§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0407201218480900
DOI 10.6846/TKU.2012.00158
論文名稱(中文) 金屬絡合染料製程廢水之螯合金屬特性:由螯合鐵量推估廢水中螯合官能基之去除率與處理方法探討
論文名稱(英文) Metal-chelating character of wastewater generated from metal-complex dye manufacturing processes: Using chelated iron concentration to evaluate the removal efficiency of chelating functional group and treatment options
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 2
出版年 101
研究生(中文) 張立瑋
研究生(英文) Li-Wei Chang
學號 600480080
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2012-06-22
論文頁數 77頁
口試委員 指導教授 - 李奇旺
委員 - 李柏青
委員 - 陳孝行
關鍵字(中) 金屬絡合染料製程廢水
混凝
螯合
高級氧化法
勻相類Fenton法
關鍵字(英) wastewater generated from metal-complex dye manufacturing processes
coagulation
AOP
chelate
homogeneous Fenton-like
第三語言關鍵字
學科別分類
中文摘要
研究中所談之染料製程廢水,為染料製程廢水為在染料之製作過程中所排放,其中含有合成此種染料所必須加入之各種化學物質,以及經過調整酸鹼度或溫度等程序,因此製程廢水應含有許多合成染料之過程中所產生的過渡化合物,並且除了含有結構較完整之染料分子,還有一些還未完成染料分子之單體結構。
混凝處理後,有機物去除效率不佳,且當pH值越低,其色度越高,測溶解鐵後發現廢水具有螯合金屬的能力。而後再以已形成之氫氧化鐵吸附有機物,有機物的去除效率也不佳。因此廢水混凝效果不佳的因應為廢水本身大部分為親水性較佳之有機物。
螯合金屬則為屬絡合染料製程廢水之特性,以C/Fe3+顯示處理後螯合之官能基之破壞情形。原水之C/Fe3+=15,生物處理後C/Fe3+=29,過硫酸鹽加熱後C/Fe3+=13,由此可知經由生物處理後,能破壞大部分之螯合金屬的官能基,且TOC也去除一半以上,因此生物處理可作為廢水之前處理,再結合其他處理程序。
    本研究之處理方式為利用類似於Homogeneous Fenton-like,為亞鐵離子與廢水中螯合金屬之官能基螯合,亞鐵離子能因被螯合而呈溶解態,均勻地分布於廢水中,並能於中性時反應。因此實驗進行於pH7,並與進行於pH3比較。實驗結果為過氧化氫於pH3與pH7下,其隨時間之消耗量相同,但有機物與色度去除率於pH3時較佳 ,而於pH7時也能夠去除少部分之有機物(pH3之TOC去除率約20%,pH7約為5%;色度於pH3時去除率約70%,pH7時去除率約10%)。於pH7時,未被螯合之亞鐵離子逐漸氧化成三價鐵離子,一部分與過氧化氫形成錯合物 (Fe2O3.nH2O)沉澱,一部分則與氫氧根離子結合,形成氫氧化鐵沉澱,則無法再進入Fenton反應之循環中。因此要使用Homogeneous Fenton-like之方法處理時,應考慮能螯合亞鐵離子的量,使較多之亞鐵離子被螯合後,則不受到pH值之影響。
英文摘要
In this study, Dye manufacturing processes wastewater (DMPW) is the effluent generated from synthesizing process of dyes, consisting of intermediated compounds, monomer structure, and dyes molecules.
Coagulation is found to be an inefficient process for removing organic matters. Color of treated water is increased with the decreasing coagulation pH. Measured dissolved iron after coagulation allowed one to evaluate the content of functional groups of organics which can chelate iron from coagulant. Organic removal efficiency is also not very well when pre-precipitated ferric hydroxide was used as adsorbent. It is concluded that DMPW contains hydrophilic functional groups as the result that coagulation is not able to remove the most of the organic matters.
One feature of DMPW is its metal-chelating ability. The C/chelated-Fe3+ molar ratio is used to explore the destruction of chelating functional groups after various treatment processes. The C/chelated-Fe3+ molar ratios of raw DMPW, biologically- treated DMPW, and thermo-persulfate treated DMPW are 15, 29, and 13, respectively. Since chelating functional groups and TOC were reduced after biological treatment, biological treatment process can be employed as a pretreatment process to improve degradation efficiency of DMPW.
