§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0407201314011300
DOI 10.6846/TKU.2013.00148
論文名稱(中文) 高溫好氧消化穩定醫院廢水處理廠污泥及篩渣之研究
論文名稱(英文) A Study on the Stabilization of Sludge and Screen Waste from Hospital Wastewater Treatment Plant by Thermophilic Aerobic Digestion
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 2
出版年 102
研究生(中文) 柯宜汶
研究生(英文) Yi-Wen Ke
學號 600480148
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2013-06-06
論文頁數 92頁
口試委員 指導教授 - 高思懷
委員 - 徐錠基
委員 - 孫常榮
關鍵字(中) 高溫好氧消化
生物固體物
廢棄污泥
篩渣
安定化
致病菌
關鍵字(英) thermophilic aerobic digestion (TAD)
biosolids
waste sludge
screen residue
stabilize
pathogens
第三語言關鍵字
學科別分類
中文摘要
醫院廢水處理場廢水來源可能來自隔離病房或接觸病人之生活污水,性質與一般事業廢水或一般生活污水大不相同。醫院廢水處理場所產出之生物固體物(篩渣及廢棄污泥)可能含有許多未知的致病菌,若未妥善處理處置將會導致病菌傳播的危機。篩渣物中主要含有廚餘或糞便等顆粒較大之有機物質,具有令人厭惡之臭味。
  高溫好氧消化技術具備操作容易、佔地面積小、系統穩定、在短時間內迅速降解固體物量、迅速削減致病菌含量等優勢。本研究利用高溫好氧消化程序將醫院廢水處理廠產出生物固體物進行安定化以及減量化,同時削減系統中致病菌含量。研究的重點在於結合廢棄污泥以及篩渣共同進行高溫好氧消化,藉此礦化篩渣物中易分解有機物,減少污泥產出量,並解決其臭味問題。
  本研究以VS/TS作為固體物可分解程度判斷指標。以消化過程中總固體物消化率、揮發性固體物消化率及濾液水質分析作為消化成效指標。以大腸桿菌菌落數作為消化單元對於致病菌削減之指標。實驗以批次試驗操作,藉由調整消化污泥停留時間、固體物配比、操作溫度來探討消化成效。首先以不同廢棄污泥及篩渣配比進行消化,藉此找出消化率較佳固體物配比,以得知單位污泥(微生物)能夠負荷之篩渣量(有機負荷)。接著以不同操作溫度進行好氧消化以探討溫度之影響。
  研究結果得知結合篩渣及污泥共同進行高溫好氧消化可快速降低固體物產量。當固體物配比為篩渣:污泥=1:2.5(SR/SL=0.48),會有較佳固體物削減成效,反應速率常數Kd為0.994(day-1)。好氧消化系統中將溫度控制於50℃會有較佳之固體物削減成效,單純污泥消化系統TS消化率達51.16%;VS消化率達55.82%。結合篩渣及污泥系統TS消化率達47.59%;VS消化率達51.85%。經過2~3天的好氧消化程序後,系統中已近乎沒有異味的產生。由有機酸定性分析推估,本研究之好氧反應途徑是依循TCA cycle進行。將操作溫度控制為50℃、70℃時,大腸桿菌菌落數由無法計數削減至2.6*105 CFU/100mL及N.D.由此可得知高溫好氧消化具有良好的滅菌效果。
關鍵字:高溫好氧消化、生物固體物、廢棄污泥、篩渣、安定化、致病菌
英文摘要
Hospital wastewater treatment plant might receive wastewater from isolation ward or sewage contacted by patients, therefore, their properties are different from general industrial or domestic sewage .Biosolids produced from hospital wastewater treatment plant include waste sludge and screen residue, which might contain lots of unknown pathogens. It will cause the crisis of germs-spreading if without proper handling. Besides, screen residue contains solids rich in organic matters such as  food waste, excrements, etc. and smells stinky.
