§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0407201218182600
DOI 10.6846/TKU.2012.00157
論文名稱(中文) 四氧化三鈷修飾陰極以提升希瓦氏腐敗菌為基底之微生物燃料電池之發電效益研究
論文名稱(英文) The Research of Enhancing the Electricity Production of Shewanella putrefaciens - based Microbial Fuel Cell by Modifying Cobalt Oxide on the Cathode
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 2
出版年 101
研究生(中文) 陳作榮
研究生(英文) Tso-Jung Chen
學號 698160446
學位類別 碩士
語言別 英文
第二語言別
口試日期 2012-05-28
論文頁數 169頁
口試委員 指導教授 - 林孟山(mslin@mail.tku.edu.tw)
委員 - 呂晃志(hjleu@fcu.edu.tw)
委員 - 劉茂煌(061355@mail.fju.edu.tw)
委員 - 林孟山(mslin@mail.tku.edu.tw)
關鍵字(中) 微生物燃料電池
四氧化三鈷
氧氣還原反應
希瓦氏腐敗菌
關鍵字(英) Microbial fuel cell
Cobalt(II,III) oxide
Oxygen reduction reaction
Shewanella putrefaciens
第三語言關鍵字
學科別分類
中文摘要
微生物燃料電池是一種新穎的潔淨能源產出方案來因應即將到來的能源危機,與傳統燃料電池主要的差異在於它毋須使用金屬催化劑修飾陽極,而是使用特定微生物來催化有機分子的氧化,進而將得到的電子傳遞給陽極。接著經由電池外部導線而傳遞給陰極槽的氧氣,並與來自陽極並通透過半透膜的氫離子結合產生水的終產物。然而氧氣的還原反應需要很高的過電壓,在動力學上不利於反應進行,因此需要催化劑。傳統上,白金被廣泛的使用,然而它確有價格過於高昂的缺點,會大幅增加電池的生產成本。因此,本研究以探尋較為廉價的氧氣還原反應催化劑與其反應機制為目標,發現使用金屬氧化物修飾陰極具有能催化氧氣還原並增加微生物燃料電池功率的能力,最終決定使用四氧化三鈷。
本研究中尚探討了四氧化三鈷催化氧氣還原的機制與特性,並進一步進行電池操作參數的最佳化,條件為: 使用Co3O4做為催化劑,修飾比例為70%,陽極槽培養液pH值為5,以葡萄糖做為受質,陰極槽使用磷酸緩衝溶液,pH值設定為5,兩極距離為一公分。研究發現50%的四氧化三鈷可達到5%的白金修飾電極之催化效果,在電池功率方面,與使用僅修飾純導電碳膠的陰極之微生物燃料電池相比,電池最大功率密度在最佳化條件下提升9.53倍。本研究也進行了交流阻抗與電池生命週期的分析。
英文摘要
Microbial fuel cell (MFC) is a novel and clean energy source solution to imminent energy crisis. In contrast to conventional fuel cell, microbial fuel cell, instead of using metal catalyst as anode material, takes advantage of microorganisms to catalyze oxidation organic matters. The released electrons were then transferred to oxygen in catholyte through the external conductive wire. Combining with protons permeates from anolyte, thus the final product was water (H2O). However, the reduction reaction’s nature of high overpotential hinders its spontaneity thermodynamically. As a result, utilizing catalyst for oxygen reduction reaction (ORR) is necessary and inevitable. Conventionally, platinum is served as most frequently used catalyst material, but its high cost may limit large scale production of fuel cell. Therefore, the goal of this study is to search for more cost-effective catalyst material and to evaluate the reaction mechanism for oxygen reduction reaction as replacement of platinum. It is found that metal oxides can be potential candidates for acting as catalyst for oxygen reduction reaction; in the meanwhile, enhance power output efficiency of MFC. In the end, Co3O4 is chosen as the final option.