In this study, the chelating characteristic of DMPW was exploited with Homogeneous Fenton-like process being tested. The potential of chelating functional groups to enhance oxidation efficient in the Fe(III)/H2O2 system under neutral pH condition was compared with the same process at pH 3. Our results show that the trend of residual hydrogen peroxide concentration in neutral and acidic pHs were the same during a 3-hr reaction. A higher degree of organic matters and colour removal were observed at pH3. The removal efficiencies of TOC are 20% and 5% under pH 3 and pH 7 conditions, respectively, while the removal efficiencies of color are 70% and 10%, respectively. Under pH 7 condition, unchelated ferrous ions are oxidized to ferric ions gradually, and ferric ions form complexes (Fe2O3.nH2O) and precipitate as ferric hydroxide. The precipitated ferric ions could not be used efficiently in Fenton cycle.
第三語言摘要
論文目次
目錄
目錄	I
List of Figure	IV
List of Table	VII
第一章	序論	1
1.1研究之背景及目的	1
1.1.1研究緣由	1
1.1.2研究之目的	3
第二章	文獻回顧	4
2.1	金屬絡合染料	4
2.1.1 金屬絡合原理	4
2.1.2金屬絡合染料用途	6
2.1.3金屬絡合染料之處理研究	6
2.2混凝機制與處理染料之研究	13
2.2.1 混凝	13
2.2.2 混凝劑之種類及使用時機	14
2.2.3混凝程序處理染料之研究	14
2.3 高級氧化處理程序(AOP)機制與處理染料之研究	16
2.3.1 Fenton	16
2.3.2 過硫酸鹽 (Persulfate , S2O82-)	18
2.3.3 Homogeneous Fenton-like	19
2.4 連續接觸式曝氣法	22
第三章	實驗材料設備與方法	23
3.1實驗流程	23
3.2實驗材料與設備	24
3.2.1實驗試劑	24
3.2.2實驗設備	27
3.3分析方法	28
3.3.1總鐵離子量測方法	28
3.3.2亞鐵離子量測方法	29
3.3.3過氧化氫量測方法	30
3.3.4水中化學需氧量檢測方法	31
3.3.5水中生物化學需氧量檢測方法	32
3.3.6水中溶氧檢測方法	33
3.4研究主題分述	34
3. 4.1金屬絡合染料製程廢水之原水混凝	34
3. 4.2預形成之Fe(OH)3吸附染料製程廢水	34
3. 4.3金屬絡合染料製程廢水特性實驗-原水	35
3. 4.4金屬絡合染料製程廢水特性實驗-Persulfate加熱	36
3. 4.5金屬絡合染料製程廢水特性實驗-連續接觸式曝氣法	36
3. 4.6 Homogeneous Fenton-like	38
第四章	結果與討論	42
4.1金屬絡合染料製程廢水之原水混凝與特性	42
4.1.1ADMI及COD去除效率	42
4.1.2混凝後之溶解態鐵量	44
4.1.3氫氧化鐵吸附試驗	46
4.2金屬絡合染料製程廢水特性	49
4.2.1金屬絡合染料製程廢水原水特性	49
4.2.2染料製程廢水經生物處理後之特性	53
4.2.3染料製程廢水經Persulfate加熱後之特性	55
4.3金屬絡合染料製程廢水之處理方法探討-Homogeneous Fenton-like	58
4.3.1金屬絡合染料製程廢水之螯合亞鐵離子	58
4.3.2 金屬絡合染料製程廢水處理方法探討-Fenton/ Homogenous Fenton-like	61
第五章	結論	65
5.1結論	65
5.1.1混凝與氫氧化鐵吸附	65
5.1.2特性探討	66
5.1.3 依特性之處理方法探討	67
5.2建議	68
5.2.1混凝與氫氧化鐵吸附	68
5.2.2特性探討	68
5.2.3依特性之處理方法探討	68
Reference	70

 
List of Figure
Figure 1. Chemical structure of the metal complex dyes:A. The Neutral Blue BNL,C20H15N5O5S.Cu, 500.79g/mole. B. The Neutral Pink BL, C32H24N12O12S2.Cr.Na, 907.79 g/mole. Adapted from [25].	4
Figure 2. Experiment process	23
Figure 3. The calibration curve of Fe concentration measured by an atomic absorption spectrometer.	28
Figure 4. The calibration curve of Fe2+ concentration measured by UV-Vis Spectrophotometer.	30
Figure 5. The calibration curve of H2O2 concentration measured by UV-Vis Spectrophotometer.	31
Figure 6. The contact aerator.	37
Figure 7. The experimental flow chart of Homogeneous Fenton-like and Fenton treatment process.	41
Figure 8. The effect of ADMI and COD on coagulation with 500 and 1000 mg/L Fe3+ under various pH. Error bars represent the standard deviation of triplicate experiments.	43
Figure 9. Dissolved Fe3+ concentration as a function of pH 3~ 7 for 500 and 1000 mg/L as Fe3+ and in DMPW and DI water. Error bars represent the standard deviation of triplicate experiments.	45
Figure 10. COD removal as Fe3+ precipitated for 500mg/L and 1000mg/L Fe3+ added after coagulation in pH3~7. Error bars represent the standard deviation of triplicate experiments.	46
Figure 11. TOC (mg/L) and ADMI as Fe(OH)3 (mg/L) added under pH7.	48