  Thermophilic aerobic digestion (TAD) process has the advantages of easy operating, small area required, stable system, rapid biomass degradation, and efficiently pathogen inactivation. In this study, we used TAD process to stabilize and reduce the biosolids produced by hospital wastewater treatment plant. At the same time, pathogens were inactivated by TAD process, too. The emphasis in our study was combine waste sludge and screen residue to precede TAD process, in order to improve the  efficiency of the degradation of organic matters  and solve the problem of odor-emission.
  In this study VS/TS was used as a decomposable index, the digestion ratio of the total and volatile solid and water quality analysis of filtrate were used as the digestion efficiency indexes, E. coli colonies was used as the pathogen inactivation index. The experiments were operated in batch model. The efficiency of TAD process by explored by modulating sludge retention, proportions of biosolids and operating temperature. Different waste sludge and screen residue ratio were exam, in order to find the optimal combination and different solid liquid ratio, and also realize food loading to the microorganisms. After that, the effects in different operating temperature were discussed.
  The results found that, combining waste sludge and screen residue in TAD process can degrade biomass rapidly. The better digestion efficiency was screen residue : sludge = 1:2.5(SR/SL=0.48). The reaction rate constant (Kd) is 0.994 day-1.When the digestion temperature controlled at 50℃,we got the better digestion efficiency. In sludge digestion system, the TS and VS digestion efficiency were 51.16% and 55.82% respectively; in sludge and screen residue digestion system, the TS and VS digestion efficiency were 47.59% and 51.85% respectively. After 2-3 days of digestion time, the offensive odor was vanished. According to the qualitative analysis of organic acid, TAD process was found to fit the pathway of TCA cycle. When the operating temperatures were controlled at 50℃ and 70℃, E. coli colonies in biosolids sharply reduced from unable counting to 2.6*105 CFU/100mL and N.D. respectively.
第三語言摘要
論文目次
第一章	前言	1
1.1	研究緣起	1
1.2	研究目的	2
第二章	文獻回顧	5
2.1	醫院廢水處理廠之衍生廢棄物	5
2.2	下水污泥及篩渣之基本特性	5
2.3	廢棄污泥處理處置技術	8
2.4	嗜熱菌污泥減量技術	17
2.4.1	高溫好氧消化技術	17
2.4.2	自發性高溫好氧消化	21
2.4.3	可溶化酵素污泥減量程序	28
2.4.4	Awant Green污泥消化技術	29
2.5	污泥好氧消化動力式分析	30
第三章	實驗材料與研究方法	32
3.1	實驗材料	32
3.2	研究步驟與方法	32
3.2.1	建立高溫好氧消化程序	32
