淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-0408200915584800
中文論文名稱 塑化聚乳酸/改質蒙脫土奈米複合材料的製備與性質
英文論文名稱 Preparation and Characterization of Plasticized Polylactide-Layered Silicate Nanocomposites
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 97
學期 2
出版年 98
研究生中文姓名 吳昇晃
研究生英文姓名 Sheng-Huang Wu
學號 696401370
學位類別 碩士
語文別 中文
口試日期 2009-07-28
論文頁數 143頁
口試委員 指導教授-董崇民
委員-陳慶鐘
委員-董崇民
委員-賴森茂
委員-鄭國忠
委員-林達鎔
中文關鍵字 蒙脫土  聚乳酸  奈米複合材料  熔融插層 
英文關鍵字 Montmorillonite  Polylactide  Nanocomposites  melt-intercalation 
學科別分類
中文摘要 本研究以熔融插層法藉由混煉機製備聚乳酸/蒙脫土奈米複合材料。以聚氧乙烯山梨糖脂肪酸酯-80 (T80)與二異氰酸異佛爾酮 (IPDI)反應合成插層劑(T80-NH3+)。之後直接將聚乳酸(PLA)、T80-NH3+以及未改質蒙脫土(PK802)用混煉機製備PLA-T80-NH3+-PK802複合材料並與利用改質蒙脫土(Cloisite30B)摻混聚乳酸之複合材料作比較。製備出的複合材料將進行拉力,XRD、TEM、TGA以及DMA的測試,結果發現當PLA加入1 phr Cloisite 30B的含量時,會有塑化的效果,使伸長率上升至208%;以Halpin-Tasi及Mori-Tanaka理論計算得到PLA在加入Cloisite 30B後所得到的蒙脫土片層數為8~15,而此結果是正好符合TEM圖的8~9片;而當PLA直接加入T80-NH3+及PK802各3 phr 的含量時,層間距由純黏土之1.24nm上升至4.93nm,但在加入T80-NH3+及PK802後,高溫會使得T80-NH3+結構上的正電荷與PLA反應而導致裂解;且PK802層間距中所吸附的水層在高溫下也會導致PLA的水解。
英文摘要 In this research, an inorgainic-organic nanocomposite material (PLA /montmorillonite) was prepared by melt intercalation method using a mixer. A kind of modifier called T80-NH3+ was synthesized with Tween80 and IPDI. PLA-T80-NH3+PK802 composites were prepared by pouring PLA、T80-NH3+ and Na+-MMT into a mixer in sequence. Besides, the product will be compared with PLA-C30B-(1 or 3 or 5 or 7phr). By means of some tests, take XRD,TEM、TGA and DMA for example, it was found that the addition of 1 phr Cloisite 30B caused the so-called ‘‘ plasticization effect ’’ which promote the elongation at break to 208%; We could get the numbers of montmorillonite platelet of PLA-Cloisite 30B composites which was calculated by Halpin-Tasi and Mori-Tanaka equations is between eight and fifteen, the result just match the TEM scheme which the numbers of montmorillonite platelet is between eight and nine. The composite of the PLA-T80-NH3+-3-PK802-3 has good ratio of T80-NH3+ to PK802 which result in expansion of the inter-lamellar space from 1.24nm to 4.93nm. A drawback which the structure of T80-NH3+ with the positive charge and the inter-lamellar space of PK802 with water layers lead to the thermal decomposition of PLA appears when the material was prepared.
