical study of the energetics of insertion of dicarbon (C) and vinylidene into methane C-H bonds2”, Chemical Physics Letters, 233 243 (1995).
[31].K. Subramaniana, W. P. Kanga, J. L. Davidsona, R. S. Takalkara, B. K. Choia, M. Howella and D.V. Kerns, “ Enhanced electron field emission from micropatterned pyramidal diamond tips incorporating CH/H/N plasma-deposited nanodiamond”, Diamond and Related Materials, 15 1126 (2006).
[32].T. K. Ku, C.D. Yang, F.G. Tarntair, C.C. Wang, H.C. Cheng, S.H. Chen, N.J. She, I. J. Hsieh, “Enhanced electron emission from phosphorus- and boron-doped diamond-clad Si field emitter arrays”, Thin Solid Films, 290 176 (1996).
[33].Yongde Xia, Gavin S. Walker, David M. Grant, Mokaya, Robert , “Hydrogen storage in high surface area carbons: experimental demonstration of the effects of nitrogen doping”, Journal of the American Chemical Society, 131 16493 (2009).
[34].H. Yoshikawa, C. Morel, and Y. Koga, “Synthesis of nanocrystalline diamond films using microwave plasma CVD Diamond and Related Materials”, 10 1588 (2001).
[35].J. Lee, R. W. Collins, R. Messier, and Y. E. Strausser, “Low temperature plasma process based on CO-rich CO/H2 mixtures for high rate diamond film deposition”, Applied Physics Letters, 70 1527 (1997).
[36].N. Jiang, K. Sugimoto, K. Nishimura, Y. Shintani, and A. Hiraki, “Synthesis and structural study of nano/micro diamond overlayer films”, Journal of Crystal Growth, 242 362 (2002).
[37].T. Sharda, M. Vmeno, T. Soga, and T. Jimbo, “CJrowth of nanocrystalline diamond films by biased enhanced microwave plasma chemical vapor deposition: A different regime of growth”, Applied Physics Letters, 77 (26) 4304 (2000).
[38].W. Zhu, G P. Kochanski, and S. Jin, “Low-field emission from undopednanostructured diamond”, Science, 282 1471 (1998)
[39].A. Göhl, A. N. Alimova, T. Habennann, A. L. Mescheryakova, and G Huller,“Integral and local field emission analyses of nanodiamond coating for power applications”, J. Vac. Sci. Technol. B, 17 670 (1999).
[40].B. V. Derjaguin, D. V. Fedoseev, “The synthesis of diamond at low pressure”, Scientific American, 5 233 (1975) pp.102.
[41].S. Matsumoto, Y. Matsui, “Electron microscopic observation of diamond particle grown from the vapor phase”, J. Mater. Sci., 18 (1983) 1785.
[42].W. A. Yarbrough and Russell Messier, “Current issues and problems in the chemical vapor deposition of diamond”, Science, 247 4943 (1990) pp.688-696.
[43].W. A Yarbrough, “Current research problems and opportunities in the vapor phase synthesis of diamond and cubic boron nitride”, J. Vac. Sci. Technol. A, 39 (1991) pp.1145-1152
[44].J. F. Parins, “Non-CVD method of diamond growth at low pressure”, Diamond Relat. Mater., 2 (1993) pp.646-655.
[45].A. Badrezj and T. Badrezj, “Diamond homoepitaxy by chemical vapor deposition”, Diamond Relat. Mater., 2 (1993) pp.147-157.
[46].M. I. Landstrass, M. A. Plano, M. A. Moreno, S. McWilliams, L. S. Pan, D. R. Kania and S. Han, “Device properties ofhomoepitaxially grown diamond”, Diamond Relat. Mater., 2 (1993) pp.1033-1037.
[47].C. Lai, J. B. Wachtmn, Jr., G. H. Sigel, Jr. and P. Lu. etc. “Effects of substrate pretreatments on growth of polycrystalline diamond thin films on Si(100) substrates”, Mat. Res. Soc. Symp. Proc. Vol. 280 (1993) pp.689-694.