3.2.2	污泥馴養程序	33
3.2.3	實驗配置與設計	33
3.2.4	批次試驗設計	34
3.2.5	消化系統結合篩渣及污泥之配比計算	37
3.2.6	分析項目與實驗方法	38
3.3	實驗流程圖	44
第四章	結果與討論	47
4.1	原料基本特性分析	47
4.1.1	篩渣基本特性分析	47
4.1.2	消化前廢棄污泥基本特性分析	47
4.2	固體物削減成效之探討	48
4.2.1	單位污泥對於篩渣量負荷能力探討	48
4.2.2	固體物之消化成效	52
4.3	臭味逸散	57
4.4	消化系統中濾液水質分析之探討	58
4.4.1	pH	58
4.4.2	溶解性有機碳	64
4.4.3	有機酸之探討	68
4.4.4	濾液中致病菌分析	83
第五章	結論與建議	85
5.1	結論	85
5.2	建議	86
參考文獻    87 
圖目錄
圖 2-1 好氧消化反應速率與溫度的關係	19
圖 2-2 常壓下水中溶氧與溫度的關係	20
圖 2-3 ATAD高溫污泥減量技術流程圖	22
圖 2-4 一階ATAD系統中生化反應之代謝途徑	28
圖 2-5 S-TE污泥減量流程圖	29
圖 2-6 AwG嗜熱菌高溫好氧污泥減量流程圖	30

圖 3-1 實驗配置示意圖	34
圖 3-2 好氧消化之批次試驗之裝置圖	37
圖 3-3 實驗流程圖	45

圖 4-1不同篩渣及污泥質量比高溫好氧消化(50℃)VS消化率變化	49
圖 4-2 不同SR/SL進行高溫(50℃)好氧消化之Kd值	50
圖 4-3 高溫(50℃)好氧,結合篩渣及污泥共同消化pH與硝酸鹽氮之關係(SR:SL=1:1.7)	51
圖 4-4 不同操作溫度下污泥好氧消化程序TS及VS消化率變化	54
圖 4-5 不同操作溫度下結合篩渣及污泥共同進行好氧消化TS及VS消化率變化	55
圖 4-6 不同溫度下,污泥好氧消化系統中pH與VS消化率之關係	60
圖 4-7 不同溫度下,結合篩渣及污泥好氧消化系統中pH與VS消化率之關係	61
圖 4-8 常溫(25℃)好氧消化系統中pH與氨氮之關係	62
圖 4-9 常溫(25℃)好氧消化系統中,氨氮與硝酸鹽氮之關係	63
圖 4- 10 高溫(50℃)好氧消化系統中pH與氨氮之關係	63
圖 4-11高溫(50℃)好氧消化系統中氨氮與硝酸鹽氮之關係	64
圖 4-12 好氧消化程序中有機物轉化之示意圖	65
圖 4-13 好氧消化程序中溶解性有機碳(DOC)變化	67
圖 4-14 污泥好氧消化程序中DOC與TS之關係	68
圖 4-15 好氧消化系統中ORP之變化	69
圖 4-16 好氧消化系統中DO之變化	70
圖 4-17 大分子降解至小分子示意圖	72
圖 4-18 TCA cycle	76



表目錄
表 2-1 污水處理廠中污泥及固體物之特性說明	7
表 2-2 污泥進行最終處置前處理方式	8
表 2-3 污泥處理處置方式	10
表 2-4 下水污泥之處理對策	11
表 2-5 台灣公共下水道污水處理廠處置方式	12
表 2-6 台灣污泥後續處理處置之現況	13
表 2-7 PSRP大量降低致病菌之流程管制定義	14
表 2-8 PFRP更進一步降低致病菌之流程管制定義	15
表 2-9 污泥生物處理程序中好氧、厭氧消化之比較	17
表 2-10 微生物最適溫度之分類	25
表 2-11 高溫好氧消化系統中不同操作溫度下法規規定操作時間與溫度之關係式	26
表 2-12 不同消化溫度系統所需操作時間	27

表 3-1 篩渣及污泥固體物配比	38
表 3-2 本研究實驗使用之儀器設備	41
表 3-3 本研究檢測項目之檢測方法彙總表	43
表 3-4 研究內容	46

表 4-1 篩渣基本特性分析。	47
表 4-2 不同操作溫度馴養後污泥基本特性分析	48
表 4-3 以不同篩渣、污泥配比進行高溫(50℃)好氧消化之Kd值	50
表 4-4 不同溫度下好氧消化系統中之反應速率常數	56
表 4-5 常溫(25℃)污泥好氧消化濾液有機酸定性分析	77
表 4-6 常溫(25℃)結合篩渣及污泥好氧消化濾液有機酸定性分析	78
表 4-7高溫(50℃)污泥好氧消化濾液有機酸定性分析	79
表 4-8 高溫(50℃)結合篩渣及污泥好氧消化濾液有機酸定性分析	80
表 4-9 高溫(70℃)污泥好氧消化濾液有機酸定性分析	81
表 4-10 高溫(50℃)結合篩渣及污泥好氧消化濾液有機酸定性分析	82
表 4-11大腸桿菌之削減狀況	84
參考文獻
參考文獻
Aasheim, S. (1985), "Sludge stabilization: Manual of practice No." FD-9. Water pollution control federation: task force on sludge stabilization, Washington, DC.
Alatriste-Mondragon, F., R. Iranpour and B. K. Ahring (2003), "Toxicity of di-(2-ethylhexyl) phthalate on the anaerobic digestion of wastewater sludge." Water Research 37(6): 1260-1269.
APHA, A. (1998), "WEF (American Public Health Association, American Water Works Association, and Water Environment Federation)." Standard methods for the examination of water and wastewater.
