淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0407201312312200
中文論文名稱 結合功率法則之適應性半盲蔽式通道估測器在混合式非補零展頻碼的多輸入-多輸出分碼多工系統
英文論文名稱 Adaptive Semi-blind Channel Estimation Associated with Power Method for Hybrid Non-zero Padding Assisted Space-time Block Coded MIMO-CDMA Systems
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 101
學期 2
出版年 102
研究生中文姓名 黃王志
研究生英文姓名 Wang-Chih Huang
學號 600440266
學位類別 碩士
語文別 英文
口試日期 2013-06-27
論文頁數 64頁
口試委員 指導教授-陳巽璋
委員-易志孝
委員-劉鴻裕
中文關鍵字 分碼多工  時-空間編碼  多輸入多輸出  相位模糊  功率法則 
英文關鍵字 CDMA  Space-Time Block Code  MIMO  Phase Ambiguity  Power Method 
學科別分類 學科別應用科學電機及電子
中文摘要 在傳統盲蔽式通道估測法中,相位模糊 (phase ambiguity)是一個潛在的問題。 目前文獻在探討其採用的盲蔽式通道估測方法時,都忽略此問題或假設通道相位的資訊在接收端為已知,實際上在接收端無法得知真實通道相位。在Chern和Cheng所發表的文獻中,他們結合時間-空間編碼 (ST-BC)與非補零 (None zero-padding)冗餘符碼的概念,設計出一組混合式展頻碼 (Hybrid padding chip-spreading codes),以解決相位模糊的問題,並抑制符碼區塊間干擾 (Inter-block interference; IBI)。 他們所採用的時間-空間編碼架構,是假設傳送端為兩根天線,而接收端有N根接收天線。他們的目的是希望估測通道向量的第一個參數值以取得相位初始值,因此僅取得其中一根天線之通道相位初始值。本論文延伸先前文獻中提出之方法並做改進,以獲取兩根天線之相關通道向量的完整參數初始值,並利用功率法則 (Power method) 求得相關自相關矩陣 (Autocorrelation matrix)的最小特徵值所對應之特徵向量,使通道參數的估測能快速收斂。
由於是採用時間-空間編碼架構,本論文所提出的改進方法,是將文獻中原本的混合式非補零展頻碼在兩根天線之間做交替(Interleave) 使用。即在第一個時間區塊 (Time block) 採用如同文獻中之作法,以取得通道資訊 (h1) 的初始值,在第二個時間區塊,我們將原本設計插入在第一根天線之混合式非補零展頻碼向量,改置入於第二根天線,以取得另一組通道資訊 (h2) 的初始值。相較於先前文獻的作法,其所得之通道資訊初始值較以前完整。 結合功率法則所得到的通道估測能更快收斂。最後,透過從接收到的訊號移除冗餘符碼,可以進一步提高系統效能並抑制多用戶干擾及符碼間干擾。
英文摘要 The direct-sequence code-division multiple-access (DS-CDMA) is one of the primary modulation techniques, which has been widely studied in the literature. In the downlink, these systems rely on the orthogonality of the spreading codes to separate the different user signals. By exploiting the spatial diversity of multiple transmit-antenna and receive-antenna (MIMO), channel capacity of the DS-CDMA systems be increased effectively. Moreover, MIMO systems with the space-time coding (STC) can be used to counteract the channel fading effect due to multipath propagation. A space-time (ST) code is a bandwidth-efficient method that can improve the reliability of data transmission in MIMO systems. By doing so, more reliable detection can be obtained at the receiver. In additions, the time-varying nature of the channel owing to user mobility is another difficulty in multiuser detection in multipath channel environments, which introduces severed ISI (or IBI) effects. To deal with the above-mentioned problems, recently, adaptive interference suppression techniques based on the linearly constrained constant modulus (LCCM) approaches for multiuser detection have been considered as powerful methods for MIMO-CDMA systems; it outperforms the conventional detector under all power distributions. Since the adaptive LCCM filtering algorithm is a blind adaptive technique used for blind channel estimation and desired symbols recovery. It is well-known that all blind algorithms have inherent phase ambiguity problem.