Figure 12. TOC (mg/L) and ADMI as coagulation and adsorption process.	49
Figure 12. Dissolved Fe3+ concentration as a function of Fe3+ added as various TOC concentrations in 3151, 2368, 1579, 789, 0 mg/L DMPW. Error bars represent the standard deviation of triplicate experiments.	51
Figure 13. Dissolved Fe3+ concentration as a function of TOC for the saturating dissolved Fe3+ in multiple concentrations of dye. Error bars represent the standard deviation of triplicate experiments.	52
Figure 14. Dissolved Fe3+ -mmole/L as a function of C-mmole/L for the saturating dissolved Fe3+ in multiple concentrations of dye. Error bars represent the standard deviation of triplicate experiments.	52
Figure 15. Dissolved Fe3+ concentration after biological treatment as a function of Fe3+ added as various TOC concentrations in 618, 464, 309, 155 mg/L DMPW. Error bars represent the standard deviation of triplicate experiments.	54
Figure 16. Dissolved Fe3+ concentration as a function of TOC for the saturating dissolved Fe3+ in multiple concentrations of dye after biological treatment.	54
Figure 17. Dissolved Fe3+ -mmole/L as a function of C-mmole/L for the saturating dissolved Fe3+ in multiple concentrations of dye after biological treatment .	55
Figure 18. Dissolved iron concentration as a function of Fe3+ added under various sodium persulfate concentrations of 0, 500, 5000, 10000 mg/L heated in 90℃and 270 mins for treating 25%-diluted DMPW. Error bars represent the standard deviation of triplicate experiments.	56
Figure 19. Dissolved iron concentration as a function of Fe3+ added under various sodium persulfate concentrations of 0, 500, 5000, 10000 mg/L heated in 90℃and 270 mins for treating 25%-diluted DMPW. Error bars represent the standard deviation of triplicate experiments.	57
Figure 20. Dissolved Fe3+ -mmole/L as a function of C-mmole/L for the saturating dissolved Fe3+ in multiple concentrations of dye after AOP treatment (persulfate with heat) .	57
Figure 21. Chelated Fe2+concentration as a function of TOC for the chelating Fe2+ in 0.03mM for treating 10%-diluted DMPW.	59
Figure 22. Fe2+ chelated concentration as a function of TOC for the chelating Fe2+ in 0.03mM for treating 10%-diluted DMPW.	59
Figure 23. Chelated Fe2+ -mmole/L as a function of C-mmole/L for the chelating Fe2+ in 0.03mM for treating 10%-diluted DMPW.	60
Figure 24. Residual hydrogen peroxide concentration (mg/L) as various times (min). Error bars represent the standard deviation of triplicate experiments.	63
Figure 25. TOC, ADMI, and dissolved iron concentration after Fenton process. Error bars represent the standard deviation of triplicate experiments.	64
 
List of Table
Table 1. Summary of the researches related to treatment of metal-complex dye.	6
Table 2. Operation condition and Characteristic of coagulants. Adapted from [30].	14
Table 3. Some of the researches related to Fe(II)-media-oxygen.	20
Table 4. Materials need of this investigation.	24
Table 5. The characteristic experiments.	66
Table 6. Fe2+ chelated experiments.	67
參考文獻
1.	Hunger, K., Industrial Dyes. Chemistry, Properties, Applications.2003, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2.	Khouni, I., Marrot, B., Moulin, P., and Ben Amar, R., Decolourization of the reconstituted textile effluent by different process treatments: Enzymatic catalysis, coagulation/flocculation and nanofiltration processes. Desalination. 268(1-3): p. 27-37.
