淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0408201000202900
中文論文名稱 超奈米微晶鑽石薄膜之微結構及電子場發射特性之研究
英文論文名稱 Microstructures and electron field emission properties of ultra nanocrystalline diamond films
校院名稱 淡江大學
系所名稱(中) 物理學系博士班
系所名稱(英) Department of Physics
學年度 98
學期 2
出版年 99
研究生中文姓名 陳皇欽
研究生英文姓名 Huang-Chin Chen
電子信箱 littlekier@gmail.com
學號 693180159
學位類別 博士
語文別 中文
第二語文別 英文
口試日期 2010-07-02
論文頁數 340頁
口試委員 指導教授-林諭男
委員-鄭秀鳳
委員-張 立
委員-張經霖
委員-林震安
中文關鍵字 電子場發射特性  成長機制  穿透式電子顯微鏡 
英文關鍵字 electron field emission properties  growth mechanism  electron field emission properties 
學科別分類
中文摘要 本論文是以研究超奈米微晶鑽石薄膜場發射特性變化與微結構的改變為研究的主題,本論文分三個主題來解釋超奈米微晶鑽石結構的變化與場發射之間的關係。第一個主題,我們藉由超微量氫氣的添加與純氫氣電漿蝕刻鑽石薄膜表面,來研究超奈米微晶鑽石微結構變化與場發射的關係,並藉此探討鑽石同素異型體結構的產生;我們發現當添加氫氣參與超奈米微晶鑽石薄膜的成長時,會有鑽石顆粒逐漸變大的趨勢,當我們控制氫氣含量為0.03%時,可以明顯的藉由穿透式電子顯微鏡發現鑽石結構有stacking faults缺陷的產生,隨著氫氣的增加其鑽石結構缺陷的區域變得更為明顯,藉由高解析影像與選區繞射圖發現,鑽石缺陷的地方會有鑽石同素性型體的變化,從立方體結構轉變成六面體結構,相對的,電子場發射特性也隨著氫氣的添加而有逐漸減弱的趨勢;在純氫氣電漿處理鑽石薄膜研究中,也發現薄膜表面的超奈米微晶鑽石有結構結合的反應,並且其結構鍵結區相單晶化,而當我們添加1%甲烷在氫氣電漿中,發現與純氫氣電漿處理有不同的鑽石結構變化,具有超奈米微晶鑽石與微米微晶鑽石同存的現象,此現象造就了更佳的電子場發射特性。
第二部份我們以不與碳產生反應的高能量銀離子與金離子照射超奈米微晶鑽石薄膜,試圖利用破壞性的方式去改變鑽石薄膜電子場發射特性,我們發現100 MeV的銀離子與2.245 GeV的金離子照射超奈米微晶鑽石薄膜後,電子場發射會隨著照射密的的增加而變好,藉由穿透式電子顯微鏡微結構的觀測中,發現5 nm的超奈米微晶鑽石顆粒,會有鑽石結構被破壞與再結晶這兩種變化,所以在微結構中可以發現有20~30 nm大顆粒的鑽石結構產生,並且鑽石顆粒邊界發現有石墨相與非結晶碳相的結構產生。
第三部分我們試圖改變基板中間緩衝層鑽石成核的變化,以探討成長超奈米微晶鑽石薄膜之電子場發射特性的變化,我們利用36 KeV碳離子先照射矽基板,試圖在基板表面成長碳化矽結構,再成長超奈米微晶鑽石薄膜,發現電子場發射有不一樣的改變;我們再利用36 KeV的碳離子照射碳膜,試圖產生鑽石的成核結構以便鑽石薄膜成長,發現當我們利用碳分子(C2)照射碳膜後,鑽石薄膜電子場發射的特性為最佳。最後,我們利用化學氣相沉積法先成長一層的碳化矽薄膜結構在矽基板上,並且我們試著在矽(100)與矽(111)兩種基板上,研究在超奈米微晶鑽石薄膜成長後電子場發射特性的改變,我們發現當我們成長超奈米微晶鑽石薄膜/碳化矽/矽(100)時,具有最佳的電子場發射特性,這是因為電子容易在矽基板100方向時傳輸電子,所以容易讓更多電子發射到真空腔裡,產生最佳的電子場發射特性。
英文摘要 In this thesis, the correlation between the microstructure of ultra-nanocrystalline diamond (UNCD) films and their electron field emission (EFE) properties was investigated from 3 aspects: (i). microstructural modification via the incorporation of hydrogen species in the plasma or the lattices, (ii). heavy ion irradiation effect ; and (iii). utilization of buffer layer for enhancing the nucleation of UNCD. For the hydrogen effect, we observed the either incorporating the H2 into Ar-CH4 plasma or post-treating the UNCD films in H2-plasma induced the grain growth phenomenon. Addition of H2, even for a small amount of 0.033%, induced the anisotropic growth of diamond grains, in accompanying with the formation of (111) stacking faults. Incorporation of more abundant amount of H2 (>40%) induced the formation of hexagonal diamond (6H or 8H diamond), the isomorphous of 3C-diamonds. In contrast, post-treating the UNCD films in H2-plasma induced the Oswald-Ripening of the diamond grains. Both the grain growth phenomena eliminated the proportion of grain boundaries that suppress the electron conduction path and, thereafter, increased the turn-on field for EFE process. On the other hand, addition of 1%CH4 in H2 during the post-treatment process markedly lowered the turn-on field and enhanced the EFE current density. TEM examination revealed that the prime factor for improving the EFE process is the formation of nanographites among the nano-sized diamond grains.
In the heavy ion irradiation effect: we irradiated the UNCD with Ag- or Au-ions to modify the microstructure of the films so as to enhance the EFE of the films. We observed the both 100 MeV Ag-ions and 2.245 GeV Au-ions markedly improved the EFE behavior for the UNCD films. TEM investigation revealed that large aggregates (~ 20 nm) of diamond clusters were induced among the 5 nm diamond grains due to the heavy on irradiation. Moreover, amorphous carbons and nano-graphites were resulted surrounding the aggregates, which are presumed to be the prime factor for improving the EFE properties due to heavy ion irradiation.