Bartkowska, I. and L. Dzienis (2007), "Technical and economic aspects of autothermal thermophilic aerobic digestion exemplified by sewage treatment plant in Giżycko." Environment Protection Engineering 33(2): 17-24.
Benefield, L. D. (1980), CWR, Biological process design for wastewater treatment. Engelwood Cliffs NJ, USA: Prentice Hall. Marilyn.
Borchardt, J. A., W. J. Redman, G. E. Jones and R. T. Sprague (1981), Sludge and its ultimate disposal, Ann Arbor Science Publishers, Inc.
Bubber, P., V. Hartounian, G. Gibson and J. Blass (2011), "Abnormalities in the tricarboxylic acid (TCA) cycle in the brains of schizophrenia patients." European Neuropsychopharmacology 21(3): 254-260.
Campbell, H. W. (2000), Sludge management - Future issues and trends, Freemantle, Aust, Int Water Assoc, 41: 1-8.
Chennbarn, T. and K. R. Pagilla (1999), "Temperature and SRT effects on aerobic thermophilic sludge treatment." Journal of Environmental Engineering 125(7): 626-629.
Cheunbarn, T. and K. Pagilla (2000), "Aerobic Thermophilic and Anaerobic Mesophilic Treatment of Sludge." Journal of Environmental Engineering 126(9): 790-795.
Chiang, C. F., C. J. Lu, L. K. Sung and Y. S. Wu (2001), "Full-scale evaluation of heat balance for autothermal thermophilic aerobic treatment of food processing wastewater." Water Science and Technology 43: 251-258.
Chu, A., D. Mavinic, W. Ramey and H. Kelly (1996), "A biochemical model describing volatile fatty acid metabolism in thermophilic aerobic digestion of wastewater sludge." Water Research 30(8): 1759-1770.
Deeny, K., H. Hahn, D. Leonhard and J. Heidman (1991), "Autoheated thermophilic aerobic digestion." Water Environment amp Technology;(United States) 3(10).
Dignac, M.-F., V. Urbain, D. Rybacki, A. Bruchet, D. Snidaro and P. Scribe (1998), "Chemical description of extracellular polymers: implication on activated sludge floc structure." Water Science and Technology 38(8): 45-53.
Ferguson, P. L. and B. J. Brownawell (2003), "Degradation of nonylphenol ethoxylates in estuarine sediment under aerobic and anaerobic conditions." Environmental Toxicology and Chemistry 22(6): 1189-1199.
Fothergill, S. and D. S. Mavinic (2000), "VFA production in thermophilic aerobic digestion of municipal sludges." Journal of Environmental Engineering 126(5): 389-396.
Frolund, B., R. Palmgren, K. Keiding and P. H. Nielsen (1996), "Extraction of extracellular polymers from activated sludge using a cation exchange resin." Water Research 30(8): 1749-1758.
Fujita, M., K. Yamamoto, K. Sugimoto, M. Sakagami, A. Toriyama and H. Mizuguchi (1997), "Water pollution control technology in Japan." japan:Global Environment Centre Foundation.
Han, I., S. Congeevaram and J. Park (2009), "Improved control of multiple-antibiotic-resistance-related microbial risk in swine manure wastes by autothermal thermophilic aerobic digestion." Water Science and Technology 59: 267-271.
Higgins, M. J. and J. T. Novak (1997), "Characterization of exocellular protein and its role in bioflocculation." Journal of environmental engineering 123(5): 479-485.
Kim, Y.-K., J.-H. Bae, B.-K. Oh, W. Hong Lee and J.-W. Choi (2002), "Enhancement of proteolytic enzyme activity excreted from Bacillus stearothermophilus for a thermophilic aerobic digestion process." Bioresource Technology 82(2): 157-164.
Layden, N. M., D. S. Mavinic, H. G. Kelly, R. Moles and J. Bartlett (2007), "Autothermal thermophilic aerobic digestion (ATAD)-Part I: Review of origins, design, and process operation." Journal of Environmental Engineering and Science 6(6): 665-678.
Leonard, B. (1992), Standards for the Use and Disposal of Sewage Sludge, DIANE Publishing.