3.	Lee, C., and Sedlak, D. L., A novel homogeneous Fenton-like system with Fe(III)-phosphotungstate for oxidation of organic compounds at neutral pH values. Journal of Molecular Catalysis A: Chemical, 2009. 311(1-2): p. 1-6.
4.	Li, Y., Bachas, L. G., and Bhattacharyya, D., Selected chloro-organic detoxifications by polychelate (poly(acrylic acid)) and citrate-based fenton reaction at neutral pH environment. Industrial and Engineering Chemistry Research, 2007. 46(24): p. 7984-7992.
5.	Rastogi, A., Al-Abed, S. R., and Dionysiou, D. D., Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols. Water Research, 2009. 43(3): p. 684-694.
6.	Sun, Y., and Pignatello, J. J., Chemical treatment of pesticide wastes. Evaluation of Fe(III) chelates for catalytic hydrogen peroxide oxidation of 2,4-D at circumneutral pH. Journal of Agricultural and Food Chemistry, 1992. 40(2): p. 322-327.
7.	Sun, Y., and Pignatello, J. J., Activation of hydrogen peroxide by iron(III) chelates for abiotic degradation of herbicides and insecticides in water. Journal of Agricultural and Food Chemistry, 1993. 41(2): p. 308-312.
8.	Liu, Y., Zhang, Y., Quan, X., Zhang, J., Zhao, H., and Chen, S., Effects of an electric field and zero valent iron on anaerobic treatment of azo dye wastewater and microbial community structures. Bioresource Technology, 2011. 102(3): p. 2578-2584.
9.	Gemeay, A.H., Mansour, I. A., El-Sharkawy, R. G., and Zaki, A. B., Catalytic effect of supported metal ion complexes on the induced oxidative degradation of pyrocatechol violet by hydrogen peroxide. Journal of Colloid and Interface Science, 2003. 263(1): p. 228-236.
10.	Fernandez, J., Maruthamuthu, P., and Kiwi, J., Photobleaching and mineralization of Orange II by oxone and metal-ions involving Fenton-like chemistry under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2004. 161(2-3): p. 185-192.
11.	Gemeay, A.H., Mansour, I. A., El-Sharkawy, R. G., Zaki, A. B., Kinetics of the oxidative degradation of thionine dye by hydrogen peroxide catalyzed by supported transition metal ions complexes. Journal of Chemical Technology and Biotechnology, 2004. 79(1): p. 85-96.
12.	Watanabe, N., Horikoshi, S., Hidaka, H., and Serpone, N., On the recalcitrant nature of the triazinic ring species, cyanuric acid, to degradation in Fenton solutions and in UV-illuminated TiO2 (naked) and fluorinated TiO2 aqueous dispersions. Journal of Photochemistry and Photobiology A: Chemistry, 2005. 174(3): p. 229-238.
13.	Oguz, E., Keskinler, B., and Tortum, A., Determination of the apparent ozonation rate constants of 1:2 metal complex dyestuffs and modeling with a neural network. Chemical Engineering Journal, 2008. 141(1-3): p. 119-129.
