§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0407201811321600
DOI 10.6846/TKU.2018.00107
論文名稱(中文) 週期性均勻介質物體於非平坦表面下之微波成像
論文名稱(英文) Microwave Imaging of a Periodic Homogeneous Dielectric Object Buried in Rough Surfaces
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 106
學期 2
出版年 107
研究生(中文) 李岡澤
研究生(英文) Gang-Ze Lee
學號 605440162
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2018-06-20
論文頁數 55頁
口試委員 指導教授 - 丘建青(chiu@ee.tku.edu.tw)
委員 - 林丁丙(dblin@mail.ntust.edu.tw)
委員 - 方文賢(whf@mail.ntust.edu.tw)
關鍵字(中) 微波成像
非平坦週期性表面
介質物體
動差法
自我適應之差異型演化法
關鍵字(英) Microwave Imaging
Periodic Rough Surfaces
Method of Moment
Self-Adaptive Dynamic Differential Evolution (SADDE)
第三語言關鍵字
學科別分類
中文摘要
本論文將針對週期性非平坦表面下之均勻介質物體進行探討,首先由TM(Transverse Magnetic)極化波照射經由表面透射至掩埋物體,接著利用馬克斯威爾方程式、二維期性格林函數和邊界條件推導出積分方程式,散射場積分方程式透過動差法求得散射場,將逆散射問題轉化成最佳化問題,使用傅立葉級數展開描述物體形狀,並配合自我適應之動態差異型演化法進行數值計算及物體重建。
    利用自我適應之動態差異性演化法重建出均勻介質物體,不論初始的猜測值如何,自我適應之動態差異性演化法總會收歛到整體的極值(global extreme),因此在數值模擬顯示中,即使最初的猜測值遠大於實際值,我們仍可求得準確的數值解,成功的重建出物體形狀函數、週期長度和相對介電常數,並於數值模擬顯示中,量測的散射場即使加入雜訊,仍可得到良好的重建結果。我們發現,在週期性均勻介質物體中,週期長度的收斂速度總是優於形狀函數、介電常數。因此可知週期長度對於散射場的貢獻大於形狀函數及介電常數。
英文摘要
This thesis presents the reconstruction of a periodic homogeneous dielectric object buried in rough surfaces. First, a TM (Transverse Magnetic) polarized wave is transmitted through the surface to a buried object. Integral equations are derived by using the Maxwell equation, the two-dimensional periodic Green function, and the boundary condition. The integral equations are numerical solved by the method of moment (MOM) to obtain the scattering field. For inverse problem, the Fourier series expansion is used to describe the shape of the object, then the problem of inverse scattering is transformed into an optimization problem. Next, the self-adaptive dynamic differential evolution method is used for numerical calculation and object reconstruction. Numerical results show that the SADDE converges to the overall extreme value (global extreme) regardless of the initial guess. Even if the initial guess is far away from the actual value, SADDE can get the correct shape, periodic length and the relative permittivity of the periodic homogeneous dielectric object. We have found that the convergence speed of the periodic length is always better than the shape function and dielectric constant. Moreover, we can still obtain good reconstruction results even if the noise is added in the scattered field.
