淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0407201413422900
中文論文名稱 以社群網站資料進行核保之分析
英文論文名稱 Analysis of Insurance Underwriting Using Social Media Networking Data
校院名稱 淡江大學
系所名稱(中) 保險學系保險經營碩士班
系所名稱(英) Department of Insurance
學年度 102
學期 2
出版年 103
研究生中文姓名 張皓怡
研究生英文姓名 Hao-Yi Chang
學號 601560047
學位類別 碩士
語文別 英文
口試日期 2014-06-05
論文頁數 38頁
口試委員 指導教授-高棟梁
共同指導教授-范姜肱
委員-鄭鎮樑
委員-賴曜賢
中文關鍵字 保險核保  社群網站  逆選擇  保險詐欺 
英文關鍵字 Insurance underwriting  Social media networking  Adverse selection  Insurance fraud 
學科別分類
中文摘要 若要進行適當的核保決策並且防範保險詐欺,保險公司試圖收集各種不同的數據資料作為適當的危險評估,並準確的評估要保人或被保人的風險狀況後加以分類並給予正確的保險費率。在此狀況下,核保人員往往必需撒下廣泛的網絡來發現及取得相關文件進行比對,進而去發現投保資料和所收集到的資料是否有不一致的地方、要保人的敘述或者是否有保險詐欺等跡象。然而,傳統核保屬於勞力密集且成本昂貴的技術,幸運的是,透過社群網路的技術可以幫助保險公司改善核保上的技術並獲得核保上的利潤,就可以選擇潛在良好的要保人。但保險人面臨許多困難,無法馬上運用網路技術進行核保,是因為沒有任何保險監理單位或保險人發展相關準則或指導方針來說明該如何適當使用社群網路技術進行核保。而目前也沒有科學性研究去決定何種類型的社群網站資料是可以被參考與使用,為了填補此研究上的缺口,本研究第一個目的是在探討哪一些核保因子是核保人員最想要從社群網站上所獲取的資料,其次則欲探討哪種型態的社群網站資料可以為保險人在核保決策上提供核保因子最佳的見解。此研究發現可以提供給以社群網站進行核保決策的核保人員,使其能選擇較佳的投保業務並賦予公平的保費,進而從中獲得核保利潤。
英文摘要 To make appropriate underwriting decisions and prevent insurance fraud, insurance companies attempt to collect various sources of data to accurately rate the risk profile of certain classes of policyholders or applicants. In this context, underwriters will often cast a broad net in discovery requests, seeking as much documentation as possible to search for inconsistencies in the applicant or policyholder’s story or indications of potential fraud. However, these traditional techniques are labor intensive and very expensive. Fortunately, the new online social networking technology may help insurance companies to improve their underwriting profits and select prospective policyholders. However, insurers face obstacles that may impede the speed-to-market of applying social networking data to underwriting. This is because neither regulators nor insurers have developed guidelines for the overall use of social data, and scientific studies have not determined what types of social medial data are referable. To fill this research gap, the first purpose of this study is to identify what underwriting factors underwriters prefer to search for in social media networking. The second purpose of this paper is to explore the types of social media data that may offer the best insights on underwriting factors for insurers to make underwriting decisions. The findings may provide information for those who employing social media networking data to make underwriting decision to attain underwriting profits, select prospective policyholders, and provide equity among policyholders.
論文目次 CONTENTS
摘要 I
ABSTRACT II
CONTENTS III
LIST OF FIGURE IV
LIST OF TABLE V
1. INTRODUCTION 1
2. LITERATURE REVIEW 4
2.1 Information Provided by Social Popular Networking Sites 4
2.2 The Role of Social Media in Insurance Underwriting 5
2.3 Social Media Data Used as Sources of Evidence in Courts of Law in Claim Cases 6
2.4 Important Underwriting Factors That Determine a Life Insurance Premium 7
2.5 Useful Social Media Data in Underwriting 8
3. METHODOLOGY 8
3.1 Establish a hierarchical structure 9
3.2 Establishment of pairwise comparison matrix 10
3.3 Compute the eigenvalue and eigenvector 12
3.4 Perform the consistency test 12
3.5 Compute the entire hierarchical weight 13
3.6 Calculate the whole level weight to select the best alternatives 13
4. DECISION MODEL APPLICATION AND RFESULTS. 13
4.1 Designate the AHP participants 13
4.2 Establish a hierarchy structure 14
4.3 Establish a pairwise comparison matrix. 14
4.4 Compute the eigenvalue and eigenvector. 14
4.5 Perform the consistency test. 14
4.6 Compute the relative weight of each hierarchy. 15
4.7 Calculate the whole level weight to select the most appropriate type of social medial data. 16
5. CONCLUSIONS AND RECOMMENDATIONS. 17
REFERENCES 19
APPENDICES 22

LIST OF FIGURE
Figure 1: Determinants of Underwriting Decision Making 7
Figure 2: Research Procedures 9
Figure 3: The Hierarchy Structure 10


LIST OF TABLE
Table 1: Aggregation of the Pairwise Comparison Matrix for Criteria of Main Criteria 14
Table 2: Weights of the Criteria and Sub-criteria 15
Table 3: Life Insurance Company Application of the AHP Model to Select an Appropriate type of Social Media Data to Improve the Effectiveness of Underwriting 16
參考文獻 REFERENCES
1. Aniskovich, P. P. (1998). Try Individually Underwriting Life Applicants, National Underwriter Life & Health financial Service, 102(46), pp.15-23.