14.	Zhang, L., Su, M., Liu, N., Zhou, X., and Kang, P., Degradation of malachite green solution using combined microwave and ZnFe2O4 powder. 2009. 60: p. 2563-2569.
15.	Ozacar, M., and Şengil, I. A., Adsorption of metal complex dyes from aqueous solutions by pine sawdust. Bioresource Technology, 2005. 96(7): p. 791-795.
16.	Oguz, E., and Keskinler, B., Removal of colour and COD from synthetic textile wastewaters using O3, PAC, H2O2 and HCO3. Journal of Hazardous Materials, 2008. 151(2-3): p. 753-760.
17.	Baccar, R., Blanquez, P., Bouzid, J., Feki, M., and Sarra, M., Equilibrium, thermodynamic and kinetic studies on adsorption of commercial dye by activated carbon derived from olive-waste cakes. Chemical Engineering Journal, 2010. 165(2): p. 457-464.
18.	Ncibi, M.C., Mahjoub, B., and Seffen, M., Investigation of the sorption mechanisms of metal-complexed dye onto Posidonia oceanica (L.) fibres through kinetic modelling analysis. Bioresource Technology, 2008. 99(13): p. 5582-5589.
19.	Mohan, S.V., Ramanaiah, S. V., and Sarma, P. N., Biosorption of direct azo dye from aqueous phase onto Spirogyra sp. I02: Evaluation of kinetics and mechanistic aspects. Biochemical Engineering Journal, 2008. 38(1): p. 61-69.
20.	Yang, Y., Wang, G., Wang, B., Li, Z., Jia, X., Zhou, Q., and Zhao, Y., Biosorption of Acid Black 172 and Congo Red from aqueous solution by nonviable Penicillium YW 01: Kinetic study, equilibrium isotherm and artificial neural network modeling. Bioresource Technology, 2011. 102(2): p. 828-834.
21.	Du, L.N., Wang, S., Li, G., Yang, Y. Y., Jia, X. M., and Zhao, Y. H., Ecofriendly decolorisation of Cr-complex dye Acid Black 172 by a newly isolated Pseudomonas sp. strain DY1. Water Science and Technology, 2011. 63(7): p. 1531-1538.
22.	Aksu, Z., and Balibek, E., Effect of salinity on metal-complex dye biosorption by Rhizopus arrhizus. Journal of Environmental Management, 2010. 91(7): p. 1546-1555.
23.	Li, T., and Guthrie, J. T., Colour removal from aqueous solutions of metal-complex azo dyes using bacterial cells of Shewanella strain J18 143. Bioresource Technology, 2010. 101(12): p. 4291-4295.
24.	Aksu, Z., and Karabayir, G., Comparison of biosorption properties of different kinds of fungi for the removal of Gryfalan Black RL metal-complex dye. Bioresource Technology, 2008. 99(16): p. 7730-7741.
25.	Chen, J.X., and Yuan, X. X., Degradation of metal complex dyes in neutral aqueous solution by UV/H 2O2 process. 2009. 3: p. 248-252.
26.	Zollinger, H., Color Chemistry – Syntheses, Properties and Applications of Organic Dyes and Pigments, 2003, WILEY VCH: Switzerland.
27.	惠聰網. 旭彩化工商品名錄. 2012; Available from: http://b2b.hc360.com/supplylist/ts020p.html?brandname=%D0%F1%B2%CA%BB%AF%B9%A4.
28.	駱尚廉 and 楊萬發, 環境工程(一)自來水工程, 2ed. 2000, 臺北市: 茂昌圖書有限公司.
29.	Richards, T.D.R.a.P., Unit Operations and Processes in Environmental Engineering. 2 ed1996: Cengage Learning.
30.	歐陽嶠暉, 下水道工程學2005: 長松文化興業股份有限公司.
31.	Kim, T.-H., Park, Chulhwan, Yang, Jeongmok, and Kim, Sangyong, Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation. Journal of Hazardous Materials, 2004. 112(1-2): p. 95-103.
32.	Zhemin Shen, W.W., Jinping Jia, Jianchang Ye, Xue Feng,and An Peng, Degradation of dye solution by an activated carbon fiber electrode electrolysis system. Journal of Hazardous Materials, 2001. 84(1): p. 107-116.