第三語言摘要
論文目次
目錄
致謝	II
中文摘要	III
英文摘要	V
目錄	VII
圖目錄	IX
第一章 簡介	1
1.1 研究動機與相關文獻	1
1.2 本研究之貢獻	8
1.3 各章內容簡述	9
第二章 週期性均勻介質物體於非平坦表面下之逆散射理論	10
2.1 正散射的理論公式推導	10
2.2 動差法求正散射公式	16
2.3 正散射的理論數值驗證	20
第三章  自我適應之動態差異型演化法(Self-Adaptive Dynamic
Differential Evolution)	21
第四章  數值分析及模擬結果	29
4.1 模擬環境介紹	29
4.2 模擬結果	32
第五章 結論	45
參考文獻	47
附錄一 加快週期性格林函數收斂的方法	53
附錄二 當y≈y^'時改進週期性格林函數收斂的方法	55


圖目錄
圖2.1 週期性非平坦表面及掩埋物示意圖	11
圖2.2 驗證正散射模擬示意圖	20
圖3.1 自我適應之動態差異型演化法流程圖	23
圖3.2 自我適應之動態差異型進化法中突變方法一的示意圖 25
圖3.3 自我適應之動態差異型進化法中突變方法二的示意圖 26
圖4.1 模擬環境示意圖	30
圖4.2 SADDE於例子一的重建情形	34
圖4.3 例子一之形狀函數偏差量DF及週期長度偏差量DP的變化情形 35
圖4.4 例子一之形狀函數偏差量DF及介電常數偏差量DEPS的變化情形	35
圖4.5 例子一加入不同雜訊比之DF、DP、DEPS趨勢圖  36
圖4.6 SADDE於例子二的重建情形	38
圖4.7 例子二之形狀函數偏差量DF及週期長度偏差量DP的變化情形 39
圖4.8 例子二之形狀函數偏差量DF及介電常數偏差量DEPS的變化情形	39
圖4.9 例子二加入不同雜訊比之DF、DP、DEPS趨勢圖  40
圖4.10 SADDE於例子三的重建情形	42
圖4.11 例子三之形狀函數偏差量DF及週期長度偏差量DP的變化情形	43
圖4.12 例子三之形狀函數偏差量DF及介電常數偏差量DEPS的變化情形	43
圖4.13 例子三加入不同雜訊比之DF、DP、DEPS趨勢圖  44
參考文獻
[1]	P. T. Nguyen, A. M. Abbosh, and S. Crozier, “3-D Focused Microwave Hyperthermia for Breast Cancer Treatment with Experimental Validation,” IEEE Transactions on Antennas and Propagation, Vol. 65, no. 7, pp. 3489-3500, Jul. 2017.
[2]	L. M. Neira, Barry D. V. Veen, and S. C. Hagness, “High-Resolution Microwave Breast Imaging Using a 3-D Inverse Scattering Algorithm with a Variable-Strength Spatial Prior Constraint,” IEEE Transactions on Antennas and Propagation, Vol. 65, no. 11, pp. 6002- 6014, Nov. 2017.
[3]	S. D. Meo, P. F. Espín-López, A. Martellosio, M. Pasian, G. Matrone, M. Bozzi, G. Magenes, A. Mazzanti, L. Perregrini, F. Svelto, P. E. Summers, G. Renne, L. Preda, and M. Bellomi, “On the Feasibility of Breast Cancer Imaging Systems at Millimeter-Waves Frequencies,” IEEE Transactions on Microwave Theory and Techniques, Vol. 65, no. 5, pp. 1795-1806, May. 2017.
[4]	C. C. Chiu and M. K. Chan, “Microwave Imaging of Periodic Rough Surfaces,” Microwave and Optical Technology Letters, vol. 60, no. 7, pp. 1719 – 1727, May 2018.
[5]	R. Firoozabadi, E. L. Miller, C. M. Rappaport, and A. W. Morgenthaler, “Subsurface Sensing of Buried Objects Under a Randomly Rough Surface Using Scattered Electromagnetic Field Data,” IEEE Transactions On Geoscience and Remote Sensing, Vol. 45, no. 1, Jan. 2007.
[6]	O. Cmielewski, H. Tortel, A. Litman, and M. Saillard, “A Two-Step Procedure for Characterizing Obstacles Under a Rough Surface from Bistatic Measurements,” IEEE Transactions On Geoscience and Remote Sensing, Vol. 45, no. 9, Sep. 2007.
[7]	Ö. Özdemir and H. Haddar, “Preprocessing the Reciprocity Gap Sampling Method in Buried-Object Imaging Experiments,” IEEE Geoscience and Remote Sensing Letters, Vol. 7, no. 4, Oct. 2010.