Finally, we utilized buffer layer to enhancing the nucleation of diamond, investigating how the buffer layer modifies the EFE properties for the diamond films. We observed that implanting the Si-substrates with carbon species induced the formation of SiC particles, which enhanced the nucleation of diamond and improved the EFE properties of the films. Implanting C2 dimmer into amorphous carbons can also enhanced the nucleation of diamond and improved the EFE properties of the films. In contrast, pre-coating the Si-substrates with a thin layer of crystalline stoichiometric SiC can also modify the growth behavior of the diamond. Interestingly, the nature of Si-substrate, Si(111) or Si(100), alter the EFE properties in different manner, that is ascribed to the difference between the interlayer of the UNCD/SiC/Si films. While the SiC buffer on Si(100) substrates showed the improved EFE properties, that on Si(111) substrates degraded these behavior for the UNCD films.
論文目次 致謝 VII
目錄 IX
圖目錄 XIII
表目錄 XIX
第一章 序論 1
1.1 研究動機 1
1.2 鑽石薄膜的特性與應用 1
1.2-1 鑽石及鑽石薄膜的特性 1
1.2-2 鑽石薄膜之應用 4
1.2-3 微米及超奈米晶鑽石薄膜 5
1.3 微米及超奈米晶鑽石薄膜之合成方法與理論 8
1.3-1 鑽石薄膜相關合成方法 8
1.3-2 鑽石膜成核相關理論 13
1.4 電子場發射理論 19
1.4-1 金屬的場發射理論 19
1.4-1 半導體場發射的基本理論 22
1.5 鑽石薄膜在場發射特性上之應用 24
1.6 鑽石的負電子親和力特性 26
1.7 鑽石結構 27
1.7.1 鑽石結構之常見TEM分析 28
1.7.2 鑽石的同素異型體 28
第二章 研究方法及實驗步驟 68
2.1 微波電漿CVD 鍍鑽石薄膜結構及原理 68
2.1-1 IPLAS CRYNNUS I MPECVD 系統 68
2.2 鑽石薄膜實驗方法 69
2.2-1 不同氫含量鑽石薄膜實驗方法 69
2.2-1.1 基材之製備及孕核 69
2.2-1.2 實驗步驟 70
2.3 碳化矽薄膜之製作 72
2.4 薄膜之特性分析 73
2.4-1 掃描式電子顯微鏡 74
2.4-2 拉曼光譜分析(Raman Spectrum) 76
2.4-3 穿透式電子顯微鏡(Transmission Electron Microscope) 77
2.4-4 TEM樣品製作步驟 79
2.4-4.1 TEM樣品研磨步驟 79
2.4-4.2 TEM樣品離子蝕薄機 (PIPS) 步驟 81
2.4-5 電子場發射特性之量測 84
第三章 氫氣氣體對超奈米微晶鑽石作用之場發射與微結構之研究 98
3.1 0% H2 & 1.5% H2 對UNCD薄膜微結構變化之研究 99
3.1-1 掃描式電子顯微鏡之表面形貌分析 100
3.1-2 拉曼分析 101
3.1-2 電子場發射特性分析 102
3.1-3 TEM 分析 102
3.1-4 小結 105
3.2 成長超奈米微晶鑽石在超微量氫氣的添加之研究 107
3.2-1 UV-Raman分析 107
3.2-2 電子場發射特性分析 108
3.2-3 TEM 分析 109
3.2-4 模型假設 116
3.2-5 微結構與電子場發射關係 116
3.2-6 小結 117
3.3 超奈米微晶鑽石薄膜經氫氣電漿與甲烷摻雜之電子場發射與微結構之研究 119
3.3-1 掃描式電子顯微鏡分析 120
3.3-2 UV-Raman分析 122
3.3-3 電子場發射分析 123
3.3-4 穿透式電子顯微鏡分析 124
3.3-4.1 甲烷/氫氣電漿蝕刻UNCD 124
3.3-4.1-1 模型假設 134
3.3-4.2 純氫氣電漿蝕刻UNCD 135
3.3-4.2-1 模型假設 139
3.3-4.2-2 微結構與電子場發射的關係 140
3.3-5 小結 141
3.4 結論 143
第四章 離子照射超奈米微晶鑽石薄膜 209
4.1 低能量銀離子照射超奈米微晶鑽石薄膜 209
4.1-1 拉曼分析 210
4.1-2 電子場發射分析 211
4.1-3 穿透式電子顯微鏡之分析 212
4.1-4 小結 214
4.2 高能量銀離子照射超奈米微晶鑽石薄膜 216
4.2-1 掃描式電子顯微鏡之表面形貌分析 216
4.2-2 拉曼分析 217
4.2-3 電子場發射之特性分析 217
4.2-4 NEXAFS分析 218
4.2-5 XPS分析 219
4.2-6 穿透式電子顯微鏡之分析 219
4.2-6.1 銀離子照射UNCD薄膜特性量測之比較 224
4.2-6.1-1 拉曼光譜之比較 224
4.2-6.1-2 電子場發射特性之比較 224
4.2-6.2 模型假設 225
4.2-7 小結 226
4.3 2.245 GEV金離子照射超奈米微晶鑽石薄膜 229
4.3-1 SEM分析 229
4.3-2 UV-Raman分析 230
4.3-3 電子場發射分析 231
