淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0407201314000800
中文論文名稱 半空間週期性導體之微波成像
英文論文名稱 Microwave imaging for half-space periodic conductors
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 101
學期 2
出版年 102
研究生中文姓名 許榮欽
研究生英文姓名 Jung-Chin Hsu
電子信箱 dennie7814@yahoo.com.tw
學號 600440043
學位類別 碩士
語文別 中文
口試日期 2013-06-13
論文頁數 63頁
口試委員 指導教授-丘建青
委員-瞿大雄
委員-余金郎
中文關鍵字 微波成像  週期性導體  自我適應之動態差異型演算法 
英文關鍵字 periodic perfectly conducting  Microwave imaging  half-space 
學科別分類 學科別應用科學電機及電子
中文摘要 本論文探討自我適應之動態差異型演化法則應用於半空間二維週期性導體之逆散射問題。針對物體照射TM(Transverse Magnetic)極化波之情況,在半空間中週期性導體的逆散射進行探討。
利用在導體表面的邊界條件及在物體外部量測的散射電場,可推導出一組非線性積分方程,將散射場積分方程式透過動差法求得散射電場相關資訊。在此使用傅立葉極數展開及描述物體的形狀,並在演算法中使用自我適應之動態差異型演化法重建半空間週期性導體之形狀。
不論初始的猜測值如何,自我適應之動態差異性演化法總會收歛到整體的極值(global extreme),因此在數值模擬顯示中,即使最初的猜測值遠大於實際值,我們仍可求得準確的數值解,成功的重建出物體的週期大小、形狀函數。而且在數值模擬顯示中,量測的散射場即使加入均勻分佈的雜訊存在,依然可以得到良好的重建結果,研究證實其有良好的抗雜訊能力。我們也發現,在週期性導體中,週期大小的收斂速度總是優於形狀函數。因此可知週期大小對散射場之貢獻最大,形狀函數對散射場的貢獻次之。
英文摘要 This paper presents an inverse scattering problem for recovering the shape of periodic perfectly conducting cylinders buried in a half space by self-adaptive dynamic differential evolution (SADDE). The periodic perfect conducting cylinders of unknown periodic length and shapes are buried in one half-space and illuminated by the transverse magnetic (TM) plane wave from the other half space.
Based on the boundary condition and the measured scattered field, a set of nonlinear integral equation is derived and the imaging problem is reformulated into optimization problem. The particle swarm optimization algorithm is employed to find out the global extreme solution of the object function. Numerical results show that the periodic length and the shape of the conductor are well reconstructed.
論文目次 目錄
第一章 簡介……………………………………………………………1
1.1節 研究動機與相關文獻…………………………………1
1.2節 本研究之貢獻………………………………………10
1.3節 各章內容簡述…………………………………………11
第二章 週期性導體在半空間中的逆散射理論……………………13
2.1節 正散射的理論公式推導……………………………13
2.2節 數值方法…………………………………………………17
2.2.1節 動差法於積分方程式的應用………………………17
第三章 隨機式全域最佳化演算法…………………………………19
3.1節 自我適應之動態差異型演化法……………………19
第四章 數值分析及模擬結果………………………………………27
4.1節 自我適應之動態差異型演化法在逆散射的應用……27
4.2節 環境模擬介紹..………………………………………28
4-3節 自我適應之動態差異型演化法重建半空間中二維週期性導體柱體影像…30
第五章 結論…………………………………………………………45
附錄一 計算格林函數的方法………………………………………47
參考文獻………………………………………………………………50

圖目錄
圖2-1 二維週期性導體在半空間的示意圖…………………………15
圖3-1 自我適應之動態差異型演化法流程圖………………………21
圖3-2 自我適應之動態差異型進化法中突變方法的示意圖…………23
圖3-3 自我適應之動態差異型進化法中的交配向量於一個二維目
標函數等位線圖描述的示意圖…………………………25
圖4-1 SADDE重建例子一柱體形狀函數的情形……………………31
圖4-2 SADDE重建例子一柱體的特性參數相對誤差變化趨勢圖…32
圖4-3 SADDE重建例子一柱體特性參數隨相對雜訊位準變化的情形………………………33
圖4-4 SADDE重建之例子一的價值函數與function calls比較…34
圖4-5 SADDE重建例子二柱體形狀的情形…………………………36
圖4-6 SADDE重建例子二柱體的特性參數相對誤差變化趨勢圖…37
圖4-7 SADDE重建例子二柱體特性參數隨相對雜訊位準變化的情形………………………38
圖4-8 SADDE重建之例子二的價值函數與function calls比較…39
圖4-9 SADDE重建例子三柱體形狀的情形………………………41
圖4-10 SADDE重建例子三柱體的特性參數相對誤差變化趨勢圖……………………………42
圖4-11 SADDE重建例子三柱體特性參數隨相對雜訊位準變化的情形……………………43
圖4-12 SADDE重建之例子三的價值函數與function calls比較……………………44
參考文獻 [1]E. Wolf, “Three-dimensional structure determination of semi-transparentobjects from holographic data,” Opt. Commun., Vol. 1, pp.153–164, Sep.-Oct. 1969.