We present new ST block coding (ST-BC) MIMO-CDMA transceiver framework associated with the hybrid non-zero padding assisted chip-spreading codes in the transmitter. It is extended from Chern’s work that allows us to perform adaptive semi-blind channel estimation for block symbol recovery in the receiver associated with power method during channel estimation. It avoid the phase ambiguity problem and suppressing the effects of IBI as well as MAI. In the MIMO-CDMA receiver with two-branch filterbank, we build on the generalized sidelobe canceller (GSC) structure associated with the RLS based on the min/max criterion (or Capon approach) for implementing the adaptive semi-blind LCCM receiver. We will verify the merits and the advantages of the proposed scheme in this thesis and show the robustness in turns of performance improvement against inaccuracies in the acquisition of the desired user’s code/timing, referred to as the mismatch problem.
論文目次 TABLE OF CONTENTS
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 CONVENTIONAL BLIND CAPON RECEIVER ST-BC MIMO-CDMA SYSTEM 6
2.1 Introduction 6
2.2 Review of Space-Time Block Code (ST-BC) 6
2.3 Downlink Space-Time Block Coded MIMO-CDMA in Frequency-Flat Channels 9
2.4 MMSE Receiver and Blind Capon Receiver 13
CHAPTER 3 NEW SEMI-BLIND ADAPTIVE ST-BC MIMO-CDMA TRANSCEIVER DESIGN WITH HYBRID USER SIGNATURES 18
3.1 Introduction 18
3.2 Hybrid Non-zero Pre-coded ST-BC MIMO-CDMA Receiver in Multipath Channels 19
3.3 MIMO CM-GSC-RLS Algorithm with Capon Channel Estimation 32
3.4 Semi-blind Channel Estimation with Power Method 39
3.4.1 Method to resolve the problem of phase ambiguity 40
3.5 System Model in Time-Varying Channels 41
CHAPTER 4 SIMULATION RESULTS 44
4.1 Preliminaries 44
4.2 Simulation Results and Some Observations 45
CHAPTER 5 CONCLUSIONS 55
Appendix A Method of Selecting in MIMO CM-GSC-RLS Algorithm 57
Appendix B Power Method 59
References 60
LIST OF FIGURES
Fig.2.1 System configuration of two-branch MRRC. 8
Fig.2.2 System configuration of ST-BC. 8
Fig.2.3 Configuration of MIMO-CDMA systems with ST-BC 10
Fig.3.1 CDMA systems with hybrid non-zero pre-coded (the kth user) 20
Fig.3.2 Hybrid non-zero pre-coded MIMO-CDMA Receiver in multipath channel 23
Fig 3.3 Illustration of ISI in multipath channels in time slot 2t−1 (Transmitted Symbol 26
from Tx1) 26
Fig 3.4 Illustration of ISI in multipath channels in time slot 2t (Transmitted Symbol 26
from Tx1) 26
Fig 3.5 Illustration of ISI in multipath channels in time slot 2t+1 (Transmitted Symbol 27
from Tx2) 27
Fig 3.6 Illustration of ISI in multipath channels in time slot 2t+2 (Transmitted Symbol 27
from Tx2) 27
Fig.3.7 Configuration of the MIMO CM-GSC-RLS algorithm 35
Fig.4.1 SINR comparison of different receivers without mismatch effect, L=3, N=1 49
Fig.4.2 BER comparison of different receivers without mismatch effect, L=3, N=1 49
Fig.4.3 BER comparison of different receivers without mismatch effect, L=3, N=2 50
Fig.4.4 SINR comparison of different receivers with mismatch effect, L=3, N=1 50
Fig.4.5 BER comparison of different receivers with mismatch effect, L=3, N=1 51
Fig.4.6 BER comparison of different receivers with mismatch effect, L=3, N=2 51
Fig.4.7 BER of different receivers without mismatch effect in time-varying channels, L=3, N=1 52
Fig.4.8 BER of different receivers with mismatch effect in time-varying channels, L=3, N=1 52
Fig.4.9 The number of iteration with the initial vector all unity 53
Fig.4.10 The number of iteration with the initial vector is channel information 53
Fig.4.11 Tracking ability of 54
LIST OF TABLES
Table 3.1 Transmitted symbols in six time intervals and different Tx 20
Table 3.2 Summary of the CM-GSC-RLS Algorithm with Method of Selecting for MIMO-CDMA receiver 38
Table 3.3 Transmitted symbols and corresponding channels in time-varying case 43
參考文獻 [1] Z. Liu, G. B. Giannakis, B. Muquet, and S. Zhou, “Space-Time Coding for Broadband Wireless Communications,” Wireless Commun. Mobile Comput., vol. 1, no. 1, pp. 35-53, Jan.-Mar. 2001.