4.3-4 穿透式電子顯微鏡分析 232
4.3-4.1 2.245 GeV金離子照射UNCD 232
4.3-4.2 2.245 GeV金離子照射UNCD之退火過程 236
4.3-5 2.245 GeV金離子照射UNCD未退火與退火之拉曼與電子場發射圖 242
4.3-6 小結 243
4.4 離子照射UNCD之比較 244
4.5 結論 245
第五章 成長UNCD薄膜於不同的緩衝成核層於矽基板與之場發射特性研究 300
5.1 超奈米微晶鑽石薄膜成長於碳離子照射碳膜之電子場發射特性 300
5.1-1 表面型態的分析 301
5.1-2 UV-拉曼結構分 302
5.1-3 XPS分析 303
5.1-4 電子場發射分析 305
5.1-5 小結 307
5.2 超奈米微晶鑽石薄膜成長於碳化矽中間層之電子場發射特性 308
5.2-1 表面型態的分析 309
5.2-2 XRD 分析 309
5.2-3 Raman 分析 311
5.2-4 電阻分析 311
5.2-5 電子場發射特性分析 313
5.2-6 小結 314
5.3 結論 315
第六章 總結 329
參考文獻 331

圖目錄
圖1- 1 鑽石與石墨的結晶構造 32
圖1- 2 鑽石的相圖 33
圖1- 3 鑽石的熱傳導係數 34
圖1- 4 微米至超奈米晶鑽石薄膜表面型態 36
圖1- 5 以HRTEM分析超奈米鑽石晶粒及晶界 37
圖1- 6 超奈米鑽石晶粒間距及繞射圖 38
圖1- 7 不同波長的超奈米晶鑽石膜拉曼光譜 38
圖1- 8 微米及超奈米晶鑽石的NEXAFS光譜 39
圖1- 9 C-H-O三相圖 40
圖1- 10 微波電漿CVD設備圖 40
圖1- 11 熱燈絲法設備圖 41
圖1- 12 微波電漿放電系統設備圖 41
圖1- 13 高週波電漿放電系統設備圖 42
圖1- 14 電子迴旋共振設備圖 42
圖1- 15 鑽石之椅狀堆積構造 43
圖1- 16 石墨及鑽石的活化能相對圖 43
圖1- 17 薄膜與基材之早期成核方式 44
圖1- 18 與基材不反應者之孕核、成長機制 44
圖1- 19 與基材形成碳化物之孕核、成長機制 45
圖1- 20 偏壓輔助孕核法的反應機制 46
圖1- 21 偏壓輔助成核示意圖 47
圖1- 22 超音波振盪法 48
圖1- 23 偏壓輔助孕核法超音波振盪法 49
圖1- 24 金屬-真空能帶示意圖 50
圖1- 25 v(y),t2(y)和y的關係圖 52
圖1- 26 半導體能帶圖 53
圖1- 27 不考慮電場穿透的半導體場發射示意圖 53
圖1- 28 考慮電場穿透下n型半導體的場發射示意圖 54
圖1- 29 有表面態的n型半導體 54
圖1- 30 鉬尖端的薄膜場發射陰極 55
圖1- 31 典型的半導體能帶圖 55
圖1- 32 UNCD鑽石結構TEM高解析度影像圖 56
圖1- 33 UNCD線性繞射圖 57
圖1- 34 碳原子sp3結構圖 (a) c-Diamond (b) n-diamond (c) i-Carbon 58
圖1- 35 鑽石結構之TEM高解析度原子影像圖 60
圖1- 36 鑽石結構之TEM高解析度影像圖之FFT轉換圖 61
圖1- 37 鑽石結構圖 62
圖1- 38 同素異型體之六面體鑽石結構圖 63
圖1- 39 鑽石立方體結構與六面體結構之晶相對照圖 64
圖1- 40 3c-diamond (220)C與2H-diamond (100)H原子排列圖 65
圖1- 41 六面體同素異型體之原子排列圖形 66
圖1- 42 六面體同素異型體之模擬TEM高解析度影像與繞射圖形 67
圖2- 1 IPLAS CRYNNUS I MPECVD 系統 86
圖2- 2 IPLAS 系統示意圖 87
圖2- 3 不同氫含量鑽石膜成長流程 88
圖2- 4 LPCVD系統示意圖 90
圖2- 5 掃描式電子微顯微鏡(SEM) 91
圖2- 6 拉曼系統 92
圖2- 7 拉曼系統示意圖 93
圖2- 8 TEM系統 94
圖2- 9 穿透式電子顯微鏡的基本構造 95
圖2- 10 離子蝕薄機示意圖 96
圖2- 11 電子場發射特性量測示意圖 97
圖3- 1 UNCD表面型態圖 145
圖3- 2 0% & 1.5% H2 UNCD之UV拉曼光譜圖 146
圖3- 3 0% & 1.5% H2 UNCD之電子場發射 147
圖3- 4 1.5% H2 UNCD之TEM明場相、暗場相和繞射圖 148
圖3- 5 1.5% H2 UNCD之TEM高解析度影像 149
圖3- 6 1.5% H2 UNCD之TEM明場相、暗場相和高解析度影像 150
圖3- 7 1.5% H2 UNCD隨著角度變化之TEM明場相和繞射圖 151
圖3- 8 1.5% H2 UNCD之TEM高解析度影像及FFT圖 152
圖3- 9 超微量氫氣UNCD之 UV拉曼圖 153
圖3- 10 超微量氫氣UNCD 之電子場發射圖 154
圖3- 11 超微量氫氣UNCD 155
圖3- 12 超微量氫氣UNCD 156
圖3- 13 超微量氫氣UNCD 157
圖3- 14 0% H2 UNCD不同角度之TEM明場相 158
圖3- 15 0% H2 UNCD角度Tx = 1.3o, Ty = -0.4o之TEM高解析度影像 159
圖3- 16 0% H2 UNCD不同角度之TEM明場相 160
圖3- 17 0.03% H2 UNCD角度Tx = 0o, Ty = 0o之TEM高解析度影像 161
圖3- 18 0.03% H2 UNCD角度Tx = 0o, Ty = 0o之基質(Matrix) TEM高解析度影像 162
圖3- 19 0.06% H2 UNCD不同角度之TEM明場相 163
圖3- 20 0.06% H2 UNCD角度Tx = -0.6o, Ty = 2.5o之TEM高解析度影像 164
圖3- 21 0.06% H2 UNCD角度Tx = 0.8o, Ty = 2.5o之基質(Matrix) TEM高解析度影像 165
圖3- 22 0.1% H2 UNCD不同角度之TEM明場相 166
圖3- 23 0.1% H2 UNCD角度Tx = -0.1o, Ty = -2.9o之TEM高解析度影像 167
圖3- 24 0.1% H2 UNCD角度Tx = -1.6o, Ty = -2.8o之TEM高解析度影像 168