[8]	N. S. Tezel, “Electromagnetic scattering by anisotropic inhomogeneous impedance cylinder of arbitrary shape using physical optics,” Microwave and Optical Technology Letters, vol. 5, no. 4, pp.663-667, Oct 2008.
[9]	Y. Altuncu, A. Yapar and I. Akduman, “Numerical computation of the Green's function of a layered media with rough interfaces,” Microw. Opt. Technol. Lett., vol. 49, no. 5, pp. 1204-1209, May 2007.
[10]	S. Yildiz, Y.Altuncu, A. Yapar, I. Akduman, “ On the scattering of electromagnetic waves by periodic rough dielectric surfaces: a boa solution ,” IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 9, pp.2599-2606, Sep 2008.
[11]	R. R. Boix, A. L. Fructos, and F. Mesa, “Closed-form uniform asymptotic expansions of Green’s functions in layered media,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 9, pp. 2934–2945, Sep. 2010.
[12]	H. Zamani, A. Tavakoli, and M. Dehmollaian, “Scattering from layered rough surfaces: analytical and numerical investigations,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, pp. 3685-3696, Jun. 2016.
[13]	G. Franceschetti, A. Iodice, D. Riccio, and G. Ruello, “Fractal surfaces and electromagnetic extended boundary conditions,” IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 5, pp. 1018–1031, May 2002.
[14]	A. Boag and Y. Leviatan, “Analysis of two-dimensional electromagnetic scattering from nonplanar periodic surface using a strip current model,” IEEE Transactions on Antennas and Propagation., vol. 37, no. 11, pp. 1437–1446, Nov. 1989.
[15]	M. A. Demir, J. T. Johnson, and T. J. Zajdel, “A study of the fourthorder small perturbation method for scattering from two-layer rough surfaces,” IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 9, pp. 3374–3382, Sep. 2012.
[16]	R. M. Lewis, "Physical optics inverse diffraction," IEEE Trans. Antennas Propagat., vol. 17, pp. 308-314, May 1969.
[17]	N. N. Bojarski, "A survey of the physical optics inverse scattering identity," IEEE Trans. Antennas Propagat., vol. 30, pp. 980-989, Sept. 1982.
[18]	T. H. Chu and N. H. Farhat, "Polarization effects in microwave diversity imaging of perfectly conducting cylinders," IEEE Trans. Antennas Propagar., vol.37, pp. 235-244, Feb. 1989.
[19]	D. B. Ge, "A study of Lewis method for target-shape reconstruction," Inverse Problems, vol. 6, pp. 363-370, Jun 1990.
[20]	T. H. Chu and D. B. Lin, "Microwave diversity imaging of perfectly conducting objects in the near-field region," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 480-487, Mar. 1991.
[21]	Roger, "Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem," IEEE Trans. Antennas Propagate., vol. AP-29, pp.232-238, Mar. 1981.
[22]	W. Tobocman, "Inverse acoustic wave scattering in two dimensions from impenetrable targets," Inverse Problems, vol. 5, pp. 1131-1144, Dec. 1989.
[23]	C. C. Chiu and Y. M. Kiang, "Electromagnetic imaging for an imperfectly conducting cylinder," IEEE Trans. Microwave Theory Tech, vol. 39, pp. 1631- 1639, Sept. 1991.
[24]	G. P. Otto and W. C. Chew, "Microwave Inverse Scattering-Local Shape Function Imaging for Improved Resolution of Strong Scatters," IEEE Trans. Microwave Theory Tech., vol. 42, pp. I, Jan.1994.
[25]	D. Colton and P. Monk, "Anovel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region D," SIAMJ. Appl. Math., vol. 46, pp. 506-523, Jun 1986.
[26]	A. Kirsch, R. Kress, P. Monk and A. Zinn, "Two methods for solving the inverse acoustic scattering problem," Inverse Problems, vol. 4, pp.749-770, Aug. 1988.
[27]	C. Yin, Y. Geng, Y. Pan, and H. Jin, “Fast Algorithm for Rough-Surface Scene Simulation in Passive Millimeter Wave Imaging.” IEEE Access, Vol. 6, pp. 25051-25059, Apr. 2018.