[2]O. Mudanyalı, S. Yıldız, O. Semerci, A. Yapar and I. Akduman, “A Microwave Tomographic Approach for Nondestructive Testing of Dielectric Coated Metallic Surfaces”, IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 2, pp. 180 - 184, Apr. 2008.
[3]S. Genovesi, E. Salerno, A. Monorchio and G. Manara, “Permittivity range profile reconstruction of multilayered structures from microwave backscattering data by using particle swarm optimization,” Microwave and Optical Technology Letters, Vol. 51, No. 10, pp. 2390 - 2394, Oct. 2009.
[4]T. Rubak, O. S. Kim, P. Meincke, “Computational Validation of a 3-D Microwave Imaging System for Breast-Cancer Screening,” IEEE Transactions on Antennas and Propagation, vol. 57, No. 7, Jul. 2009.
[5]M. Klemm, J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, R. Benjamin, “Microwave Radar-Based Breast Cancer Detection: Imaging in Inhomogeneous Breast Phantoms” IEEE Antennas and Wireless Propagation Letters, Vol. 8, 2009.
[6]J. Bourqui, M. Okoniewski, E. C. Fear, “Balanced Antipodal Vivaldi Antenna With Dielectric Director for Near-Field Microwave Imaging.”, IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, Jul 2010.
[7]A. G. Ramm, “Uniqueness result for inverse problem of geophysics: I,” Inverse Problems, Vol. 6, pp. 635-641, Aug.1990.
[8]V. Isakov, “Uniqueness and stability in multidimensional inverse problems,” Inverse Problems, Vol. 9, pp. 579–621, 1993.
[9]O. M. Bucci and T. Isernia, “Electromagnetic inverse scattering: Retrievable information and measurement strategies,” Radio Sci., Vol. 32, pp. 2123–2138, Nov.–Dec. 1997.
[10]D. Colton and L. Paivarinta, “The uniqueness of a solution to an inverse scattering problem for electromagnetic waves,” Arc. Ration. Mech. Anal., Vol. 119, pp. 59–70, 1992.
[11]S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Transactions on Microwave Theory and Techniques, Vol. 51, no. 4, pp. 1162-1173, Apr. 2003.
[12]M. Bertero and E. R. Pike, Inverse Problems in Scattering and Imaging, ser. Adam Hilger Series on Biomedical Imaging. Bristol, MA: Inst. Phys., 1992.
[13]A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems. New York: Springer-Verlag, 1996.
[14]A. M. Denisov, Elements of Theory of Inverse Problems. Utrecht, The Netherlands: VSP, 1999.
[15]A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,”, IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, pp.124–141, Jul. 1999.
[16]S. Boutami,; M. Fall, , “Calculation of Free-Space Periodic Green’s Function Using Equivalent Finite Array,” IEEE Transactions on Antennas and Propagation.,Vol. 60, pp.4725-4731,2012.
[17]D. S. Weile and E. Michielssen, “Genetic algorithm optimization applied to electromagnetics: a review ,” IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, pp. 343- 353, Mar. 1997.