圖3- 25 氫氣添加至氬氣電漿之模型示意圖 169
圖3- 26 電漿作用UNCD薄膜示意圖 170
圖3- 27 表面形貌SEM圖 171
圖3- 28 表面形貌SEM圖 172
圖3- 29 氫氣電漿蝕刻UNCD之UV拉曼光譜圖 173
圖3- 30 氫氣電漿蝕刻UNCD之電子場發射圖 174
圖3- 31 添加甲烷氫氣電漿蝕刻UNCD頂端之TEM明場相、暗場相 & 繞射圖 176
圖3- 32 添加甲烷氫氣電漿蝕刻UNCD頂端高倍率之TEM明場相、暗場相 & 繞射圖 177
圖3- 33 添加甲烷氫氣電漿蝕刻UNCD頂端(a)小顆粒區域明場相及SAD繞射圖 (b) SAD線性繞射圖 178
圖3- 34 添加甲烷氫氣電漿蝕刻UNCD頂端高倍率之TEM ZA明場相 & 繞射圖 179
圖3- 35 添加甲烷氫氣電漿蝕刻UNCD頂端高倍率之TEM ZA高解析度影像 (1) 180
圖3- 36 添加甲烷氫氣電漿蝕刻UNCD頂端高倍率之TEM ZA高解析度影像 (2) 181
圖3- 37 添加甲烷氫氣電漿蝕刻UNCD頂端高倍率之TEM ZA高解析度影像 (基質部分(Matrix)) 182
圖3- 38 添加甲烷氫氣電漿蝕刻UNCD頂端高倍率不同角度之TEM明場相圖 183
圖3- 39 添加甲烷氫氣電漿蝕刻UNCD頂端區域I高倍率之TEM暗場相圖 184
圖3- 40 添加甲烷氫氣電漿蝕刻UNCD頂端區域I之TEM暗高解析度影像 (1) 185
圖3- 41 添加甲烷氫氣電漿蝕刻UNCD頂端區域I之TEM暗高解析度影像 (2) 186
圖3- 42 添加甲烷氫氣電漿蝕刻UNCD頂端區域II之TEM暗高解析度影像 (1) 187
圖3- 43 添加甲烷氫氣電漿蝕刻UNCD頂端區域II之TEM暗高解析度影像 (2) 188
圖3- 44 添加甲烷氫氣電漿蝕刻UNCD頂端區域II基質(Matrix)之TEM暗高解析度影像 189
圖3- 45 添加甲烷氫氣電漿蝕刻UNCD底部之TEM明場相、暗場相 & 繞射圖 190
圖3- 46 添加甲烷氫氣電漿蝕刻UNCD底部高倍率之TEM明場相 & 繞射圖 191
圖3- 47 添加甲烷氫氣電漿蝕刻UNCD底部區域III之TEM高解析度影像 192
圖3- 48 添加甲烷氫氣電漿蝕刻UNCD底部區域IV之TEM高解析度影像 193
圖3- 49 添加甲烷氫氣電漿蝕刻UNCD底部區域III(基質(Matrix))之TEM高解析度影像 194
圖3- 50 添加甲烷氫氣電漿蝕刻UNCD底部區域IV(基質(Matrix))之TEM高解析度影像 195
圖3- 51 添加甲烷氫氣電漿蝕刻UNCD模型示意圖 196
圖3- 52 純氫氣電漿蝕刻UNCD頂端之TEM明場相圖 197
圖3- 53 純氫氣電漿蝕刻UNCD頂端之TEM暗場相圖 198
圖3- 54 純氫氣電漿蝕刻UNCD頂端之TEM明場相圖 & 各別區域傅立葉轉換圖 199
圖3- 55 純氫氣電漿蝕刻UNCD頂端區域7之TEM高解析度影像圖 200
圖3- 56 純氫氣電漿蝕刻UNCD頂端區域1之TEM高解析度影像圖 201
圖3- 57 純氫氣電漿蝕刻UNCD底部之TEM明場相圖 202
圖3- 58 純氫氣電漿蝕刻UNCD底部之高倍率TEM明場相圖 203
圖3- 59 純氫氣電漿蝕刻UNCD底部之TEM高解析度影像圖 204
圖3- 60 純氫氣電漿蝕刻UNCD底部基質(Matrix)之高倍率TEM明場相圖 205
圖3- 61 純氫氣電漿蝕刻UNCD底部基質(Matrix)之高倍率TEM高解析度影像圖 206
圖3- 62 純氫氣電漿蝕刻UNCD模型示意圖 207
圖3- 63 電漿蝕刻UNCD微結構與電子場發射關係圖 208
圖4- 1 8 MeV銀離子照射UNCD薄膜之拉曼光譜 247
圖4- 2 8 MeV銀離子照射UNCD薄膜之拉曼光譜 248
圖4- 3 16 MeV銀離子照射UNCD薄膜之拉曼光譜 249
圖4- 4 8 MeV銀離子照射UNCD薄膜之電子場發射圖 250
圖4- 5 16 MeV銀離子照射UNCD薄膜之電子場發射圖 251
圖4- 6 8 MeV銀離子照射UNCD薄膜之TEM 明場相及繞射圖形 253
圖4- 7 8 MeV銀離子照射UNCD薄膜之TEM高解析度影像 254
圖4- 8 8 MeV銀離子照射UNCD薄膜之高倍率TEM 明場相及繞射圖形 255
圖4- 9 8 MeV銀離子照射UNCD薄膜之SAD線性繞射光譜 256
圖4- 10 8 MeV銀離子照射UNCD薄膜之TEM 高解析度影像 257
圖4- 11 8 MeV銀離子照射UNCD薄膜之TEM 高解析度影像 258
圖4- 12 8 MeV銀離子照射UNCD薄膜之TEM 高解析度影像 259
圖4- 13 100 MeV 銀離子照射UNCD之SEM表面形貌 261
圖4- 14 100 MeV 銀離子照射UNCD 262
圖4- 15 100 MeV 銀離子照射UNCD之電子場發射特性 263
圖4- 16 100 MeV 銀離子照射UNCD之NEXAFS 光譜全譜圖 265
圖4- 17 100 MeV 銀離子照射UNCD之NEXAFS sp3光譜圖 266
圖4- 18 100 MeV 銀離子照射UNCD之NEXAFS sp2光譜圖 267
圖4- 19 100 MeV 銀離子照射UNCD之XPS光譜圖 268
圖4- 20 UNCD之TEM明場相與繞射圖 269
圖4- 21 UNCD之SAD線性繞射圖 270
圖4- 22 UNCD之TEM高倍率明場相 271
圖4- 23 100 MeV 銀離子照射UNCD之TEM明場相 272
圖4- 24 100 MeV 銀離子照射UNCD之TEM高倍率明場相 273
圖4- 25 100 MeV 銀離子照射UNCD之晶粒成長區SAD線性繞射圖 274
圖4- 26 100 MeV 銀離子照射UNCD之UNCD顆粒區SAD線性繞射圖 274
圖4- 27 100 MeV 銀離子照射UNCD之TEM高解析度影像 275
圖4- 28 100 MeV 銀離子照射UNCD之TEM明場相 (UNCD顆粒) 276
圖4- 29 100 MeV 銀離子照射UNCD之TEM高解析度影像 (UNCD顆粒) 277