[28]	R. E. Kleinman and P. M. van den Berg, “Two-dimensional location   and shape reconstruction,” Radio Sci., vol. 29, pp. 1157-1169, Aug. 1994.
[29]	A. Yapar, O. Ozdemir, H. Sahinturk and I. Akduman, “A Newton method for the reconstruction of perfectly conducting slightly rough surface profiles,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 1, pp.275-279, Jan 2006.
[30]	I. Akduman, R. Kress and A. Yapar, “Iterative reconstruction of dielectric rough surface profiles at fixed frequency,” Inverse Problems, vol. 22, no. 3, 2006.
[31]	T. Gürbüz, B. Aslanyürek, E. P. Karabulut and I. Akduman, “An efficient nonlinear imaging approach for dielectric objects buried under a rough surface,” IEEE Transactions On Geoscience and Remote Sensing, vol. 52, no. 5, pp.3013-3022, May 2014.
[32]	M. Shamsaddini, A. Tavakoli and P. Dehkhoda, “Inverse electromagnetic scattering of a dielectric cylinder buried below a slightly rough surface using a new intelligence approach,” Iranian Conference on Electrical Engineering (ICEE), May 2015.
[33]	D. G. Roy and S. Mudaliar, “Domain derivatives in dielectric rough surface scattering,"IEEE Transactions on Antennas and Propagation, vol. 63, pp. 4486-4495, Oct. 2015.
[34]	M. Zoofaghari, A. Tavakoli, and M. Dehmollaian, “Reconstruction of Concealed Objects in a Corrugated Wall with a Smoothly Varying Roughness Using the Linear Sampling Method,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, no. 6, pp. 3589–3598, Jun. 2016.
[35]	X. Ye, and X. Chen, “Subspace-Based Distorted-Born Iterative Method for Solving Inverse Scattering Problems,” IEEE Transactions on Antennas and Propagation, Vol. 65, no. 12, pp. 7224-7232, Dec. 2017.
[36]	M. Zoofaghari, A.Tavakoli, and M. Dehmollaian, “Reconstruction of concealed objects in a corrugated wall with a smoothly varying roughness using the linear sampling method,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 6, pp. 3589-3598, Jun 2016.
[37]	L. Guo and A. M. Abbosh, “Microwave imaging of nonsparse domains using born iterative method with wavelet transform and block sparse Bayesian learning,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 11, pp. 4877-4888, Nov. 2015.
[38]	H. Zheng, C. Wang and E. Li, “Modification of enhanced distorted born iterative method for the 2D inverse problem,” IET Microwaves, Antennas & Propagation, vol. 10, no. 10, pp. 1036-1042, Mar. 2016.
[39]	L. D. Donato, R. Palmeri, G. Sorbello, T. Isernia and L. Crocco, “A new linear distorted-Wave inversion method for microwave imaging via virtual experiments,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 8, pp. 2478-2487, Aug. 2016.
[40]	R. A. Wildman and D. S. Weile, “Greedy search and a hybrid local optimization/genetic algorithm for tree-based inverse scattering,” Microwave and Optical Technology Letters, Vol. 50, No. 3, pp. pp. 822-825, Mar. 2008.
[41]	T. Moriyama, Z. Meng and T. Takenaka, “Forward-backward time-stepping method combined with genetic algorithm applied to breast cancer detection,” Microwave and Optical Technology Letters, vol. 53, no. 2, pp.438-442, 2011.
[42]	B.Y. Wu and X.Q. Sheng, “A complex image reduction technique using genetic algorithm for the MoM solution of half-space MPIE,” IEEE Transaction on Antennas and Propagation, vol. 63, no. 8, pp.3727-3731, Aug. 2015.
[43]	A. Semnani, I. T. Rekanos, M. Kamyab, T.G. Papadopoulos, “Two-dimensional microwave imaging based on hybrid scatterer representation and differential evolution,” IEEE Transaction on Antennas and Propagation, Vol. 58, No. 10, pp. 3289 - 3298, Oct. 2010.