論文目次 總目錄
中文摘要 I
英文摘要 III
總目錄 V
圖目錄 VII
表目錄 XI
第一章 序論 1
第二章 基礎理論 3
2.1生物可分解聚酯類高分子 3
2.2 蒙脫土的結構性質與分析 4
2.3 高分子複合材料 7
2.3.1 傳統複合材料 7
2.3.2 插層型複合材料 7
2.3.3 剝離型複合材料 7
2.3.4 部分插層及部分剝離型複合材料 8
2.4 以理論公式預測蒙脫土分散於高分子中的行為模式( Modeling ) 13
2.5 X光繞射法原理 21
第三章 實驗材料與方法 25
3.1 實驗藥品 25
3.2 實驗儀器 27
3.3 實驗步驟 29
3.3.1 反應前處理及配置 29
3.3.2 插層劑T80-NH3+之合成 30
3.3.3 蒙脫土之插層過程 32
3.3.4 製備高分子奈米複合材料 33
3.4 材料測試與分析 35
3.4.1 熱壓機製膜 35
3.4.2 拉力性質測試 35
3.4.3 熱重損失測試(TGA) 36
3.4.4 動態機械分析儀測試(DMA) 36
3.4.5 傅利葉轉換紅外線光譜儀(FTIR) 37
3.4.6 X光繞射分析儀(XRD) 37
3.4.7 場發射高解析穿透式電子顯微鏡 (HRTEM) 39
第四章 結果與討論 40
4.1傅利葉轉換紅外線光譜測試 40
4.2 Tween80與IPDI的反應機制 52
4.3 以X光繞射分析儀(XRD)及場發射高解析穿透式電子顯微鏡 63
4.4 拉力性質測試 (Tensile Test) 77
4.5 拉力性質理論計算 84
4.6 熱重損失測試(TGA) 87
4.7 動態機械分析儀測試(DMA) 94
4.8 動態機械分析儀理論計算 100
4.9 結論 110
第五章 參考文獻 112
建議事項 117
附錄 118
附錄1.1 示差微分掃瞄卡計量測(DSC) 118
附錄1.2熱重損失測試(TGA) 125
附錄1.3 結構鑑定及拉力性質測試 130
附錄1.4 聚乳酸接枝馬來酸酐(PLA-MA)的製備與檢定 137










圖目錄
圖2.1高分子量聚乳酸合成示意圖 3
圖2.2蒙脫土結構示意圖 4
圖2.3 HEMA與IPDI的反應示意圖 6
圖2.4 H-HTPI與I-IPDI的化學結構示意圖 7
圖2.5高分子複合材料示意圖: (a)傳統相容, (b)部分插層及剝離, (c)完全插層及
分散, (d)完全剝離及分散 8
圖2.6根據(a) Halpin-Tasi 和(b) Mori-Tanaka 兩個方程式來計算高分子複合材
料在加入不同幾何形狀的蒙脫土後,剛硬性的變化 18
圖2.7不同長徑比(Aspect ratio)的Disk-like Platelet幾何形狀 19
圖2.8高分子奈米複合材料迂迴路徑形成的示意圖 20
圖2.9晶粒繞射的示意圖 22
圖2.10晶粒繞射的曲線圖 23
圖3.1 不同時間下Tween80所測之水損失重 26
圖3.2 以Tween80與IPDI反應合成T80-NH3+的過程示意圖 31
圖3.3不同時間下T80-NH3+所測之水損失重 31
圖3.4製備高分子奈米複合材料之流程圖 34
圖3.5熱壓製膜之示意圖 35
圖3.6製備啞鈴狀拉力試片之示意圖 36
圖4.1 Tween80和IPDI反應前後之紅外線光譜圖,反應溫度為50oC,催化劑(T12)濃度為0.1wt% 41
圖4.2 Tween80和IPDI反應前後之紅外線光譜圖,反應溫度為50oC,催化劑(T12)濃度為0.05wt% 42
圖4.3 Tween80和IPDI反應前後之紅外線光譜圖,反應溫度為50oC,催化劑(T12)濃度為0.1wt% 43
圖4.4 Tween80和IPDI反應前後之紅外線光譜圖,反應溫度為50oC,催化劑(T12)濃度為1wt% 44
圖4.5 Tween80和IPDI反應前後之紅外線光譜圖,反應溫度為50oC,未加入催化劑 45
圖4.6 Tween80和IPDI反應前後之紅外線光譜圖,反應溫度為30oC,催化劑(T12)濃度為0.1wt% 46
圖4.7以GRAMS/AI軟體對波峰作面積積分 50
圖4.8在不同催化劑濃度下的異氰酸酯基團轉化率曲線圖 51
圖4.9在不同反應溫度下的異氰酸酯基團轉化率曲線圖 51
圖4.10 T12(0.1wt%)-30oC的二級反應速率定律式圖 55
圖4.11 T12(0.1wt%)-50oC的二級反應速率定律式圖 56
圖4.12 T12(0.05wt%)-50oC的二級反應速率定律式圖 56
圖4.13 T12(1wt%)-50oC的二級反應速率定律式圖 57
圖4.14 T12(None)-50oC的二級反應速率定律式圖 57
圖4.15 在不同溫度及不同催化劑濃度下的二級反應速率定律式圖 58
圖4.16 以lnk對1/T作圖,求得活化能(Ea) 59
圖4.17 NCO基團轉化率的理論及實驗曲線圖-T12(0.05wt%)-50oC 60
圖4.18 NCO基團轉化率的理論及實驗曲線圖-T12(0.1wt%)-50oC 60