圖4- 30 100 MeV 銀離子照射UNCD之TEM高解析度影像 (UNCD顆粒) 278
圖4- 31 銀離子照射UNCD之拉曼比較圖 279
圖4- 32 銀離子照射UNCD之電子場發射比較圖 279
圖4- 33 離子照射UNCD薄膜之模型示意圖 280
圖4- 34 2.245 GeV金離子照射UNCD之SEM圖 282
圖4- 35 2.245 GeV金離子照射UNCD之拉曼圖 283
圖4- 36 2.245 GeV金離子照射UNCD退火後之拉曼圖 283
圖4- 37 2.245 GeV金離子照射UNCD之電子場發射圖 284
圖4- 38 2.245 GeV金離子照射UNCD之TEM 明場相、暗場相與繞射圖 286
圖4- 39 2.245 GeV金離子照射UNCD之SAD線性繞射圖 287
圖4- 40 2.245 GeV金離子照射UNCD之TEM 高解析度影像(A區) 288
圖4- 41 2.245 GeV金離子照射UNCD之TEM 高解析度影像(B區) 289
圖4- 42 2.245 GeV金離子照射UNCD之TEM 高解析度影像(C區) 290
圖4- 43 2.245 GeV金離子照射UNCD退火後之TEM 明場相、暗場相與繞射圖 291
圖4- 44 2.245 GeV金離子照射UNCD之線性繞射圖 292
圖4- 45 2.245 GeV金離子照射UNCD退火後之TEM高解析度影像圖 (A區) 293
圖4- 46 2.245 GeV金離子照射UNCD退火後之TEM高解析度影像圖 (B區) 294
圖4- 47 2.245 GeV金離子照射UNCD退火後之TEM高解析度影像圖 (B-T1區) 295
圖4- 48 2.245 GeV金離子照射UNCD退火後之TEM明場相 (UNCD 顆粒) 296
圖4- 49 2.245 GeV金離子照射UNCD退火後之TEM高解析度影像圖 (UNCD顆粒) 297
圖4- 50 2.245 GeV金離子照射UNCD之UV-拉曼圖 298
圖4- 51 2.245 GeV金離子照射UNCD之電子場發射特性圖 298
圖4- 52 離子照射UNCD之電子場發射特性關係圖 299
圖5- 1 SEM表面形貌 317
圖5- 2 UNCD/36 keV碳離子照射碳膜/矽基板之UV拉曼光譜圖 318
圖5- 3 UNCD/36 keV碳離子照射碳膜/矽基板之XPS 319
圖5- 4 UNCD/36 keV碳離子照射碳膜/矽基板之電子場發射圖 320
圖5- 5 SEM表面形貌 323
圖5- 6 成長碳化矽薄膜之XRD數據圖 324
圖5- 7 SiC與UNCD之拉曼圖 325
圖5- 8 不同碳化矽薄膜合成流量的電阻圖 326
圖5- 9 UNCD在不同合成流量成長之電子場發射圖 327



表目錄
表1- 1 鑽石的各種性質 30
表1- 2 鑽石的各種應用 31
表1- 3 鑽石之耐熱衝擊指數比較 34
表1- 4 天然鑽石、鑽石膜及類鑽石膜之性質比較 35
表1- 5 微米晶鑽石與超奈米微晶鑽石的特性比較 37
表1- 6 v(y),t(y)和t2(y)數值對照表 51
表1- 7 碳原子SP3結構1/d值與其出現晶相對照表 59
表2- 1 碳化矽薄膜條件參數表 89
表2- 2 碳結構的各種拉曼峰值 92
表3- 1 電子場發射特性之對照表 175
表4- 1 8 & 16 MeV銀離子照射UNCD薄膜之實驗參數表 247
表4- 2 8 & 16 MeV銀離子照射UNCD薄膜之場發射起始電壓對照表 252
表4- 3 100 MeV銀離子照射UNCD薄膜之參數 260
表4- 4 100 MeV銀離子照射UNCD薄膜之場發射對照表 264
表4- 5 2.245 GeV金離子照射UNCD薄膜之參數 281
表4- 6 2.245 GeV金離子照射UNCD之電子場發射起始電壓與電流密度表 285
表5- 1 實驗參數表 316
表5- 2 電子場發射起始電壓對照表 321
表5- 3 實驗對照表 322
表5- 4 電子場發射起始電壓對照表 328
參考文獻 [1]. J. E. Field, “The Properties of Diamonds”, (Academic, London, 1979).
[2]. H. Liu and D. S. Dandy, “Diamond chemical vapor deposition: Nucleation and Early Growth Stages”, Noyes (1995).
[3]. P. Kulkarni, L. M. Porter, F. A. M. Koeck, Y.-J. Tang, and R. J. Nemanich, “Electrical and photoelectrical characterization of undoped and S-doped nanocrystalline diamond films”, J. Appl. Phys. 103 084905 (2008).
[4]. M. Shamsa, S. Ghosh, I. Calizo, V. Ralchenko, A. Popovich, and A. A. Balandin, “Thermal conductivity of nitrogenated ultrananocrystalline diamond films on silicon”, J. Appl. Phys. 103 083538 (2008).
[5]. X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, and J. A. Carlisle, “ Low temperature growth of ultrananocrystalline diamond”, J. Appl. Phys. 96 2232 (2004).
[6]. Li-Ju Chen, Nyan-Hwa Tai, Chi-Young Lee, and I-Nan. Lin, “ Effects of pretreatment processes on improving the formation of ultrananocrystalline diamond”, J. Appl. Phys. 101 064308 (2007).