The catalysis mechanism and performance of ORR for Co3O4 is evaluated. In addition, the optimization of operating parameters has been undergone. The optimized conditions are: adopting Co3O4 as cathode catalyst material, modification ratio 70wt.%, anolyte as medium of pH5, glucose used as substrate, pH5 phosphate buffer solution served as catholyte, electrode distance of 1cm. In this study, the effect of modifying 50wt.% of Co3O4 is comparable to 5wt.% of Co3O4. In comparison to the MFC with pure conductive carbon ink modified cathode, the power density is enhanced 9.53 times. The evaluation of electrochemical impedance spectroscopy and life time of MFC is also studied.
第三語言摘要
論文目次
Contents
Chapter 1 Preface	7
1.1	Research motives	7
1.2 Development History of Microbial Fuel Cell	9
1.2.1 Designs of Anode Configuration	11
1.2.2 Microorganisms used in MFCs	15
1.2.3 Various Sources of Substrates for Microorganisms in Anode Chamber	22
1.2.4 Designs of Cathode Configuration	26
1.2.5 MFCs for waste and pollution reduction	37
1.2.6 MFCs for Hydrogen Production	48
1.3 Principle of Microbial Fuel Cells	51
1.4 Performance Characterization of Microbial Fuel Cells	53
1.5 Configurations of MFC	54
1.6 Electrochemical Impedance Spectroscopy	57
1.7 Brief Introduction of Cobalt (II, III) Oxide (Co3O4)	59
1.8	Research goals	60
Chapter 2 Experimental Section	62
2.1 Configuration of Microbial Fuel Cell and its Assembly	62
2.2 Instruments	65
2.2.1 Electrochemical Analysis	65
2.2.2 Power Output Analysis	66
2.2.3 Microorganism Incubation	67
2.2.4 Others	67
2.3 Chemicals	68
2.3.1 Chemicals Preparation	69
2.4 Electrodes Preparation for Electrochemical Analyzer	70
2.4.1 Pretreatment of Electrodes	70
2.4.2 The Preparation of Co3O4 – modified Electrode	71
2.5 Experimental Methods	71
2.5.1 The Evaluation of Oxygen Reduction Mechanism	71
2.5.2 The optimization of the MFC Power Output Performance	72
2.5.3 Electrochemical Impedance Spectroscopy	77
2.5.4 Life Time of the MFC	77
2.6 Characterization of Co3O4	78
Chapter 3 Results and Discussion	79
3.1 Design of a Cathode Suitable for the Development of MFC	79
3.2 The Effect of Catholyte pH	91
3.3 The Effect of Catholyte Buffer Solution Type on the Catalysis Behavior of Co3O4	94
3.4 The Evaluation of Catalysis Mechanism	96
3.5 The Anolyte pH Determination	109
3.6 Substrate for Bio-assisted Organic Compound Oxidation Study	114
3.7 The Effect of Electrode distance on the Performance of MFC	116
3.8 The Modification Ratio of Co3O4 on the Cathode	118
3.9 The Effect of Catholyte pH	121
3.10 Compromised pH in Both Chamber	124
3.11 Electrochemical Impedance Spectroscopy of Optimized MFC	126
3.12 Life Time Study	129
3.13 The Optimized Operating Parameters of MFC	130
3.14 Characterization of Co3O4	131
3.15 General Current-Potential Curves at the RDE	133
Chapter 4 Conclusion	136
Appendix	137
Reference	151