[18]J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Transactions on Antennas and Propagation, Vol. 52, No. 3, pp. 397–407, Feb. 2004.
[19]P. Rocca, G. Oliveri, and A. Massa,“Differential Evolution as Applied to Electromagnetics ,” IEEE Antennas and Propagation Magazine, Vol. 53, No. 1, pp. 38–49, May. 2011.
[20]R. M. Lewis, "Physical optics inverse diffraction," IEEE Trans. Antennas Propagat., vol. 17, pp. 308-314, May 1969.
[21]N. N. Bojarski, "A survey of the physical optics inverse scattering identity," IEEE Trans. Antennas Propagat., vol. 30, pp. 980-989,Sept. 1982.
[22]T. H. Chu and N. H. Farhat, "Polarization effects in microwave diversity imaging of perfectly conducting cylinders," IEEE Trans. Antennas Propagar., vol.37, pp. 235-244, Feb. 1989.
[23]D. B. Ge, "A study of Lewis method for target-shape reconstruction," Inverse Problems, vol. 6, pp. 363-370, June 1990.
[24]D. Colton, H. Haddar and Piana," The linear sampling method in inverse electromagnetic scattering theory," Inverse Problems, vol. 19, pp. 105-137, December 2003.
[25]M. Brignone and M. Piana, " The use of constraints for solving inverse scattering problems: physical optics and the linear sampling method," Inverse Problems, vol. 21, pp. 207-222, February 2005.
[26]T. H. Chu and D. B. Lin, "Microwave diversity imaging of perfectly conducting objects in the near-field region," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 480-487, Mar. 1991.
[27]D. Van Orden,;V. Lomakin, “Rapidly Convergent Representations for Periodic Green’s Functions of a Linear Array in Layered Media,” IEEE Transactions on Antennas and Propagation., vol 60, issue 2, pp.870 - 879, 2012.
[28]G. W. Hohmann, "Electromagnetic scattering by conductors in the earth near a line source of current," Geophysics, vol. 36, pp. 101-131,Feb. 1971.
[29]N. Osumi and K. Ueno, "Microwave holographic imaging of underground objects," IEEE Trans. Antennas Propagat., vol. AP-33,pp. 152-159, Feb. 1985.
[30]L. Chommeloux, C. Pichot, and J. C. Bolomey, "Electromagnetic modeling for microwave imaging of cylindrical buries inhomogeneities," IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp. 1064-1076, Oct. 1986.
[31]B. Duchene, D. Lesselier, and W. Tabbara, "Acoustical imaging of 2D fluid targets buried in a half-space: a diffraction tomography approach," IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. UFFC-34, pp. 540-549, Sept. 1987.
[32]W. Tabbara, B. Duchene, C. Pichot, D. Lesselier, L. Chommelous,and N. Joachimowicz, "Diffraction tomography: contribution to the analysis of some applications in microwaves and ultrasonics, "Inverse Problems, vol. 4, pp. 305- 331, May 1988.
[33]R. F. Harrmgton, Field Computation by Moment Method, New York: Macmillan, 1968.
[34]T. Moriyama, Z. Meng, and T. Takenaka, "Forward-backward time-stepping method combined with genetic algorithm applied to breast cancer detection", Microwave and Optical Technology Letters, Vol. 53, No. 2, pp.438-442, 2011.
[35]R. Persico, R. Bernini, and F. Soldovieri, “The Role of the Measurement Configuration in Inverse Scattering From Buried Objects Under the Born Approximation,” IEEE Transactions on Antennas and Propagation, Vol. 53, No.6, pp. 1875-1887, Jun. 2005.
[36]X. Chen, K. Huang and X.-B. Xu, “Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method:” Progress In Electromagnetic Research. PIER 53, pp. 283-298, 2005.
[37]A. Massa, D. Franceschini, G. Franceschini, M. Pastorino, M. Raffetto, and M. Donelli, “Parallel GA-Based Approach for Microwave Imaging Applications,” IEEE Transaction on Antennas and Propagation, Vol. 53, No. 10, pp. 3118 - 3127, Oct. 2005.