Li, J. Z., D. S. Mavinic and H. G. Kelly (2004), "Determining the volatile fatty acid equivalent in thermophilic aerobically digested sludge supernatant." Journal of Environmental Engineering 130(4): 397-407.
Li, X., H. Ma, Q. Wang, S. Matsumoto, T. Maeda and H. I. Ogawa (2009), "Isolation, identification of sludge-lysing strain and its utilization in thermophilic aerobic digestion for waste activated sludge." Bioresource Technology 100(9): 2475-2481.
Liu, H. and H. H. Fang (2002), "Extraction of extracellular polymeric substances (EPS) of sludges." Journal of Biotechnology 95(3): 249-256.
Liu, S., F. Song, N. Zhu, H. Yuan and J. Cheng (2010), "Chemical and microbial changes during autothermal thermophilic aerobic digestion (ATAD) of sewage sludge." Bioresource Technology 101(24): 9438-9444.
Liu, S., N. Zhu and L. Y. Li (2012), "The one-stage autothermal thermophilic aerobic digestion for sewage sludge treatment: Stabilization process and mechanism." Bioresource Technology 104: 266-273.
Liu, S., N. Zhu, P. Ning, L. Y. Li and X. Gong (2012), "The one-stage autothermal thermophilic aerobic digestion for sewage sludge treatment: Effects of temperature on stabilization process and sludge properties." Chemical Engineering Journal 197: 223-230.
Lue-Hing, C. and D. R. Zenz (1992), Municipal sewage sludge management: Processing, utilization, and disposal, CRC Press.
Mavinic, D. S., V. Mahendraker, A. Sharma and H. G. Kelly (2001), "Effect of microaerophilic conditions on autothermal thermophilic aerobic digestion process." Journal of Environmental Engineering 127(4): 311-316.
Metcalf, I. and H. Eddy (2004), "Wastewater engineering: treatment and reuse."
Novak, J., M. Sadler and S. Murthy (1999), Mechanisms influencing conditioning and dewatering of aerobically and anaerobically digested biosolids, Proc 72nd Annu. Water Environ. Fed. Tech. Exposition Conf.[CD-ROM], New Orleans, La.
Novak, J. T. and J. L. Bivins (2000), "Changes in Dewatering Properties Between the Thermophilic and Mesophilic Stages in TPAD Systems." Proceedings of the Water Environment Federation 2000(11): 694-705.
Obeta Ugwuanyi, J., L. Harvey and B. McNeil (2005), "Effect of aeration rate and waste load on evolution of volatile fatty acids and waste stabilization during thermophilic aerobic digestion of a model high strength agricultural waste." Bioresource Technology 96(6): 721-730.
Roš, M. and G. D. Zupančič (2002), "Thermophilic aerobic digestion of waste activated sludge." Acta Chimica Slovenica 49(4): 931-943.
Shiota, N., A. Akashi and S. Hasegawa (2002), "A strategy in wastewater treatment process for significant reduction of excess sludge production."  45: 127-134.
Skjelhaugen, O. J. (1999), "Thermophilic aerobic reactor for processing organic liquid wastes." Water Research 33(7): 1593-1602.
Staton, K. L., J. E. Alleman, R. L. Pressley and J. Eloff (2001), "2nd generation autothermal thermophilic aerobic digestion: conceptual issues and process advancements." Proceedings of the Water Environment Federation 2001(1): 1484-1495.
Sutherland, I. (1972), "Bacterial exopolysaccharides." Advances in microbial physiology 8: 143-213.
Tchobanoglous, G. and F. L. Burton (1991), Wastewater engineering treatment, disposal and reuse, McGraw-Hill, Inc.
Tchobanoglous, G., F. L. Burton and H. D. Stensel (2004), Wastewater Engineering, Treatment and Resue., New York, McGraw-Hill.
Ugwuanyi, J. O., L. M. Harvey and B. McNeil (2004), "Development of thermophilic populations, amylase and cellulase enzyme activities during thermophilic aerobic digestion of model agricultural waste slurry." Process Biochemistry 39(11): 1661-1669.