圖4.19 NCO基團轉化率的理論及實驗曲線圖-T12(1wt%)-50oC 61
圖4.20 NCO基團轉化率的理論及實驗曲線圖-T12(0.1wt%)-30oC 61
圖4.21 NCO基團轉化率的理論及實驗曲線圖-T12(None)-50oC 62
圖4.22 NCO基團轉化率的理論及實驗曲線圖-T12(0.1wt%)-30oC and T12(0.1wt%)-50oC 62
圖4.23 以Tween80分子結構推算層間距 67
圖4.24 未改質蒙脫土(PK802)及改質蒙脫土(Cloisite30B, T80-NH3+-PK802)之
XRD圖 67
圖4.25 PLA-C30B-(1 or 3 or 5 or 7phr)之XRD圖 68
圖4.26 PLA-T80-NH3+-(1 or 3 or 5 or 7phr)之XRD圖 68
圖4.27 PLA-T80-NH3+-(1 or 3 or 5 or 7phr)-PK802-(1 or 3 or 5 or 7phr)之
XRD圖 69
圖4.28 比較PLA-T80-NH3+-5-PK802-5與PLA-T80-OH-5-PK802-5之
XRD圖 69
圖4.29 PLA-T80-NH3+-PK802-(1 or 3 or 5 or 9phr)之XRD圖 70
圖4.30 改質蒙脫土1CEC-T80-NH3+- PK802之TEM圖[(a)~ (c)] 72
圖4.31 改質蒙脫土Cloisite 30B之TEM圖[(a)~ (b)] 73
圖4.32 PLA-C30B-5在不同倍率下之TEM圖[(a)~(f)] 76
圖4.33 PLA-C30B-(1 or 3 or 5 phr)的楊氏係數圖 79
圖4.34 PLA-C30B-(1 or 3 or 5 phr)的伸長率圖 79
圖4.35 PLA-C30B-(1 or 3 or 5 phr)的斷裂強度圖 80
圖4.36 PLA-C30B-(1 or 3 or 5 phr)的降伏強度圖 80
圖4.37 PLA-C30B-(1 or 3 or 5 phr)拉力測試後的樣品 81
圖4.38 PLA-10min.的拉力測試圖 82
圖4.39 PLA-C30B-1的拉力測試圖 82
圖4.40 PLA-C30B-3的拉力測試圖 83
圖4.41 PLA-C30B-5的拉力測試圖 83
圖4.42蒙脫土在經過插層後之示意圖 85
圖4.43以Halpin-Tasi equations推論奈米複合材料中Cloisite 30B的片層數 86
圖4.44以Mori-Tanaka equations推論奈米複合材料中Cloisite 30B的片層數 86
圖4.45 T80-NH3+結構催化了PLA結構的降解(m > n) 88
圖4.46 Na+-MMT結構催化了PLA結構的降解(m > n) 89
圖4.47 PLA-C-30B-(1 or 3 or 5 or 7phr)的TGA圖 89
圖4.48 PLA- C30B-(1 or 3 or 5 or 7phr)的DTG圖 90
圖4.49 PLA-T80-NH3+-(1 or 3 or 5 or 7phr)的TGA圖 91
圖4.50 PLA-T80-NH3+-(1 or 3 or 5 or 7phr)的DTG圖 91
圖4.51 PLA-T80-NH3+-(1 or 3 or 5 or 7phr)-PK802-(1 or 3 or 5 or 7phr)的
TGA圖 92
圖4.52 PLA-T80-NH3+-(1 or 3 or 5 or 7phr)-PK802-(1 or 3 or 5 or 7phr)的
DTG圖 92
圖4.53 PLA-C30B-(1 or 3 or 5 phr)的Tan delta圖 95
圖4.54 PLA-C30B-(1 or 3 or 5 phr)的儲存模數圖 96
圖4.55 PLA-T80-NH3+-(1 or 3 or 5 or 7phr)的Tan delta圖 97
圖4.56 PLA-T80-NH3+-(1 or 3 or 5 or 7phr)的儲存模數圖 97
圖4.57 PLA-T80-NH3+-(1 or 3 or 5 or 7phr)-PK802-(1 or 3 or 5 or 7phr)的
Tan delta圖 98
圖4.58 PLA-T80-NH3+-(1 or 3 or 5 or 7phr)-PK802-(1 or 3 or 5 or 7phr)的儲存模數
圖 98
圖4.59 [(a)~(c)] 當aspect ratio = 2時,以Halpin-Tasi equations推論PLA-C30B-(1
or 3 or 5 phr)的實驗結果 103
圖4.60 [(a)~(c)] 當aspect ratio = 3時,以Halpin-Tasi equations推論PLA-C30B-(1
or 3 or 5 phr)的實驗結果 105
圖4.61 [(a)~(c)] 當aspect ratio = 4時,以Halpin-Tasi equations推論PLA-C30B-(1