Graph Contents
Figure (1) Schematic diagram of the MFC Principle……………………….…..……55
Figure (2) Schematic diagram of the single-chambered MFC……………….………57
Figure (3) Schematic diagram of the Dual-chambered MFC………………….……..58
Figure (4) Schematic diagram of the Tubular Up-flow MFC………………………..58
Figure (5) Schematic of Co3O4 Structure…………………………………….………61
Figure (6) Schematic of Microbial Fuel Cell Assembly…………………….……….68
Figure (7) I-V Curve of the Co3O4 – modified GCE…………………………..……..84
Figure (8) I-V Curve of the CuO – modified GCE……………………………….….84
Figure (9) I-V Curve of the Fe2O3 – modified GCE…………………...........……….85
Figure (10) I-V Curve of the Fe3O4 – modified GCE……………………………..…85
Figure (11) I-V Curve of the NiO2 – modified GCE………………………..……..…86
Figure (12) I-V Curve of the CaTiO3 – modified GCE…………………………....…86
Figure (13) I-V Curve of the LiMn2O4 – modified GCE……………………….……87
Figure (14) I-V Curve of the WO2 – modified GCE…………………………………87
Figure (15) I-V Curve of the Pb3O4 – modified GCE………………………….…….88
Figure (16) Stable I-V Curve of the Fe3O4 – modified GCE………………….…..…89
Figure (17) Stable I-V Curve of the LiMn2O4 – modified GCE…………….……….89
Figure (18) Steady-state currents at 0V - Fe3O4 – modified GCE……………..…….90
Figure (19) LSV - Effect of catholyte pH……………………………..….………….94
Figure (20) Power density – voltage polarization curve - Effect of catholyte pH…...95
Figure (21) LSV - Effect of catholyte buffer kind……………………………………97
Figure (22) Steady-state reduction current vs. each potential - Pure conductive carbon
ink – modified GCE………………………………………………………………….99
Figure (23) Steady-state reduction current vs. each potential - 10 wt.% Co3O4 -
modified GCE………………………………………………………….…………...100
Figure (24) Steady-state reduction current vs. each potential - 30 wt.% Co3O4 -
modified GCE……………………………………………………………….……...100
Figure (25) Steady-state reduction current vs. each potential - 50 wt.% Co3O4 -
modified GCE……………………………………………………………….……...101
Figure (26) Steady-state reduction current vs. each potential - 70 wt.% Co3O4 -
modified GCE……………………………………………………………….……...101
Figure (27) Steady-state reduction current vs. each potential - 50 wt.% platinum
coated carbon powder - modified GCE….……………………………….….……...102
Figure (28) I-t amperometric plot (0.4V) - 50 wt.% Co3O4 – modified
RRDE….………………………………...…………………………………..……...104
Figure (29) I-t amperometric plot (0.3V) - 50 wt.% Co3O4 – modified
RRDE….………………………………...…………………………………..……...104
Figure (30) I-t amperometric plot (0.2V) - 50 wt.% Co3O4 – modified
RRDE….………………………………...…………………………………..…..….105
Figure (31) I-t amperometric plot (0.1V) - 50 wt.% Co3O4 – modified
RRDE….………………………………...…………………………………..…..….105
Figure (32) I-t amperometric plot (0V) - 50 wt.% Co3O4 – modified
RRDE….………………………………...…………………………….…………....106
Figure (33) I-t amperometric plot (-0.1V) - 50 wt.% Co3O4 – modified
RRDE….………………………………...…………………………….……………106
Figure (34) I-t amperometric plot (-0.2V) - 50 wt.% Co3O4 – modified
RRDE….………………………………...…………………………….……….…...107
Figure (35) I-t amperometric plot (-0.3V) - 50 wt.% Co3O4 – modified
RRDE….………………………………...………………………………….……....107
Figure (36) I-t amperometric plot (-0.4V) - 50 wt.% Co3O4 – modified
RRDE….………………………………...………………………………….……....108
Figure (37) I-t amperometric plot (-0.5V) - 50 wt.% Co3O4 – modified
RRDE….………………………………...…………………………………….…....108
Figure (38) I-t amperometric plot (-0.6V) - 50 wt.% Co3O4 – modified
RRDE….………………………………...……………………………………….....109
Figure (39) Signals of oxygen vs. applied potential plot - 50 wt.% Co3O4 – modified
RRDE….……….……………...……………………………………………....…....109
Figure (40) Calibration plot of H2O2 - 50 wt.% Co3O4 – modified
RRDE….……….……………...………………………………...………….……....110
Figure (41) Proposed ORR mechanism on Cobalt (II, III) oxide modified
electrode…………………………………………………………………………….110
Figure (42) LSV - Effect of culture medium pH on the performance of
anodes….……….…………………...…………………………...…………….…....113
Figure (43) LSV - Effect of culture medium pH on the performance of
anodes….……….…………………...…………………………...………….……....114
Figure (44) Power density – voltage polarization curve - Effect of culture medium
pH….……….…….………...…………………………...………………...…...…....114
Figure (45) LSV - Effect of various subsrates on the performance of the
anode….……….…………………...…………..………………...………….……....117
Figure (46) Power density – voltage polarization curve - Effect of electrode distance
on the performance of the microbial fuel cell…………………………………...….119
Figure (47) LSV - Effect of modification ratio…………………………….……….121
Figure (48) Power density – voltage polarization curve - Effect of modification
ratio….……….…….………...…………………...……………...………….……....122
Figure (49) Modification ratio vs. maximum power density……………………….122
Figure (50) LSV - Effect of catholyte pH…………………………………………..124
Figure (51) Power density – voltage polarization curve - Effect of catholyte
pH…………………………………………………………………………………...125
Figure (52) Plot of pH vs.time…………………………………………..………….127
Figure (53) Power density – voltage polarization curve - Effect of both chambers with
the same pH……………………………………..………………………….…….…128
Figure (54) EIS data of MFC performed as Nyquist plot………………….………..130
Figure (55) Equivalent circuit for two-chambered MFC…………………….……..130
Figure (56) The life time of MFC…………………………………….…………….131
Figure (57) The XRD spectrum of Co3O4…………………………………………..133
Figure (58) FE-SEM images of Co3O4……………………………………………...133
Figure (59) Variation of 1/i with ω-1/2 at 0V………………………………………...136
Figure (60) Variation of i with ω at 0V……………………………………………...136