33.	Al-Degs, Y., Khraisheh, M. A. M., Allen, S. J., and Ahmad, M. N., Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Research, 2000. 34(3): p. 927-935.
34.	Zahrim, A.Y., Tizaoui, C., and Hilal, N., Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: A review. Desalination. 266(1-3): p. 1-16.
35.	Bolto, B.A., Soluble polymers in water purification. Progress in Polymer Science (Oxford), 1995. 20(6): p. 987-1041.
36.	Beltran-Heredia, J., and Sanchez Martin, J., Azo dye removal by Moringa oleifera seed extract coagulation. Coloration Technology, 2008. 124(5): p. 310-317.
37.	Karadag, D., Tok, S., Akgul, E., Ulucan, K., Evden, H., and Kaya, M. A., Combining adsorption and coagulation for the treatment of azo and anthraquinone dyes from aqueous solution. Industrial and Engineering Chemistry Research, 2006. 45(11): p. 3969-3973.
38.	Kang, S.F., and Chang, H. M., Coagulation of textile secondary effluents with Fenton's reagent. Water Science and Technology, 1997. 36(12): p. 215-222.
39.	Walling, C., and Kato, S., The oxidation of alcohols by Fenton's reagent. The effect of copper ion. Journal of the American Chemical Society, 1971. 93(17): p. 4275-4281.
40.	Lindsey, M.E., and Tarr, Matthew A., Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide. Chemosphere, 2000. 41(3): p. 409-417.
41.	Meric, S., Kaptan, D., and Olmez, T., Color and COD removal from wastewater containing Reactive Black 5 using Fenton's oxidation process. Chemosphere, 2004. 54(3): p. 435-441.
42.	Benitez, F.J., Acero, J. L., Real, F. J., Rubio, F. J., and Leal, A. I., The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions. Water Research, 2001. 35(5): p. 1338-1343.
43.	Kuo, W.G., Decolorizing dye wastewater with Fenton's reagent. Water Research, 1992. 26(7): p. 881-886.
44.	Kavitha, V., and Palanivelu, K., The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere, 2004. 55(9): p. 1235-1243.
45.	Kulik, N., Panova, Y., and Trapido, M., The Fenton chemistry and its combination with coagulation for treatment of dye solutions. Separation Science and Technology, 2007. 42(7): p. 1521-1534.
46.	Bali, U., and Karagozoǧlu, B., Performance comparison of Fenton process, ferric coagulation and H2O2/pyridine/Cu(II) system for decolorization of Remazol Turquoise Blue G-133. Dyes and Pigments, 2006. 74(1): p. 73-80.
47.	Kang, S.F., Liao, C. H., and Chen, M. C., Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere, 2002. 46(6): p. 923-928.
48.	Cetin, S. and A. Erdincler, The role of carbohydrate and protein parts of extracellular polymeric substances on the dewaterability of biological sludges. Water Science and Technology, 2004. 50: p. 49-56.
49.	Fang, L., et al., Microcalorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances (EPS), minerals and their composites. Bioresource Technology. 101(15): p. 5774-5779.
50.	Liu, X.M., et al., Contribution of extracellular polymeric substances (EPS) to the sludge aggregation. Environmental Science and Technology. 44(11): p. 4355-4360.
51.	Liu, Y. and Q.S. Liu, Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors. Biotechnology Advances, 2006. 24(1): p. 115-127.
52.	Pan, X., J. Liu, and D. Zhang, Binding of phenanthrene to extracellular polymeric substances (EPS) from aerobic activated sludge: A fluorescence study. Colloids and Surfaces B: Biointerfaces. 80(1): p. 103-106.
53.	San Sebastian Martinez, N., Fernandez, J. F., Segura, X. F., and Ferrer, A. S., Pre-oxidation of an extremely polluted industrial wastewater by the Fenton's reagent. Journal of Hazardous Materials, 2003. 101(3): p. 315-322.
54.	J.A. Perdigon-Melon∗, et al., 5 Coagulation-Fenton coupled treatment for ecotoxicity reduction in highly polluted industrial wastewater. Journal of Hazardous Materials, 2010. 181(1-3): p. 127-132.