[44]	M. Dehmollaian, “Through-wall shape reconstruction and wall parameters estimation using differential evolution,” IEEE Geoscience and Remote Sensing Letter, Vol. 8, No. 2, pp.201-205, 2011.
[45]	M. A. Bouzan,and M. Dehmollaian, “Buried object adaptive shape reconstruction and ground parameters estimation using differential evolution,” IET Microwaves, Antennas & Propagation, Vol. 8, no. 3,pp.157-165, May 2013.
[46]	Y. Wan, C.-Y. Yu, C.-H. Sun, and C.-C. Chiu, “The reconstruction of time domain through-wall imaging for a metallic cylinder,” The Imaging Science Journal, Vol. 63, no. 2,pp.81-84, Oct. 2014.
[47]	A. Semnani and M. Kamyab, “An enhanced hybrid method for solving inverse scattering problems,” IEEE Transactions on Magentics, Vol. 45, No. 3, pp. 1534-1537, Mar. 2009.
[48]	M. Donelli, D. Franceschini, P. Rocca and A. Massa,” Three-Dimensional Microwave Imaging Problems Solved Through an Efficient Multiscaling Particle Swarm Optimization,” IEEE Transactions on Geoscience and Remote Sensing, Vol 47, No. 5, pp.1467 – 1481, May. 2009.
[49]	C. C. Chiu, C. H. Sun, C. L. Li, and C. H. Huang, “Comparative Study of Some Population-Based Optimization Algorithms on Inverse Scattering of a Two-Dimensional Perfectly Conducting Cylinder in Dielectric Slab Medium,” IEEE Transactions on Geoscience and Remote Sensing, Vol 51, No. 4, pp.2302-2315, Apr. 2013.
[50]	Y. T. Cheng, C. C. Chiu, S. P. Chang and J. C. Hsu, “Comparison of particle swarm optimization and self-adaptive dynamic differential evolution for the imaging of a periodic conductor,” International Journal of Applied Electromagnetics and Mechanics, Vol 46, No. 1, pp.69-79, Jan. 2014.
[51]	C. H. Sun, C. C. Chiu, M. H. Ho and C. L. Li, “Comparison of Dynamic Differential Evolution and Self-Adaptive Dynamic Differential Evolution for Buried Metallic Cylinder,” Research in Nondestructive Evaluation, Vol 24, No. 1, pp.35-50, Apr. 2013.
[52]	C. H. Sun and C. C. Chiu, “Inverse Scattering of Dielectric Cylindrical Target Using Dynamic Differential Evolution and Self-Adaptive Dynamic Differential Evolution,” International Journal of RF and Microwave Computer-Aided Engineering, Vol 23, No. 5, pp.579-585, Sep. 2013.
[53]	Y. T. Cheng, C. C. Chiu, S. P. Chang and J. C. Hsu, “Microwave imaging for half-space imperfect conductors,” Nondestructive Testing and Evaluation, Vol 30, No. 1, pp.49-62, Jan. 2015.
[54]	Y. Xia, G. Feng and J. Wang, “A Novel Recurrent Neural Network for Solving Nonlinear Optimization Problems with Inequality Constraints,” IEEE Transactions on Neural Network, Vol. 19, No. 8, pp. 1340 – 1353, Aug. 2008.
[55]	C. C. Chiu, C. H. Sun and W. L. Chang “Comparison of Particle Swarm Optimization and Asynchronous Particle Swarm Optimization for Inverse Scattering of a Two- Dimensional Perfectly Conducting Cylinder,” International Journal of Applied Electromagnetics and Mechanics Vol. 35, No.4, pp. 249-261, Apr. 2011.
[56]	A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,” IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, pp.124–141, Jul. 1999.
[57]	Electromagnetic wave propagation, Radiation, and Scattering by A. ISHIMARU, 1991, pp 353
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信