[2] A. F. Naguib, N. Seshadri, and A. R. Calderbank, “Increasing Data Rate over Wireless Channels,” IEEE Signal Processing Mag., vol. 17, no. 3, pp. 76-92, May 2000.
[3] A. Jalali and P. Mermelstein, “Effects of Diversity, Power Control, and Bandwidth on the Capacity of Microcellular CDMA Systems,” IEEE Journal on Selected Areas in Communications, Vol. 12, no. 5, pp. 952-961, Jun. 1994.
[4] G. J. Foschini and M. J. Gans, “On Limits of Wireless Communication in A Fading Environment when Using Multiple Antennas,” Wireless Personal Communications, vol. 6, no. 3, pp. 311-335, Mar. 1998.
[5] S. M. Alamouti, “A Simple Transmit Diversity Techniques for Wireless Communications,” IEEE J. Select. Areas Commun., vol. 16, no. 8, pp. 1451-1458, Oct. 1998.
[6] V. Tarokh, N. Seshadri and A. R. Calderbank, “Space-Time Codes for High Data Rate Wireless Communication: Performance Criterion and Code Construction,” IEEE Trans. Inform. Theory, vol. 44, no. 2, pp. 744-765, Mar. 1998.
[7] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-Time Block Codes from Orthogonal Designs,” IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1456-1467, July 1999.
[8] B. L. Hughes, “Differential Space-Time Modulation,” IEEE Trans. Inform. Theory, vol. 46, no. 7, pp. 2567-2578, Nov. 2000.
[9] H. Li, X. Lu, and G. B. Giannakis, “Capon Multiuser Receiver for CDMA Systems With Space-Time Coding,” IEEE Trans. Signal Processing, vol. 50, no. 5, pp. 1193-1204, May 2002.
[10] S. Shahbazpanahi et al., “Minimum Variance Linear Receivers for Multiaccess MIMO Wireless Systems with Space-Time Block Coding,” IEEE Trans. Signal Processing, vol. 52, no. 12, pp. 3306-3313, Dec. 2004.
[11] J. L. Yu and I. T. Lee, “MIMO Capon Receiver and Channel Estimation for Space-Time Coded CDMA Systems,” IEEE Trans. Wireless Commun., vol. 5, no. 11, pp. 3023-3028, Nov. 2006.
[12] G. N. Karystinos and D.A Pados,” On DPSK demodulation of DS/CDMA signals” in Proc. IEEE GLOBECOM Commun. Theory symp,. Rio de Janeiro, Brazil, Dec.1999, pp. 2487~2492.
[13] S. J. Chern and C. Y. Chang, “Adaptive MC-CDMA Receiver with Constrained Constant Modulus IQRD-RLS Algorithm for MAI Suppression,” Signal Process., vol. 83, no. 10, pp. 2209-2226, Oct. 2003.
[14] J. Miguez and L. Castedo, “A Constant Modulus Blind Adaptive Receiver for Multiuser Interference Suppression,” Signal Process., vol. 71, no. 1, pp. 15-27, Nov. 1998.
[15] S. J. Chern and C. Y. Chang, “Direct Implementation of Space-Time MC-CDMA Receiver with Adaptive Linearly Constrained Constant Modulus Algorithm,” IEICE Trans. Commun., vol. E88-B, no. 2, pp. 698-705, Feb. 2005.