55.	Arslan, I., Balcioglu, Isil Akmehmet, and Bahnemann, Detlef W., Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate-Fenton/UV-A and TiO2/UV-A processes. Dyes and Pigments, 2000. 47(3): p. 207-218.
56.	Dutta, K., Mukhopadhyay, S., Bhattacharjee, S., and Chaudhuri, B., Chemical oxidation of methylene blue using a Fenton-like reaction. Journal of Hazardous Materials, 2001. 84(1): p. 57-71.
57.	Szpyrkowicz, L., Juzzolino, Claudia, and Kaul, Santosh N., A Comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and fenton reagent. Water Research, 2001. 35(9): p. 2129-2136.
58.	Joźwiak, W.K., Mitros, M., Kałuzna-Czaplińska, J., and Tosik, R., Oxidative decomposition of Acid Brown 159 dye in aqueous solution by H2O2/Fe2+ and ozone with GC/MS analysis. Dyes and Pigments, 2006. 74(1): p. 9-16.
59.	Xu, X.-R., and Li, Xiang-Zhong, Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion. Separation and Purification Technology, 2010. 72(1): p. 105-111.
60.	Liang, C.J., Bruell, C. J., Marley, M. C., and Sperry, K. L., Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil and Sediment Contamination, 2003. 12(2): p. 207-228.
61.	Li, S.-X., Wei, Dong, Mak, Nai-Ki, Cai, ZongWei, Xu, Xiang-Rong, Li, Hua-Bin, and Jiang, Yue, Degradation of diphenylamine by persulfate: Performance optimization, kinetics and mechanism. Journal of Hazardous Materials, 2009. 164(1): p. 26-31.
62.	Yang, S., Wang, Ping, Yang, Xin, Shan, Liang Zhang, Wenyi, Shao, Xueting, and Niu, Rui., Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide. Journal of Hazardous Materials, 2010. 179(1-3): p. 552-558.
63.	Oh, S.Y., Kang, S. G., and Chiu, P. C., Degradation of 2,4-dinitrotoluene by persulfate activated with zero-valent iron. Science of the Total Environment, 2010. 408(16): p. 3464-3468.
64.	邱煌銘, 利用零價鐵結合氧化劑(H2O2/Na2S2O8)程序處理非離子界面活性劑之研究, in 環境工程與管理研究所 2009, 國立台北科技大學 Taipei. p. 90.
65.	De Laat, J., Dao, Y. H., Hamdi El Najjar, N., and Daou, C., Effect of some parameters on the rate of the catalysed decomposition of hydrogen peroxide by iron(III)-nitrilotriacetate in water. Water Research, 2011. 45(17): p. 5654-5664.
66.	De Laat, J., and Le, T. G., Kinetics and modeling of the Fe(III)/H2O2 system in the presence of sulfate in acidic aqueous solutions. Environmental Science and Technology, 2005. 39(6): p. 1811-1818.
67.	De Laat, J., and Le, T. G., Effects of chloride ions on the iron(III)-catalyzed decomposition of hydrogen peroxide and on the efficiency of the Fenton-like oxidation process. Applied Catalysis B: Environmental, 2006. 66(1-2): p. 137-146.
68.	Hug, S.J., and Leupin, O., Iron-catalyzed oxidation of Arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environmental Science and Technology, 2003. 37(12): p. 2734-2742.
69.	Keenan, C.R., and Sedlak, D. L., Factors affecting the yield of oxidants from the reaction of nanonarticulate zero-valent iron and oxygen. Environmental Science and Technology, 2008. 42(4): p. 1262-1267.
70.	Katsoyiannis, I.A., Ruettimann, T., and Hug, S. J., pH dependence of fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water. Environmental Science and Technology, 2008. 42(19): p. 7424-7430.
71.	Pera-Titus, M., Garcia-Molina, V., Banos, M. A., Gimenez, J., and Esplugas, S., Degradation of chlorophenols by means of advanced oxidation processes: A general review. Applied Catalysis B: Environmental, 2004. 47(4): p. 219-256.