[48].H. Meada, S. Ilari and S. Masuda, etc. “Effect of substrate pretreatment on diamond deposition”, Diamond Relat. Mater., 2 (1993) pp.758-761.
[49]. P. Karve, S. R. SainKar and S. T. Kshirsagar, “Role of Surface features in CVD diamond nucleation on surface-pretreated substrates”, Mater. Lett., 34 (1998) pp.387-391.
[50].Debabrata Pradhan, Li-Ju Chen, Yen-Chih Lee, Chi-Young Lee, Nyan-Hwa Tai, I-Nan Lin, “Effect of titanium metal in the prenucleation of ultrananocrystalline diamond film growth at low substrate temperature”, Diamond and Related Materials, 15 1779 (2006).
[51].J. H. Je and G. Y. Lee, “Microstructures of diamond films deposited on (100) silicon wafer by microwave plasma-enhanced chemical vapor- deposition”, Journal of Materials Science, 27 (23) 6324 (1992).
[52].T. Sharda and S. Bhattacharyya, “Advances in nanocrystalline diamond”, Encyclopedia of Nanoscience and Nanotechnology, X, I (2003).
[53].C.J. Rennick, A.G. Smith, J.A. Smith, J.B. Wills, A.J. Orr-Ewing, M.N.R. Ashfold, Yu.A. Mankelevich, N.V. Suetin, “Improved characterization of C2 and CH radical number density distributions in a DC arc jet used for diamond chemical vapour deposition” Diamond and Related Materials 13, 561-568(2004).
[54].Stephen J. Harris, “Mechanism for diamond growth from methyl radicals”, Appl. Phys. Lett. 56 2298 (1990).
[55].Chuan-Sheng Wang, Huang-Chin Chen, Hsiu-Fung Cheng, and I-Nan, Lin, “Growth behavior of nanocrystalline diamond films on ultranano crystalline diamond nuclei: the transmission electron microscopy studies”, J. Appl. Phys. 105 124311 (2009).
[56].James Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, D. M. Gruen, and J. A. Carlisle, “ Bonding structure in nitrogen doped ultrananocrystalline diamond”, J. Appl. Phys. 93 5606 (2003).
[57].A. C. Ferrari and J. Robertson , “Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond”, Phys. Rev. B 63 121405(R) (2001).
[58].C. Z. Wang, K. M. Ho, “ Structure, dynamics, and electronic properties of diamond-like amorphous carbon”, Phys. Rev. Lett. 71 (8) 1184 (1993).
[59].K. Wu, E.G. Wang, Z.X. Cao, Z.L. Wang, X. Jiang, “ Microstructure and its effect on field electron emission of grain-size-controlled nanocrystalline diamond films”, J. Appl. Phys. 88 2967 (2000).
[60].A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D.C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, M.Q. Ding, “Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices” Diamond and Related Materials 10, 1952-1961(2001).
[61].Gruena, A.R. Kraussa, P. Zapola, R.P.H. Changb P.F. Cleri, P. Keblinski, L. Colombo, D. Wolf, S.R. Philpot, Europhys. Lett. 46 (1999) 671.Diamond and Related Materials 11 (2002) 43–48.
[62].M. Park, A.T. Sowers, C. Lizzul Rinne, et al., J. Vac. Sci.Technol. B 17 (1999) 734.
[63].Sobia Allah Rakha, Guojun Yu ⁎, Jianqing Cao, Suixia He, Xingtai ZhouDIAMAT-05347; No of Pages 4 Diamond-graphite nanorods produced by microwave plasma chemical vapor deposition
[64].Lajunen L.H.J. Spectrochemical Analysis by Atomic Absorption and Emission (RSC, 1998) .P19-21
[65].周麗新 薄膜工程第四章電漿放電基本原理
[66].李佳璘 La0.85Zr0.15MnO 薄膜各項異性磁電阻之研究 p53,54
|
論文使用權限 |
同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-08-05公開。同意授權瀏覽/列印電子全文服務,於2010-08-05起公開。 |
 |
|
 |