[16] J. Miquez and L. Castedo, “A Linearly Constrained Constant Modulus Approach to Blind Adaptive Multiuser Interference Suppression,” IEEE commun. Lett., vol.2, no.8, pp.217-219, Aug. 1998.
[17] J. Miguez and L. Castedo, “A Constant Modulus Blind Adaptive Receiver for Multiuser Interference Suppression,” Signal Process., vol. 71, no. 1, pp. 15-27, Nov. 1998.
[18] C. R. Johnson Jr., P. Schniter, T. J. Endres, J. D. Behm, D. R. Brown, and R. A. Casas, “Blind Equalization Using the Constant Modulus Criterion: A Review,” Proc. IEEE, vol. 86, no. 10, pp. 1927-1950, Oct. 1998.
[19] C. Xu and G. Feng, “Comments on: A Linearly Constrained Constant Modulus Approach to Blind Adaptive Multiuser Interference Suppression,” IEEE Commun. Lett., vol. 4, no. 9, pp. 280-282, Sep. 2000.
[20] J. P. de Villiers and L. P. Linde, “On the Convexity of the LCCM Cost Function for DS-CDMA Blind Multiuser Detection,” IEEE Commun. Lett., vol. 8, no. 6, pp. 351-353, Jun. 2004.
[21] C. Xu, G. Feng, and K. S. Kwak, “A Modified Constrained Constant Modulus Approach to Blind Adaptive Multiuser Detection,” IEEE Trans. Commun., vol. 49, no. 9, pp. 1642-1648, Sep. 2001.
[22] S. J. Chern and C. H. Sun, “Constrained Adaptive Constant Modulus RLS Algorithm for Blind DS-CDMA Multiuser Receiver under Time-Varying Channels,” IEICE Trans. Fundamentals, vol. E90-A, no. 7, pp. 1452-1461, July. 2007
[23] S. Haykin, Adaptive Filter Theory, 4th ed. Upper Saddle River, NJ: Prentice-Hall, 2002.
[24] M. K. Tsatsanis and Z. Xu, “Performance Analysis of Minimum Variance CDMA Receiver,” IEEE Trans. Signal Processing, vol. 46, no. 11, pp. 3014-3022, Nov. 1998.
[25] V. Nagesha and S. Kay, “On Frequency Estimation with IQML Algorithm,” IEEE Trans. Signal Processing, vol. 42, no. 9, pp. 2509-2513, Sep. 1994.
[26] E. Aktas and U. Mitra “ Semiblind Channel Estimation for CDMA Systems” IEEE Trans. Commun., vol 52, pp. 1102 – 1112, July 2004
[27] A. Naveed; M.A.S ,Choudhry; I.M.Qureshi and T.A. Cheema “On Phase Ambiguity of Real Channels: Blind Channel Equalization Using Second Order Statistics” ICAST pp. 65 - 67 Sept. 2006
[28] R. C. de Lamare and R. Sampaio-Neto, “Blind Adaptive Code-Constrained Constant Modulus Algorithms for CDMA Interference Suppression in Multipath Channels,” IEEE Commun. Lett., vol. 9, no. 4, pp. 334-336, Apr. 2005.
[29] R. C. de Lamare and R. Sampaio-Neto, “Blind adaptive space-time block-coded receivers for DS-CDMA systems in multipath channels based on the constant modulus criterion” International telecommun. Symposium, 3-6 pp. 807-812, Sep.. 2006.
[30] R. Sumit. and C. Li “A subspace blind channel estimation method for OFDM systems without cyclic prefix” IEEE trans. Wireless Commun., vol. 1, pp:572-579, Oct. 2002.
[31] G. N. Karystinos and D. A. Pados, “Supervised phase correction of blind space-Time DS-CDMA Channel Estimates” IEEE Trans. Comm., vol.55, pp. 584-592, March. 2007.
[32] S. Shahbazpanahi , A. B. Gershman , G. B. Giannakis “Semi-blind multi-user MIMO channel estimation based on Capon and MUSIC techniques” ICASSP, Vol. 4, pp: 773-776, March. 2005.