72.	Nam, S., Renganathan, V., and Tratnyek, P. G., Substituent effects on azo dye oxidation by the FeIII-EDTA-H2O2 system. Chemosphere, 2001. 45(1): p. 59-65.
73.	Collins, T.J., TAML oxidant activators: A new approach to the activation of hydrogen peroxide for environmentally significant problems. Accounts of Chemical Research, 2002. 35(9): p. 782-790.
74.	Stephenson, N.A., and Bell, A. T., A study of the mechanism and kinetics of cyclooctene epoxidation catalyzed by iron(III) tetrakispentafluorophenyl porphyrin. Journal of the American Chemical Society, 2005. 127(24): p. 8635-8643.
75.	Howsawkeng, J., Watts, R. J., Washington, D. L., Teel, A. L., Hess, T. F., and Crawford, R. L., Evidence for simultaneous abiotic-biotic oxidations in a microbial-Fenton's system. Environmental Science and Technology, 2001. 35(14): p. 2961-2966.
76.	Ndjou'Ou, A.C., Bou-Nasr, J., and Cassidy, D., Effect of fenton reagent dose on coexisting chemical and microbial oxidation in soil. Environmental Science and Technology, 2006. 40(8): p. 2778-2783.
77.	Lee, C., Keenan, C. R., and Sedlak, D. L., Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen. Environmental Science and Technology, 2008. 42(13): p. 4921-4926.
78.	Kozhevnikov, I.V., Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chemical Reviews, 1998. 98(1): p. 171-198.
79.	Rhule, J.T., Hill, C. L., Judd, D. A., and Schinazi, R. F., Polyoxometalates in medicine. Chemical Reviews, 1998. 98(1): p. 327-357.
80.	Keenan, C.R., and Sedlak, D. L., Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen. Environmental Science and Technology, 2008. 42(18): p. 6936-6941.
81.	Koppenol, W.H., and Liebman, J. F., The oxidizing nature of the hydroxyl radical. A comparison with the ferryl ion (FeO2+). Journal of Physical Chemistry, 1984. 88(1): p. 99-101.
82.	Nowack, B., Xue, H., and Sigg, L., Influence of natural and anthropogenic ligands on metal transport during infiltration of river water to groundwater. Environmental Science and Technology, 1997. 31(3): p. 866-872.
83.	陳瑞仁, 有機性廢水處理. 廢水處理專責人員訓練教材, 行政院環境保護署. 2007, 桃園縣:行政院環保署訓練所.
84.	Metcalf and Eddy, Wastewater Engineering, Treatment and Reuse. 4 ed2004, Asia: McGraw-Hill Education.
85.	Sellers, R.M., Spectrophotometric determination of hydrogen peroxide using potassium titanium(IV) oxalate. Analyst, 1980. 105(1255): p. 950-954.
86.	Cinar, O., Yaşar, S., Kertmen, M., Demiroz, K., Yigit, N. O., and Kitis, M., Effect of cycle time on biodegradation of azo dye in sequencing batch reactor. Process Safety and Environmental Protection, 2008. 86(6): p. 455-460.
87.	Gu, L., Zhu, N., Wang, L., Bing, X., and Chen, X., Combined humic acid adsorption and enhanced Fenton processes for the treatment of naphthalene dye intermediate wastewater. Journal of Hazardous Materials, 2011. 198: p. 232-240.
88.	Guedes, A.M.F.M., Madeira, L. M. P., Boaventura, R. A. R., and Costa, C. A. V., Fenton oxidation of cork cooking wastewater - Overall kinetic analysis. Water Research, 2003. 37(13): p. 3061-3069.
89.	Kang, Y.W., and Hwang, K. Y., Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water Research, 2000. 34(10): p. 2786-2790.
90.	馬章華, 胡., 岑樂衍, 曾兆敏, 朱立群, 朱廣娟, 王柏華, 薛迪庚, 潘智勤, 楊新瑋, 俞鴻安, 李錦簇, 林則楷, 何岩斌, 揚威, 喜威, 史英杰., 最新染料使用大全1996, 北京: 中國紡織出版社.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信