Table Contents
Table (1) Electrochemical parameters used in MFCs study………………………….56
Table (2) The open circuit potential of each metal oxide – modified
GCE………………………………………………………..………….……………...90
Table (3) The performances evaluation of various metal oxides as cathodic
modifier………………………………………………………………………….…...92
Table (4) The open circuit potential of 50 wt.% Co3O4 – modified GCE in each kind
of buffer solution……………………………………………………………….…….94
Table (5) The open circuit potential of anodes incubated with various pH
medium…………………………………………………………………….…...…...112
Table (6) The open circuit potential of MFC with various electrode
distances.....................................................................................................................116
Table (7) The open circuit potential of GCE coated with various modifier………...120
Table (8) The open circuit potential of cathode modified with 50 wt.%
Co3O4……………………………………………………………………………......122
Table (9) Various parts of internal resistances of MFC……………………….…….127
Table (10) Optimized operating parameters
table………………………………………………………………………………....129
Table (11) Rate constants corresponding to each applied potential………………...137
參考文獻
Rifkin, J. 2002, The hydrogen Economy, Tacher/Putnam, New York.

  Keeling, C. D., Bacastow, R. B., Bainbridge, A. E., Ekdahl, C. A., Guenther, P. R. &Waterman, L. S. 1976 Atmospheric carbon dioxide variations at Mauna Loa observatory, Hawaii. Tellus 28, 538–551.

  Potter, M.C. Proc. Roy. Soc. London, Ser. 1911 B 84, 260.

  Shukla, A. K., Surwsh, P., Berchmans, S., Rajendran, A., Biological 
fuel cells and their applications., Current Sci. 2004, 87, 455-468.

  Bennetto, H. P. Electricity generation by microorganisms. Biotechnology Education 1990, 1, 163-168.

  Bennetto, Bennetto, H. P., Stirling, J. L., Delaney, G. M., Mason, J. R., Roller, J. R., 1983, Pro. Bioch. 18, R17.

  Bennetto, Bennetto, H. P., Stirling, J. L., Tanaka, K., Vega, C. A., Anodic reactions in microbial fuel cells., Biotechnol. Bioengin. 1983, 25, 559-568.

 寶玥,吴霞琴.生物燃料电池的研究进展[J] 电化学,2004,10(1), l一8.

  Bennetto, Bennetto, H. P., Stirling, J. L., Delaney, G. M., Mason, J. R., Roller, J. R., 1983, Pro. Bioch. 18, R17. 

  Shaoan Cheng, Bruce E. Logan, Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochemistry Communications 2007, 9, 492–496.


  Yongjin Zou, Cuili Xiang, Lini Yang, Li-Xian Sun, Fen Xu, Zhong Cao, A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material. International journal of hydrogen energy 2008, 33, 4856-4862.

  Tushar Sharmaa, A. Leela Mohana Reddyb, T.S. Chandraa, S. Ramaprabhub, Development of carbon nanotubes and nanofluids based microbial fuel cell., International journal of hydrogen energy 2008, 33, 6749-6754.

  Hung-Yin Tsai, Chen-ChangWu, Chi-Yuan Lee, Eric Pierre Shih, Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes.”Journal of Power Sources, 2009, 194, 199-205.

  Yan Qiao, Chang Ming Li, Shu-Juan Bao, Qiao-Liang Bao, Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. Journal of Power Sources 2007, 170, 79–84.

  Tian Zhang, Yulong Zeng, Shengli Chen, Xinping Ai, Hanxi Yang, Improved performances of E. coli-catalyzed microbial fuel cells with composite graphite/PTFE anodes. Electrochemistry Communications 2007, 9, 349–353.

  Annemiek ter Heijne, Hubertus V.M. Hamelers, Michel Saakes, Cees J.N. Buisman, Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochimica Acta 2008, 53, 5697-5603.