or 3 or 5 phr)的實驗結果 107
圖4.62 [(a)~(c)] 當aspect ratio = 5時,以Halpin-Tasi equations推論PLA-C30B-(1
or 3 or 5 phr)的實驗結果 109
附錄圖1 PLA-C30B-(1 or 3 or 5 or 7phr)複合材料第一次升溫程序的DSC圖 118
附錄圖2 PLA-C30B-(1 or 3 or 5 or 7phr)複合材料第二次升溫程序的DSC圖 119
附錄圖3 PLA-C30B-(1 or 3 or 5 or 7phr)複合材料第一次冷結晶程序的DSC圖 119
附錄圖4 PLA-T80-NH3+-(1 or 3 or 5 or 7phr)複合材料第一次升溫程序的
DSC圖 120
附錄圖5 PLA-T80-NH3+-(1 or 3 or 5 or 7phr)複合材料第二次升溫程序的
DSC圖 121
附錄圖6 PLA-T80-NH3+-(1 or 3 or 5 or 7phr) 複合材料第一次冷結晶程序的
DSC圖 121
附錄圖7 PLA-T80-NH3+-(1 or 3 or 5 or 7phr)-PK802-(1 or 3 or 5 or 7phr) 複合材料
第一次升溫程序的DSC圖 122
附錄圖8 PLA-T80-NH3+-(1 or 3 or 5 or 7phr)-PK802-(1 or 3 or 5 or 7phr) 複合材料
第二次升溫程序的DSC圖 123
ATRX-Q03-001-FM031-01
X
附錄圖9 PLA-T80-NH3+-(1 or 3 or 5 or 7phr)-PK802-(1 or 3 or 5 or 7phr) 複合材料
第一次冷結晶程序的DSC圖 123
附錄圖10 插層蒙脫土(T80-NH3+-PK802)經由水洗1次或3次後的TGA圖 125
附錄圖11 插層蒙脫土(T80-NH3+-PK802)經由水洗1次或3次後的DTG圖 126
附錄圖12 Tween80的TGA圖 127
附錄圖13 Tween80的DTG圖 128
附錄圖14未改質蒙脫土(PK802)的TGA圖 128
附錄圖15未改質蒙脫土(PK802)的DTG圖 129
附錄圖16 Biomax之FTIR測試 131
附錄圖17 Biomax之1H譜測試 132
附錄圖18 Biomax之13C譜測試 132
附錄圖19聚乳酸加入不同含量Biomax之楊氏係數 133
附錄圖20聚乳酸加入不同含量Biomax及Cloisite 30B之楊氏係數 133
附錄圖21聚乳酸加入不同含量Biomax之斷裂伸長率 134
附錄圖22聚乳酸加入不同含量Biomax及Cloisite 30B之斷裂伸長率 134
附錄圖23聚乳酸加入不同含量Biomax之降伏強度 135
附錄圖24聚乳酸加入不同含量Biomax及Cloisite 30B之降伏強度 135
附錄圖25聚乳酸加入不同含量Biomax之斷裂強度 136
附錄圖26聚乳酸加入不同含量Biomax及Cloisite 30B之斷裂強度 136
附錄圖27聚乳酸(2002D)接枝馬來酸酐之1H譜圖 143
附錄圖28聚乳酸(sigma aldrich)接枝馬來酸酐之1H譜圖 143

表目錄
表2.1 在某些論點假設下,理論公式計算與實際情形的差異之處 19
表3.1 XRD儀器在不同模式下掃描時,繞射角變化的情形 38
表4.1 Tween80接枝IPDI之特性吸收峰 46
表4.2 不同反應溫度及不同催化劑濃度下的速率常數(k1,k2)值 58
表4.3 不同反應溫度及不同催化劑濃度下的速率常數(k)值及活化能 59
表4.4 PLA-C30B-(1, 3, 5, 7phr)的Td值 90
表4.5 PLA-T80-NH3+-(1 or 3 or 5 or 7phr)及PLA-T80-NH3+-(1 or 3 or 5 or
7phr)-PK802(1 or 3 or 5 or 7phr)之Td值 93
表4.6 PLA-C30B-(1 or 3 or 5 phr)的DMA數值 96
表4.7 PLA-T80-NH3+-(1 or 3 or 5 or 7phr)及PLA-T80-NH3+-(1 or 3 or 5 or
7phr)-PK802-(1 or 3 or 5 or 7phr)的DMA數值 99
附錄表1 不同複合材料第一次升溫程序時的DSC數值 124
附錄表2 不同複合材料第二次升溫程序時的DSC數值 124
附錄表3 改質蒙脫土在T80-NH3+插層後的層間距大小及成分的含量 126
附錄表4 聚乳酸以熔融法接枝馬來酸酐之接枝率 140
附錄表5 聚乳酸以溶液法接枝馬來酸酐之接枝率 141
參考文獻 1. T.D. Fornes and D.R. Paul, Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer, 2003. 44(17): p. 4993-5013.