[38]R A. Wildman and D S. Weile, “Greedy Search And A Hybrid Local Optimization/Genetic Algorithm For Tree-Based Inverse Scattering,” Microwave and Optical Technology Letters, Vol. 50, No. 3, pp. pp. 822-825, Mar. 2008.
[39]A. Saeedfar, and K. Barkeshli, “Shape reconstruction of three-dimensional conducting curved plates using physical optics, number modeling, and genetic algorithm, ” IEEE Transaction on Antennas and Propagation, Vol. 54, No. 9, 2497-2507, Sep. 2006.
[40]A. Semnani, I.T. Rekanos, M. Kamyab, T.G. Papadopoulos, “Two-Dimensional Microwave Imaging Based on Hybrid Scatterer Representation and Differential Evolution,” IEEE Transaction on Antennas and Propagation, Vol. 58, No. 10, pp. 3289 - 3298, Oct. 2010.
[41]A. Qing, “Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems,” IEEE Transactions on Geoscience and Remote Sensing, Vol 44, Issue 1, pp. 116 – 125, Jan. 2006
[42]K. A. Michalski, “Electromagnetic Imaging of Circular-Cylindrical Conductors and Tunnels Using A Differential Evolution Algorithm,” Microwave and Optical Technology Letters, Vol. 27, No. 5, pp. 330 - 334, Dec. 2000.
[43]M. Dehmollaian, “Through-Wall Shape Reconstruction and Wall Parameters Estimation Using Differential Evolution,” IEEE Geoscience and Remote Sensing Letter, Vol. 8, 201-205, 2011.
[44]I. T. Rekanos, “Shape Reconstruction of a Perfectly Conducting Scatterer Using Differential Evolution and Particle Swarm Optimization,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 7, pp. 1967-1974, Jul. 2008.
[45]A. Semnani and M. Kamyab, “An Enhanced Hybrid Method for Solving Inverse Scattering Problems,” IEEE Transactions on Magentics, Vol. 45, No. 3, pp. 1534-1537, Mar. 2009.
[46]G. Franceschini, M. Donelli, R. Azaro and A. Massa, “Inversion of Phaseless Total Field Data Using a Two-Step Strategy Based on the Iterative Multiscaling Approach,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No.12, pp. 3527-3539, Dec. 2006.
[47]M. Donelli and A. Massa, ”Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers” IEEE Transactions on Microwave Theory and Techniques Vol. 53, Issue 5, pp.1761 – 1776, May 2005.
[48]T. Huang and A. S. Mohan,” Application of particle swarm optimization for microwave imaging of lossy dielectric objects” IEEE Transaction on Antennas and Propagation, Vol. 1B, pp.852 – 855, 2005.
[49]M. Donelli, G.. Franceschini, A. Martini and A. Massa,” An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems” IEEE Transactions on Geoscience and Remote Sensing, Vol 44, Issue 2, pp.298 – 312, Feb. 2006.
[50]M. Donelli, D. Franceschini, P. Rocca and A. Massa,” Three-Dimensional Microwave Imaging Problems Solved Through an Efficient Multiscaling Particle Swarm Optimization” IEEE Transactions on Geoscience and Remote Sensing, Vol 47, No. 5, pp.1467 – 1481, May. 2009.
[51]Y. Xia, G. Feng and J. Wang, “A Novel Recurrent Neural Network for Solving Nonlinear Optimization Problems With Inequality Constraints”, IEEE Transactions on Neural Network, Vol. 19, No. 8, pp. 1340 – 1353, Aug. 2008.
[52]C. C. Chiu, C. H. Sun and W. L. Chang “Comparison of Particle Swarm Optimization and Asynchronous Particle Swarm Optimization for Inverse Scattering of a Two- Dimensional Perfectly Conducting Cylinder.”, International Journal of Applied Electromagnetics and Mechanics Vol. 35, No.4, pp. 249-261,Apr. 2011.
[53]A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,”, IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, pp.124–141, Jul. 1999.
[54] R. Storn, and K. Price, “Differential Evolution - a Simple and Efficient
Adaptive Scheme for Global Optimization over Continuous Spaces,”
Technical Report TR-95-012, International Computer Science Institute,
Berkeley, 1995.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-07-17公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-07-17起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信