  Min Sun, Feng Zhang, Zhong-Hua Tong, Guo-Ping Sheng, Yong-Zhen Chen, Yue Zhao, A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1. Biosensors and Bioelectronics, 2010, 26, 338–343.

  Hanno Richter, Kevin McCarthy, Kelly P. Nevin, Jessica P. Johnson, Vincent M. Rotello, Derek R. Lovley, Comparison of Electrode Reduction Activities of Geobacter sulfurreducens and an Enriched Consortium in an Air-Cathode Microbial Fuel Cell. Langmuir 2008, 24, 4376-4379.

  Jing Liu,Yan Qiao, Chun Xian Guo, Sierin Lim, Hao Song, Chang Ming Li, Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells. Bioresource Technology 2012, In press, accepted manuscript.

  Rabaey, K., Boon, N., Hofte, M. & Verstraete, W., Microbial Phenazine Production Enhances Electron Transfer in Biofuel Cells. Environ. Sci. Technol, 2005, 39, 3401–3408.

  Dietrich, L. E., Price-Whelan, A., Petersen, A., Whiteley, M. & Newman, D. K., The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol. Microbiol. 2006, 61, 1308–1321.

  Myers, C. R., Myers, J. M., Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Bacteriol. 1992, 174, 3429–3438.

  Chang, I. S. et al., Electrochemically Active Bacteria (EAB) and Mediator-Less Microbial Fuel Cells. J. Microbiol. Biotechnol. 2007, 16, 163–177.

  El-Naggar, M. Y., Gorby, Y. A., Xia, W. & Nealson, K. H., Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Biophys. J, 2008, 95, L10–L12.

  Yuri A. Gorby, Svetlana Yanina, Jeffrey S. McLean, Kevin M. Rosso, Dianne Moyles, Alice Dohnalkova, Terry J. Beveridge, In Seop Chang, Byung Hong Kim, Kyung Shik Kim, David E. Culley, Samantha B. Reed, Margaret F. Romine, Daad A. Saffarini, Eric A. Hill, Liang Shi, Dwayne A. Elias, David W. Kennedy, Grigoriy Pinchuk, Kazuya Watanabe, Shun’ichi Ishii, Bruce Logan, Kenneth H. Nealson, and Jim K. Fredrickson, Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences 2005, 103, 11358-11363.

  Lisa A. Fitzgerald, Emily R. Petersen, Richard I. Ray, Brenda J. Little, Candace J. Cooper, Erinn C. Howard, Bradley R. Ringeisen, Justin C. Biffinger, Shewanella oneidensis MR-1 Msh pilin proteins are involved in extracellular electron transfer in microbial fuel cells. Process Biochemistry 2012, 47, 170-174.

  Hyung Joo Kim, Hyung Soo Park, Moon Sik Hyun, In Seop Chang, Mia Kim, Byung Hong Kim, A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme and Microbial Technology 2002, 30, 145–152.

  D. H. Park, J. G. Zeikus, Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl Microbiol Biotechnol. 2002, 59, 58-61.

  Uwe Schroder, Juliane Niesen, and Fritz Scholz, A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew. Chem. Int. Edn. 2003, 42, 2880-2883.

  Juliane Niessen, Uwe Schroder, Miriam Rosenbaum, Fritz Scholz, Fluorinated Polyanilines as Superior Materials for Electrocatalytic Anodes in Bacterial Fuel Cells. Electrochemistry Communications 2004, 6, 571-575.

  Daniel R. Bond, Derek R. Lovley, Electricity Production by Geobacter sulfurreducens Attached to Electrodes. Applied and Environmental Microbiology 2003, 69, 1548-1555.

  Hana Yi, Kelly P. Nevin, Byoung-Chan Kim, Ashely E. Franks, Anna Klimes,
Leonard M. Tender, Derek R. Lovley, Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosensors and Bioelectronics 2009, 24, 3498–3503.

  Cuong Anh Pham, Sung Je Jung, Sung Je Jung, Jiyoung Lee, In Seop Chang, Byung Hong Kim, Hana Yi, Jongsik Chun, A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiology Letters 2003, 223, 129-134.

  Myers, C. R. & Myers, J. M., Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Bacteriol. 1992, 174, 3429–3438.

  Rabaey, K., Boon, N., Hofte, M., Verstraete, W. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 2005, 39,
3401–3408.

  Gorby, Y. A. et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl Acad. Sci. USA. 2006, 103, 11358–11363.

  Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature 2005, 435, 1098–1101.