2. T.D. Fornes, Polyamide – Layered Silicate Nanocomposites by Melt Processing, in Chem. Engng. 2003, University of Texas: Austin. p. 414-416.
3. P. Bordes, E. Pollet, and L. Avérous, Nano-biocomposites: Biodegradable polyester/nanoclay systems. Progress in Polymer Science (Oxford), 2009. 34(2): p. 125-155.
4. 工業材料雜誌, 2007, 9月. 249期.
5. L. Aveous, B. Mohamed Naceur, and G. Alessandro, Polylactic Acid: Synthesis, Properties and Applications. Monomers, Polymers and Composites from Renewable Resources, 2008: p. 433-450.
6. Jiang-Jen Lin and Yu-Min Chen, Amphiphilic properties of poly(oxyalkylene)amine-intercalated smectite aluminosilicates. Langmuir, 2004. 20(10): p. 4261-4264.
7. Chih-Cheng Chou, Yu-Chung Chang, Ming-Li Chiang, and Jiang-Jen Lin, Conformational change of trifunctional poly(oxypropylene)amines intercalated within a layered silicate confinement. Macromolecules, 2004. 37(2): p. 473-477.
8. Jiang-Jen Lin, Yen-Chi Hsu, and Chih-Cheng Chou, Copolymer-layered silicate hybrid surfactants from the intercalation of montmorillonite with amphiphilic copolymers. Langmuir, 2003. 19(13): p. 5184-5187.
9. Jiang-Jen Lin, I-Jein Chen, and Chih-Cheng Chou, Critical conformational change of poly(oxypropylene)diamines in layered aluminosilicate confinement. Macromolecular Rapid Communications, 2003. 24(8): p. 492-495.
10. Chih-Cheng Chou, Fuh-Sheng Shieu, and Jiang-Jen Lin, Preparation, organophilicity, and self-assembly of poly(oxypropylene)amine-clay hybrids. Macromolecules, 2003. 36(7): p. 2187-2189.
11. Jiang-Jen Lin, I-Jein Cheng, Renchain Wang, and Rong-Jer Lee Tailoring basal spacings of montmorillonite by poly(oxyalkylene)diamine intercalation. Macromolecules, 2001. 34(26): p. 8832-8834.
12. Kuo-Huai Kuo, Yu-Hsiang Peng, Wen-Yen Chiu, and Trong-Ming Don, A novel dispersant for preparation of high loading and photosensitive carbon black dispersion. Journal of Polymer Science, Part A: Polymer Chemistry, 2008. 46(18): p. 6185-6197.
13. F. Burel, A. Feldman, and C. Bunel, Hydrogenated hydroxy-functionalized polyisoprene (H-HTPI) and isocyanurate of isophorone diisocyanates (I-IPDI): Reaction kinetics study using FTIR spectroscopy. Polymer, 2005. 46(1): p. 15-25.
14. Jyi-Jiin Luo and Isaac M. Daniel, Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Composites Science and Technology, 2003. 63(11): p. 1607-1616.