[33] W. C. Jakes Jr., Microwave Mobile Communications. NY: Wiley-Interscience, 1974.
[34] Shiunn-Jang Chern, and Ming-Kai Cheng, “New ST-BC MIMO-CDMA Transceiver with Augmented User Signatures”, IEEE 2010 International Symposium on Intelligent Signal Processing and Communication Systems (lSPACS 2010), pp. 133-136, Dec. 06- 08.
[35] Xenofon G. Doukopoulos, and George V. Moustakides, “Adaptive Power Techniques for Blind Channel Estimation in CDMA Systems”, IEEE Transactions on Signal Processing, vol. 53, no. 3, March 2005.
[36] Yi-Sheng Chen, and Ching-An Lin, “Blind Channel Identification for MIMO Single Carrier Zero Padding Block Transmission Systems”, Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 55, pp.1571-1579, July 2008.
[37] Y. Li, S. McLaughlin, X. Wei and D.G.M. Cruickshank, “Channel estimation and interference cancellation in CP–CDMA systems”, Communications, IET, vol. 1, pp.106-112, Feb. 2007.
[38] Lei Cao, Guoping Xu, Xin Zhang, and Dacheng Yang, “Partial Parallel Interference Cancellation with Frequency Domain Equalization for Cyclic-Prefix CDMA Downlink”, Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007. IEEE 18th International Symposium on, pp. 1-5 Sep. 2007
[39] Francois Horlin, Andre Bourdoux, Eduardo Lopez-Estraviz, and Liesbet Van der Perre, “Single-Carrier FDMA or Cyclic-Prefix CDMA With Optimized Spreading Sequences? ”, Vehicular Technology, IEEE Transactions on, vol. 57, pp. 3230-3234, Sep. 2008.
[40] Jing Xu, Haifeng Wang, Shixin Cheng, Ming Chen, and Zhiyong Bu, “Adaptive frequency-domain interference cancellation and channel equalizer for MIMO-CP-CDMA systems”, Wireless Communications and Networking Conference, 2006. WCNC 2006. IEEE, vol. 3, pp. 1573-1577, April 2006.
[41] Y. H. Zeng, and T. S. Ng, “A semi-blind-channel estimation method for multiuser mutianntena OFDM system”, IEEE Trans. Signal Process., vol. 52, no. 5, pp. 1419-1429, May 2004.
[42] Y. S. Chen, and C. A. Lin, “Blind identification of MIMO channels in zero-padding block-transmission system”, IEEE Trans. Signal Process., vol. 55, no. 2, pp. 764-772, Feb. 2007.
[43] J. Y. Wu, and T. S. Lee, “Periodic-modulation-based blind-channel identification for the single-carrier block transmission with frequency-domain equalization”, IEEE Trans. Signal Process., vol. 54, no. 3, pp. 1114-1130, March 2006.
[44] Benvenuto, N., and Tomasin, S.: “On the comparison between OFDM and single carrier modulation with a DFE using a frequency-domain feedforward filter”, IEEE Trans. Commun., 2002, 50, (6), pp. 947–955.
[45] Falconer, D., Ariyavisitakul, S.L., Benyamin-Seeyar, A., and Edison, B.: “Frequency domain equalisation for single-carrier broadband wireless systems”, IEEE Commun. Mag., 2002, pp. 58–66.
[46] Schramm, P., and Mu‥ller, R.: “Pilot symbol assisted BPSK on Rayleigh fading channels with diversity: performance analysis and parameter optimization”, IEEE Trans. Commun., 1998, 46, (12), pp. 1560–1563.
[47] Schramm, P.: ‘Analysis and optimisation of pilot-channel-assisted BPSK for DS-CDMA systems’, IEEE Trans. Commun., 1998, 46, (9), pp. 1122–1124.
[48] S. Tomasin and N. Benvenuto. “Equalization and Multiuser Interference Cancellation in CDMA Systems,” in Proc. Wireless Personal Mobile Communication summit (WPMC 2003), vol. 1, pp. 10-14, Oct. 2003.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-07-25公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-07-25起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信