2. Beattie, C. and Fitzgerald, M. (2011). Using social Data in Claims and Underwriting, CELENT, from (accessed Oct. 10, 2013) www.celent.com/reports/using-social-data-claims-and-underwriting
3. Chastain, P. T. (2011). Inside the Minds, In M. Silvanic (Eds), Insurance Fraud: Prevention, Investigation, and Defense. Aspatore, Boston, pp.47-76.
4. Cowan, J. L. (2011). Inside the Minds. In M. Silvanic (Eds), Using Social Media Sites to Research and Uncover Insurance Fraud, Aspatore: Boston. pp.27-45.
5. Ha, Y. (2011). In Few Years, Social Network Data May Be Used in Underwriting, Insurance Journal, October, pp.20-23.
6. Holding, R. (2011). Can you be fired for bad-mouthing your boss on Facebook, from (accessed Oct . 25, 2013) www.time.com/time/nation/article/0,8599,2055927,00.html
7. Gersten, A. D. (2010). Impaired Risk Underwriting, Life Insurance Selling, 85(7), pp.16-18.
8. Griffin, C. E. (2011). Inside the Minds. In M. Silvanic (Eds), Strategies for Using Social Media in the fight against Fraudulent Insurance Claims, Aspatore: Boston, pp.99-111.
9. Grisdela, M. (2011). Social Media May Influence Underwriting, Insurance Defense Marketing, from (accessed Oct. 13, 2013) www.insurancedefensemarketing.com/news/social-media-insurnce-underwriting
10. James, R. (2001). Critical Illness US Life Insurance: The Underwriting does differ. National underwriter/Life, Health Financial Services, 105(46), 17.
11. Kaltenbach, T. M. (1995). World of Underwriting countinues to Evolve, Best’s Review/Life & Health Insurance Edition, 96(4), 60.
12. Kenealy, B. (2013). Social Media Helps Insurers Manage Underwriting, Claim and Risks in Real-time. Business Insurance, from (accessed Oct. 30, 2013) www.businessinsurance.com/article/20130630/News07/306309992#.
13. Levinson M. (2011). Social networks: new hotbed for hiring discrimination claims, from (accessed Oct. 25, 2013) www.computerworld.com/s/article/9215907/Social_Networks_Hotbed_for_Hiring_Discrimination_claims.
14. Melidizadeh S. (2010). Self-presentation 2.0: narcissism and self-esteem in Facebook. Cyberchology, Behavior, and Social Networking, 13, pp.357-364.
15. Merlinos and Associates (2011). Social Network Data and Underwriting: Coming to an Insurance Company Near You. Merlinos-Actuaries & Consultants, from (accessed Aug. 12, 2013) www.merlinosinc.com/social-network
16. Nance-Nash, S. (2011). What Insurers Could Do with Your Social Media Score? Daily Finance, from (accessed Oct. 29, 2013) www.dailyfinance.com
17. Ramasastry, A. (2012). Will Insurers Being to Use Social Media Postings to Calculate Premiums. Consumer Law, from (accessed Oct. 5, 2013) www.verdict.justia.com/2012/01/03/will-insurers-being-to-use-social-media-postings-to-calculate-premiums
18. Rejda, G. E. and McNamara, M. J. (2014). Principle of Risk Management and Insurnace, 12th Edition, Pearson Education Limited, England.
19. Saaty, T. L. (1980). The Analytic Hierarchy Process. McGraw Hill Publications.
20. Saaty, T. L. (1990). How to Make a Decision: The Analytic Hierarchy Process, European Journal of Operational Research, Vol. 48, No.1, pp.9-26.
21. Stoughton, J. W., Thompson, L. F., & Meade, A. W. (2013). Big Five personality traits reflected in job applicants’ social media postings. Cyberpsychology, Behavior, and Social Networking, 16(11), 800-805.
22. Velazquez, D. (2002). The dangers of over Underwriting, National Underwriter, Life, Health financial Services, 106(7), pp.12.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-07-31公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-07-31起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信