[7]. K. Wu, E.G. Wang, Z.X. Cao, Z.L. Wang, X. Jiang, “ Microstructure and its effect on field electron emission of grain-size-controlled nanocrystalline diamond films”, J. Appl. Phys. 88 2967 (2000).
[8]. Maki A. Angadi, Taku Watanabe, Arun Bodapati, Xingcheng Xiao, and Simon R. Phillpot, “Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films”, J. Appl. Phys. 99 114301 (2006).
[9]. D.M. Gruen, “Nanocrystalline diamond films”, Annu. Rev. Mater. Sci. 29 211 (1999).
[10]. J. A. Carlisle, O. Auciello; Electrochem. Soc. Interface (2003) (Spring).
[11]. F. Mubarok, J. M. Carrapichano, F. A. Almeida, A. J. S. Fernandes, R. F.Silva, “ Enhanced sealing performance with CVD nanocrystalline diamond films in self-mated mechanical seals”, Diamond Relat. Mater., 17 1132 (2008).
[12]. A. Lavoisier, “Elements of Chemistry”, Dover Publications (1772).
[13]. Y. Tzeng, M. Yoshikawa, M. Murakawa and Feldman, “The Applications of Diamond Films and Related Materials”, eds, Elsevier, New York, (1991).
[14]. P. W. Bridgman, “Synthetic diamonds”, Scient. Am., 193 42 (1955).
[15]. W. G. Eversole, U.S. Patent No. 3, 030 188 (1962).
[16]. J. C. Angus, H. A. Will and W. S. Stanko, “Growth of Diamond Seed Crystals by Vapor Deposition”, J. Appl. Phys., 39 2915 (1968).
[17]. B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, “Vapor growth of diamond on diamond and other surfaces”, J. Cryst. Growth, 52 219 (1981).
[18]. C. Y. Wang, F. L. Zhang, T. C. Kuang, C. L. Chen, “ Chemical/mechanical polishing of diamond films assisted by molten mixture of LiNO and KNO33”, Thin Solid Films, 496 698 (2006).
[19]. Nevin N. Naguib, Jeffrey W. Elam, James Birrell, Jian Wang, David S. Grierson, Bernd Kabius, “Enhanced nucleation, smoothness and conformality of ultrananocrystalline diamond (UNCD) ultrathin films via tungsten interlayers”, Chemical Physics Letters, 430 345 (2006).
[20]. L. T. Sun, J. L. Gong, Z. Y. Zhu, D. Z. Zhu, S. X. He, Z. X. Wang, Y. Chen, “Nanocrystalline diamond from carbon nanotubes”, Applied Physics Letters, 84 (15), 2901 (2004).
[21]. P. W. May and Yu. A. Mankelevich, “Experiment and modeling of the deposition of ultrananocrystalline diamond films using hot filament chemical vapor deposition and Ar/CH4/H2 gas mixtures: A generalized mechanism for ultrananocrystalline diamond growth”, J. Appl. Phys. 100 024301 (2006).
[22]. L. Kreines, G. Halperin, I. Etsion, M. Varenberg, A. Hoffman, R. Akhvlediani, “Fretting wear of thin diamond films deposited on steel substrates”, Diamond and Related Materials, 13 1731 (2004).
[23]. C.K. Lee, “Wear-corrosion behavior of ultra-thin diamond-like carbon nitride films on aluminum alloy”, Diamond and Related Materials, 17 306 (2008).
[24]. J. Birrell, J. A. Carlisle, O. Auciello, D. M. Gruen, and J. M. Gibson, “ Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond”, Applied Physics Letters, 81 (12), 2235 (2002).
[25]. M. Nesladek, D. Tromson, Bergonzo, P. Hubik, P. Mares, J.J. Kristofik, J. Kindl, Gruen, D., “Low-temperature magnetoresistance study of electrical transport in N- and B-doped ultrananocrystalline and nanocrystalline diamond films”, Diamond & Related Materials, 15 (4) 607 (2006).
[26]. Yu-Fen Tzeng, Yen-Chih Lee, Chi-Young Lee, Hsin-Tien Chiu, I-Nan Lin, “Electron field emission properties on UNCD coated Si-nanowires”, Diamond and Related Materials, 17 753 (2008).
[27]. P. T. Joseph, N. H. Tai, Chi-Young Lee, H. Niu, W. F. Pong, and I. N. Lin, “ Field emission enhancement in nitrogen-ion-implanted ultrananocrystalline diamond films”, J. Appl. Phys. 103 043720 (2008).
[28]. T. Sharda and S. Bhattacharyya, “Advances in nanocrystalline diamond”, Encyclopedia of Nanoscience and Nanotechnology, X, I (2003).
[29]. S. Jiao, A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, “Microstructure of ultrananocrystalline diamond films grown by microwave Ar–CH4 plasma chemical vapor deposition with or without added H2”, Journal of Applied Physics, 90, 118 (2001).
[30]. Ferrari, Andrea Carlo / Robertson, John, “ Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 362 2477 (2004).
[31]. M. Veres, S. Toth, and M. Koos, “Grain boundary fine structure of ultrananocrystalline diamond thin films measured by Raman scattering”,Appl. Phys. Lett. 91 031913 (2007).
[32]. M. Veres, S. Toth, E. Perevedentseva, A.Karmenyan, M. Koos, “Raman Spectroscopy Of UNCD Grain Boundaries”,Volume . ISBN 978-1-4020-9915-1. Springer Netherlands, 2009, p. 115.
[33]. A. C. Ferrari and J. Robertson , “Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond”, Phys. Rev. B 63 121405(R) (2001).
[34]. James Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, D. M. Gruen, and J. A. Carlisle, “ Bonding structure in nitrogen doped ultrananocrystalline diamond”, J. Appl. Phys. 93 5606 (2003).
[35]. X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, and J. A. Carlisle, “Low temperature growth of ultrananocrystalline diamond”, Journal of Applied Physics, 96 (4) 2232 (2004).
[36]. D. Zhou, D. M. Gruen, L. C. Qin, T. G. McCauley, and A. R. Krauss, “Control of diamond film microstructure by Ar additions to CH4/H2 microwave plasmas”, Journal of Applied Physics, 84 (4) 1981 (1998).