15. Marie-Amélie Paul, Cécile Delcourt, Micaël Alexandre, Philippe Degée, Fabien Monteverde, André Rulmont, and Philippe Dubois, (Plasticized) polylactide/(organo-)clay nanocomposites by in situ intercalative polymerization. Macromolecular Chemistry and Physics, 2005. 206(4): p. 484-498.
16. M. Pluta, A. Galeski, M. Alexandre, M.-A. Paul, and P. Dubois, Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: Structure and some physical properties. Journal of Applied Polymer Science, 2002. 86(6): p. 1497-1506.
17. Suprakas Sinha Ray, Pralay Maiti, Masami Okamoto, Kazunobu Yamada, and Kazue Ueda, New polylactide/layered silicate nanocomposites. 1. Preparation, characterization, and properties. Macromolecules, 2002. 35(8): p. 3104-3110.
18. Hwan-Man Park, Xuemei Liang, Amar K. Mohanty, Manjusri Misri, and Lawrence T. Drzal, Effect of compatibilizer on nanostructure of the biodegradable cellulose acetate/organoclay nanocomposites. Macromolecules, 2004. 37(24): p. 9076-9082.
19. Ki Hyun Wang, Min Ho Choi, Chong Min Koo, Yeong Suk Choi, and In Jae Chung, Synthesis and characterization of maleated polyethylene/clay nanocomposites. Polymer, 2001. 42(24): p. 9819-9826.
20. Y. Dong, D. Bhattacharyya, and P.J. Hunter, Experimental characterisation and object-oriented finite element modelling of polypropylene/organoclay nanocomposites. Composites Science and Technology, 2008. 68(14): p. 2864-2875.
21. G.P. Tandon and G.J. Weng, The Effect of Aspect Ratio of Inclusions on the Elastic Properties of Unidirectionally Aligned Composites. Polymer Composites, 1984. 5(4): p. 327-333.
22. George Socrates, Infrared and Raman Characteristic Group Frequencies. 2001. third edition, John Wiley and L. Son.
23. Suprakas Sinha Ray, Kazunobu Yamada, Masami Okamoto, Youhei Fujimoto, Akinobu Ogami, and Kazue Ueda, New polylactide/layered silicate nanocomposites. 5. Designing of materials with desired properties. Polymer, 2003. 44(21): p. 6633-6646.
24. B.D. Cullity and B. Dennis., Element of X-RAY Diffraction. 1978. second edition: p. 99-103.
25. Debra D. Wright-Charlesworth, Darinda M. Miller, Ibrahim Miskioglu, and Julia A. King, Nanoindentation of injection molded PLA and self-reinforced composite PLA after in vitro conditioning for three months. Journal of Biomedical Materials Research - Part A, 2005. 74(3): p. 388-396.
26. E.K. Gamstedt and K.M. Almgren, Natural Fibre Composites-With Special Emphasis on Effects of the Interface Between Cellulosic Fibres and Polymers. Proceedings of the 28th Risø International Symposium on Materials Science, 2007: p. 1-20.
27. Southern Clay Products, Inc.
28. Jyh-Horng Wang, Tai-Horng Young, Dar-Jong Lin, Min-Kuei Sun, Han-Shiang Huag, and Liao-Ping Cheng, Preparation of clay/PMMA nanocomposites with intercalated or exfoliated structure for bone cement synthesis. Macromolecular Materials and Engineering, 2006. 291(6): p. 661-669.
29. S. Désilets, S. Villeneuve, M. Laviolette, and M. Auger, 13C-NMR spectroscopy study of polyurethane obtained from azide hydroxyl-terminated polymer cured with isophorone diisocyanate (IPDI). Journal of Polymer Science, Part A: Polymer Chemistry, 1997. 35(14): p. 2991-2998.
30. M. Rochery, I. Vroman, and T.M. Lam, Kinetic model for the reaction of IPDI and macrodiols: Study on the relative reactivity of isocyanate groups. Journal of Macromolecular Science - Pure and Applied Chemistry, 2000. 37 A(3): p. 259-275.
31. Hans Götz, Uwe Beginn, Camiel F. Bartelink, Henri J. M. Grünbauer, and Martin Möller, Preparation of isophorone diisocyanate terminated star polyethers. Macromolecular Materials and Engineering, 2002. 287(4): p. 223-230.
32. J. L. Han, C. H. Yu, Y. H. Lin, K. H. Hsieh, Kinetic study of the urethane and urea reactions of isophorone diisocyanate. Journal of Applied Polymer Science, 2008. 107(6): p. 3891-3902.