Ugwuanyi, J. O., L. M. Harvey and B. McNeil (2005), "Effect of digestion temperature and pH on treatment efficiency and evolution of volatile fatty acids during thermophilic aerobic digestion of model high strength agricultural waste." Bioresource Technology 96(6): 707-719.
Ugwuanyi, J. O., L. M. Harvey and B. McNeil (2008), "Diversity of thermophilic populations during thermophilic aerobic digestion of potato peel slurry." Journal of Applied Microbiology 104(1): 79-90.
USEPA, A. (1994), A Plain English Guide to the EPA Part 503 Biosolids Rule, EPA/832/R-93/003. Washington, DC.
Van Loosdrecht, M. C. M. and M. Henze (1999), Maintenance, endogeneous respiration, lysis, decay and predation, 39: 107-117.
Watanabe, H., T. Kitsrnura, S. Ochi and M.Ozaki (1997), "Inactive of pathogenic bacteria under mesophilic and thermophilic condiction." Water Science and Technology 36(6-7): pp. 25-32.
Xie, J., X. H. Sun, Y. J. Pan and Y. Zhao (2012), "Physicochemical properties and bactericidal activities of acidic electrolyzed water used or stored at different temperatures on shrimp." Food Research International 47(2): 331-336.
Yan, S., K. Miyanaga, X.-H. Xing and Y. Tanji (2008), "Succession of bacterial community and enzymatic activities of activated sludge by heat-treatment for reduction of excess sludge." Biochemical Engineering Journal 39(3): 598-603.
Zabranska, J., M. Dohanyos, P. Jeniček, Ruring, H. žičikova and A. Vranova (2003), Efficiency of autothermal thermophilic aerobic digestion and thermophilic anaerobic digestion of municipal wastewater sludge in removing Salmonella spp. and indicator bacteria, 47: 151-156.
Zambrano, J. A., M. Gil-Martinez, M. Garcia-Sanz and I. Irizar (2009), Benchmarking of control strategies for ATAD technology: A first approach to the automatic control of sludge treatment systems, 60: 409-417.
Zhou, J., H. G. Kelly, D. S. Mavinic and W. D. Ramey (2001), "Digestion effects on dewaterability of thermophilic and mesophilic aerobically digested biosolids." Proceedings of the Water Environment Federation 2001(16): 393-404.
Zupančič, G. D. and M. Roš (2008), "Aerobic and two-stage anaerobic-aerobic sludge digestion with pure oxygen and air aeration." Bioresource Technology 99(1): 100-109.
內政部營建署 (2006),污水下水道統計要覽-中華民國95年版。
朱敬平、李篤中 (2001),污泥處置 (II): 污泥之前處理,國立臺灣大學 [台大工程] 學刊第八十二期,第 49-76 頁。
朱敬平、李篤中(2002),污泥處置 (IV): 策略與永續利用。
林正祥(2004),污泥減容減量技術實例探討-嗜熱菌污泥減量技術,廢水污泥減量減容技術講習會。
林皇君(2009),下水污泥再利用之最適化探討, 碩士, 中興大學.
張桂榜(1994),醫院廢污泥加氯消毒後有機鹵化物之變遷探討,中國醫藥學院環境醫學研究所。
陳俞穎(2008),下水污泥前處理減量技術比較之研究,碩士,國立台北科技大學。
曾迪華、潘時正(2007),下水道污泥處置之現況與展望,台灣下水道工程實務研討會論文集。
游美慧(1999),醫院環境廢水處理研究,中國文化大學應用化學研究所。
葉俊鋒(2009),下水污泥高溫好氧消化減量技術動力學特性之研究,碩士,國立台北科技大學。
歐陽嶠暉(1998),都市污水處理廠之污泥處理與資源化再利用之研究,內政部營建署委託研究計劃。
歐陽嶠暉(2005),下水道工程學 第四版,長松出版社。
蔡清讚 (1988),醫院廢水中微生物之消毒及懸浮固體中微生物之消毒動力學,國立台灣大學土木工程研究所。
鄭欽恆(2007),高溫好氧消化應用於下水污泥減量技術之研究,碩
士,國立台北科技大學。
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信