[37]. P. Zapol, M. Sternberg, L. A. Curtiss, and D. M. Gruen, “Tight-binding molecular-dynamics simulation of impurities in ultrananocrystalline diamond grain boundaries”, Physical Review B, 65 045403 (2001).
[38]. Debabrata Pradhan, Li-Ju Chen, Yen-Chih Lee, Chi-Young Lee, Nyan-Hwa Tai, I-Nan Lin, “Effect of titanium metal in the prenucleation of ultrananocrystalline diamond film growth at low substrate temperature”, Diamond and Related Materials, 15 1779 (2006).
[39]. Peter K. Bachmann, Dieter Leers, Hans Lydtin, “Towards a general concept of diamond chemical vapour deposition”, Diamond and Related Materials, 1 1 (1991).
[40]. G. Balestrino, M. Marinelli, E. Milani, A. Paoletti, I. Pinter, and A. Tebano, “Growth of diamond films: General correlation between film morphology and plasma emission spectra”, Appl. Phys. Lett. 62, 879 (1993).
[41]. Y. Mitsuda, K. Tanaka, and T. Yoshida, Journal of Applied Physics, “In situ emission and mass spectroscopic measurement of chemical species responsible for diamond growth in a microwave plasma jet”, J. Appl. Phys. 67 3604 (1990).
[42]. C. J. Chu, R. H. Hauge, J. L. Margrave, and M. P. D'Evelyn, “Growth kinetics of (100), (110), and (111) homoepitaxial diamond films”, Appl. Phys. Lett. 61 1393 (1992).
[43]. Stephen J. Harris, “Gas-phase kinetics during diamond growth: CH4 as-growth species”, J. Appl. Phys. 65 3044 (1989).
[44]. Chao Liu, Xingcheng Xiao, Hsien-Hau Wang, Orlando Auciello, and John A. Carlisle , “Electron paramagnetic resonance study of hydrogen-incorporated ultrananocrystalline diamond thin films”, J. Appl. Phys. 101 123924 (2007).
[45]. M. Wiora, K. Bruhne, A. Floter, P. Gluche, T. M. Willey, S. O. Kucheyev, A. W. Van Buuren, H. J. Fecht, “Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD”, Diamond & Related Materials, 18 927 (2009).
[46]. S. J. Ray, G. M. Hieftje, “ Microwave plasma torch — atmospheric-sampling glow discharge modulated tandem source for the sequential acquisition of molecular fragmentation and atomic mass spectra ”, Analytica Chimica Acta, 445 (1) 35 (2001).
[47]. A. T. Sowers, B. L. Ward, S. L. Englih and R. J. Nemanich, “Field emission properties of nitrogen-doped diamond films”, J. Appl. Phys., 86 3937 (1999).
[48]. K. H. Chen, D. M. Bhusari, J. R. Yang, S. T. Lin, T. Y. Wang, L. C. Chen,“Highly transparent nano-crystalline diamond films via substrate pretreament and methane fraction optimization”, Thin Solid Films, 332 34 (1998).
[49]. D. A. Homer, L. A. Curtiss, and D. M. Gruen, “ A theoretical study of the energetics of insertion of dicarbon (C) and vinylidene into methane C-H bonds2”, Chemical Physics Letters, 233 243 (1995).
[50]. K. Subramaniana, W. P. Kanga, J. L. Davidsona, R. S. Takalkara, B. K. Choia, M. Howella and D.V. Kerns, “ Enhanced electron field emission from micropatterned pyramidal diamond tips incorporating CH/H/N plasma-deposited nanodiamond422”, Diamond and Related Materials, 15 1126 (2006).
[51]. T. K. Ku, C.D. Yang, F.G. Tarntair, C.C. Wang, H.C. Cheng, S.H. Chen, N.J. She, I. J. Hsieh, “Enhanced electron emission from phosphorus- and boron-doped diamond-clad Si field emitter arrays”, Thin Solid Films, 290 176 (1996).
[52]. Yongde Xia, Gavin S. Walker, David M. Grant, Mokaya, Robert , “Hydrogen storage in high surface area carbons: experimental demonstration of the effects of nitrogen doping”, Journal of the American Chemical Society, 131 16493 (2009).
[53]. H. Yoshikawa, C. Morel, and Y. Koga, “Synthesis of nanocrystalline diamond films using microwave plasma CVD Diamond and Related Materials”, 10 1588 (2001).
[54]. J. Lee, R. W. Collins, R. Messier, and Y. E. Strausser, “Low temperature plasma process based on CO-rich CO/H2 mixtures for high rate diamond film deposition”, Applied Physics Letters, 70 1527 (1997).
[55]. N. Jiang, K. Sugimoto, K. Nishimura, Y. Shintani, and A. Hiraki, “Synthesis and structural study of nano/micro diamond overlayer films”, Journal of Crystal Growth, 242 362 (2002).
[56]. T. Sharda, M. Vmeno, T. Soga, and T. Jimbo, “CJrowth of nanocrystalline diamond films by biased enhanced microwave plasma chemical vapor deposition: A different regime of growth”, Applied Physics Letters, 77 (26) 4304 (2000).
[57]. W. Zhu, G P. Kochanski, and S. Jin, “Low-field emission from undopednanostructured diamond”, Science, 282 1471 (1998).
[58]. A. Gohl, A. N. Alimova, T. Habennann, A. L. Mescheryakova, and G Huller,“Integral and local field emission analyses of nanodiamond coating for power applications”, J. Vac. Sci. Technol. B, 17 670 (1999).
[59]. J. E. Green, S. A. Barnett, J. E. Sundgren, and A. Rockett, “Plasma-surface Interactions And Processing Of Materials”, 28-31(1990).
[60]. X. Jiang, C. P. Klages, R. Zachai, M. Hartweg, and H. J. Fusser, “Epitaxial diamond thin films on (001) silicon substrate”, Appl. Phys. Lett., 62 3438 (1993).
[61]. S. Iijima, Y. Aikawa, and K. Baba, “Early formation of chemical vapor deposition diamond films”, Applied Physics Letters, 57 (25) 2646 (1990).