33. R. Weidisch, G. H. Michler, M. Arnold, S. Hofmann, M. Stamm, and R. Jérôme, Synergism for the improvement of tensile strength in block copolymers of polystyrene and poly(n-butyl methacrylate). Macromolecules, 1997. 30(25): p. 8078-8080.
34. Sang-Rock Lee, Hwan-Man Park, Hyuntaek Lim, Taekyu Kang, Xiucuo Li, Won-Jei Cho, and Chang-Sik Ha, Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites. Polymer, 2002. 43(8): p. 2495-2500.
35. S. Y. Lee, H. Chen, and M.A. Hanna, Preparation and characterization of tapioca starch-poly(lactic acid) nanocomposite foams by melt intercalation based on clay type. Industrial Crops and Products, 2008. 28(1): p. 95-106.
36. Chang Jin-Hae, Yeong Uk An, and G.S. Sur, Poly(lactic acid) Nanocomposites with Various Organoclays. I. Thermomechanical Properties, Morphology, and Gas Permeability. Journal of Polymer Science, Part B: Polymer Physics, 2003. 41(1): p. 94-103.
37. N. Aït Hocine, P. Médé ric, and T. Aubry, Mechanical properties of polyamide-12 layered silicate nanocomposites and their relations with structure. Polymer Testing, 2008. 27(3): p. 330-339.
38. Natalia V. Pogodina, Claire Cerclé, Luc Avérous, Ralph Thomann, Michel Bouquey, and René Muller, Processing and characterization of biodegradable polymer nanocomposites: Detection of dispersion state. Rheologica Acta, 2008. 47(5-6): p. 543-553.
39. Jong-Whan Rhim, Seok-In Hong, and Chang-Sik Ha, Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT - Food Science and Technology, 2009. 42(2): p. 612-617.
40. Jeffrey W. Gilman, Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Applied Clay Science, 1999. 15(1-2): p. 31-49.
41. Marie-Amélie Paul, Michaël Alexandre, Philippe Degée, Catherine Henrist, André Rulmont, Philippe Dubois, New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer, 2003. 44(2): p. 443-450.
42. A.R. McLauchlin and N.L. Thomas, Preparation and thermal characterisation of poly(lactic acid) nanocomposites prepared from organoclays based on an amphoteric surfactant. Polymer Degradation and Stability, 2009. 94(5): p. 868-872.
43. Q. Zhou and M. Xanthos, Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides. Polymer Degradation and Stability, 2009. 94(3): p. 327-338.
44. M. -A. Paul, C. Delcourt, M. Alexandre, Ph. Degée,F.Monteverde, Ph. Dubois, Polylactide/montmorillonite nanocomposites: Study of the hydrolytic degradation, Polymer Degradation and Stability, 2009. 87(3): p. 535-542.
45. Hongbo Zhai, Weibing Xu, Hanyang Guo, Zhengfa Zhou, Shijun Shen, Qiusheng Song, Preparation and characterization of PE PE-g-MAH/montmorillonite nanocomposites, European Polymer Journal, 2004. 40(11): p. 2539-2545.
46. Xiaohui Liu, Qiuju Wu, Lars A. Berglund, Polymorphism in polyamide 66/clay nanocomposites, Polymer, 2002. 43(18): p. 4967-4972.
47. Pralay Maiti, Kazunobu Yamada, Masami Okamoto, Kazue Ueda, and Kazuaki Okamoto, New Polylactide/Layered Silicate Nanocomposites: Role of Organoclays, Chem. Mater., 2002. 14(11): p. 4654-4661.
48. Pham Hoai Nam, Masahiro Kaneko, Naoya Ninomiya, Atsuhiro Fujimori, Toru Masuko, Melt intercalation of poly(L-lactide) chains into clay galleries, Polymer, 2005. 46(18): p. 7403-7409.
49. Mitsuhiro Shibata, Yoshihiro Someya, Masato Orihara, Masanao Miyoshi, Thermal and Mechanical Properties of Plasticized Poly(L-lactide) Nanocomposites with Organo-Modified Montmorillonites , Journal of Applied Polymer Science, 2006. 99(5): p. 2594-2602.
50. Li-Huei Lin, Hsin-Jiant Liu, Neng-Kai Yu, Morphology and Thermal Properties of Poly(L-lactic acid)/ Organoclay Nanocomposites, Journal of Applied Polymer Science, 2007. 106(1): p. 260-266.

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2010-08-11公開。
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信