[62]. Zhidan Li, Long Wang, Tetsuya Suzuki, and Pirouz, “Orientation relationship between chemical vapor deposited diamond and graphite substrates”, Journal of Applied Physics, 73(2) 711 (1993).
[63]. D. N. Belton, S. J. Harris, S. J. Schmieg, A. M. Wiener, and T. A. Perry, “In situ characteristic of diamond nucleation and growth”, Applied Physics Letters, 54 (5) 416 (1989).
[64]. N. Jiang, B. W. Sun, Z. Zhang, and Z. Lin, “Nucleation and initial growth of diamond film on Si substrate”, Journal of Materials Research, 9 (10) 2695 (1994).
[65]. W. L. Wang, K. J. Liao, L. Fang, J. Esteve, M. C. Polo, “Analysis of diamond nucleation on molybdenum by biased hot filament chemical vapor deposition”, Diamond and Related Materials, 10 383 (2001).
[66]. S. Yugo, T. Kanai, T. Kimura, and T. Muto, “Generation of diamond nuclei by electric field in plasma chemical vapor deposition”, Applied Physics Letters, 58 (10) 1036 (1991).
[67]. B. R. Stoner, G.-H. M. Ma, S. D. Wolter, and J. T. Glass, “ Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy”, Phys. Rev. B, 45 11067 (1991).
[68]. J. Gerber, S. Sattel, H. Ehrhardt, J. Robertson, P. Wurzinger, and P. Pongratz, “Investigation of bias enhanced nucleation of diamond on ilicon”, Journal of Applied Physics, 79 (8) 4388 (1996).
[69]. P. Reinke and P. Oelhafen, “Photoelectron spectroscopic investigation of the bias-enhanced nucleation of polycrystalline diamond films” , Physical Review B, 56 (4) 2183 (1997).
[70]. R. Stockel, K. Janischowsky, S. Rohmfeld, J. Ristein, M. Hundhausen, and L. Ley, “Growth of diamond on silicon during the bias pretreatment in chemical vapor deposition of polycrystalline diamond films”, Journal of Applied Physics, 79 768 (1996).
[71]. R. Stockel, M. Stammler, K. Janischowsky, and L. Ley, “Diamond nucleation under bias conditions”, J. Appl. Phys. 83 531 (1998).
[72]. J. Robertson, J. Gerber, S. Sattel, M. Weiler, K. Jung, and H. Ehrhardt, “Mechanism of bias-enhanced nucleation of diamond on Si”, Applied Physics Letters, 66 (24) 3287 (1995).
[73]. S. P. McGinnis, M. A. Kelly, and S. B. Hagstrom, “Evidence of an energetic ion bombardment mechanism for bias-enhanced nucleation of diamond”, Applied Physics Letters, 66 (23) 3117 (1995).
[74]. L. J. Huang, I. Bello, W. M. Lau, S. T. Lee, P. A. Stevens, and B. D. DeVries, “Synchrotron radiation x-ray absorption of ion bombardment induced defects on diamond(100) ”, Journal of Applied Physics 76 (11) 7483 (1994).
[75]. S. Barrat, S. Saada, I. Dieguez, and E, Bauer-Grosse, “Diamond deposition by chemical vapor deposition process: Study of the bias enhanced nucleation step”. Journal of Applied Physics 84 (4) 1870 (1998).
[76]. J. H. Je and G. Y. Lee, “Microstructures of diamond films deposited on (100) silicon wafer by microwave plasma-enhanced chemical vapor- deposition”, Journal of Materials Science, 27 (23) 6324 (1992).
[77]. W. Zhu, “Vacuum microelectronics”, John Wiley & Sons (2001).
[78]. I. Han, N. Lee, S. W. Lee, S. H. Kim, “Field emission of nitrogen-doped diamond films”, J. Vac. Sci. Technol. B, 16(4), 2052 (1998).
[79]. W. Zhu, G. P. Kochanski, S. Jin, “Low-Field Electron Emission from Undoped Nanostructured Diamond”, SCIENCE, 282, 1471 (1998).
[80]. Chiharu Kimura, Satoshi Koizumi, Mutsukazu Kamo, Takashi Sugino, “Behavior of electron emission from phosphorus-doped epitaxial diamond films”, Diamond and Related Materials, 8, 759 (1999).
[81]. Robert Gomer, Field emission and field ionization, American Institute of Physics, 21~29 (1993).
[82]. V. Baranauskas, B. B. Li, A. Peterlevitz, M. C. Tosin, and S. F. Durrant, “Nitrogen-doped diamond films”, J. Appl. Phys., 85, 7455 (1999).
[83]. S. B. Wang, H. X. Zhang, P. Zhu, and K. Feng, “Structural and electrical properties of chemical vapor deposited diamond films doped by B+ implantation”, J. Vac. Sci. Technol. B, 18(4), 1997 (2000).
[84]. W. B. Choi, J. J. Cuomo, V. V. Zhirnov, A. F. Myers and J. J. Hren, “ Field emission from silicon and molybdenum tips coated with diamond powder by dielectrophoresis”, Appl. Phys. Lett., 68, pp720 (1996).
[85]. I-Nan Lin, Kuoguang Preng, Lien-Hsin Lee, Chuan-Feng Shih, and Kuo-Shung Liu, “Comparison of the effect of boron and nitrogen incorporation on the nucleation behavior and electron-field-emission properties of chemical-vapor-deposited diamond films”, Appl. Phys. Lett, 77, 1277 (2000).
[86]. X. Jiang, P Willich, M. Paul, and C-P. Klages, “In situ boron doping of chemical-vapor-deposited diamond films”, Journal of Materials Research, 14, 3211 (1999).
[87]. Z. H. Huang, P. H. Culter, N. M. Miskovsky, and T. E. Sullivan, “Theoretical-Study of Field-Emission from Diamond”, Appl. Phys. Lett., 65, 2562 (1994).
[88]. V. V. Zhirnov, E. I. Givargizov, and P. S. Plekhanov, “Field-Emission from Silicon Spikes with Diamond Coatings”, J. Vac, Sci. Technol, B 13, 418 (1995).
[89]. D. A. Buck and K. R. Shoulders, “An approach to microminiature systems”, in Proc. Eastern Joint Computer Conf., pp55-59 (AIEE, New York (1958).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-08-09公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-08-09起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信