  Orianna Bretschger, Anna Obraztsova, Carter A. Sturm, In Seop Chang, Yuri A. Gorby, Samantha B. Reed, David E. Culley, Catherine L. Reardon, Soumitra Barua, Margaret F. Romine, Jizhong Zhou, Alexander S. Beliaev, Rachida Bouhenni, Daad Saffarini, Florian Mansfeld, Byung-Hong Kim, James K. Fredrickson, Kenneth H. Nealson, Current Production and Metal Oxide Reduction by Shewanella oneidensis MR-1 Wild Type and Mutants. Applied and Environmental Microbiology 2007, 73, 7003-7012.

  Bradley R. Ringeisen, Emily Henderson, Peter K. Wu, Jeremy Pietron, Ricky Ray, Brenda Little, Justin C. Biffinger, Joanne M. Jones – Meehan, High Power Density from a Miniature Microbial Fuel Cell Using Shewanella oneidensis DSP10 Environ. Sci. Technol. 2006, 40, 2629-2634. 

  Justin C. Biffinger, Jeremy Pietron, Ricky Ray, Brenda Little, Bradley R. Ringeisen, A biofilm enhanced miniature microbial fuel cell using Shewanella
oneidensis DSP10 and oxygen reduction cathodes. Biosensors and Bioelectronics 2007, 22, 1672–1679.

  Bradley R. Ringeisen, Ricky Ray, Brenda Little, A miniature microbial fuel cell operating with an aerobic anode chamber. Journal of Power Sources 2007, 165, 591–597.

  D. Prasad, S. Arun, M. Murugesan, S. Padmanaban, R.S. Satyanarayanan,
Sheela Berchmans, V. Yegnaraman, Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell. Biosensors and Bioelectronics 2007, 22, 2604–2610.

  Xiaoxin Cao, Xia Huang, Nico Boon, Peng Liang, Mingzhi Fan, Electricity generation by an enriched phototrophic consortium in a microbial fuel cell. Electrochemistry Communications 2008, 10, 1392-1395.

  Justin C. Biffinger, Jacqueline N. Byrd, Breanna L. Dudley, Bradley R. Ringeisen, Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells. Biosensors and Bioelectronics 2008, 23, 820-826.

  R. Karthikeyan, K. Sathish Kumar, M. Murugesan, Sheela Berchmans, V. Yegnaraman, Bioelectrocatalysis of Acetobacter aceti and Gluconobacter roseus for current generation. Environ. Sci. Technol. 2009, 43, 8684-8689.

  Stefano Freguia, Masaki Masuda, Seiya Tsujimura, Kenji Kano, Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone. Bioelectrochemistry 2009, 76, 14-18.

  Daehee Kim, In Seop Chang, Electricity generation from synthesis gas by microbial processes: CO fermentation and microbial fuel cell technology. Bioresource Technology 2009, 100, 4527-4530.

  Kaijun Xiang, Yan Qiao, Chi Bun Ching, Chang Ming Li, GldA overexpressing-engineered E. coli as superior electrocatalyst for microbial fuel cells. Electrochemistry Communications 2009, 11, 1593-1595.

  Vanita Roshan Nimje, Chien-Yen Chen, Chien-Cheng Chenb, Jiin-Shuh Jean, Satyanarayana Reddy, Cheng-Wei Fan, Kuan-Yeu Pan, Hung-Tsan Liu, Jia-Lia Chen, Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell. Journal of Power Sources 2009, 190, 258-263.

  Abhijeet P. Borole, Choo Y. Hamilton, Tatiana Vishnivetskaya, David Leak, Calin Andras, Improving power production in acetate-fed microbial fuel cells via enrichment of exoelectrogenic organisms in flow-through systems. Biochemical Engineering Journal 2009, 48, 71-80.

  Abhijeet P. Borole, Choo Y. Hamilton, Tatiana A. Vishnivetskaya, David Leak,
Calin Andras, Jennifer Morrell-Falveya, Martin Keller, Brian Davison, Integrating engineering design improvements with exoelectrogen enrichment process to increase power output from microbial fuel cells. Journal of Power Sources 2009, 191, 520-527.

  K. Tanaka, R. Tamamushi, T. Ogawa, Bioelectrochemical fuel-cells operated by 
the cyanobacterium, Anabaena variabilis. Journal of Chemical Technology and Biotechnology 1985, 35B, 191–197.

  Y.K. Cho, T.J. Donohue, I. Tejedor, M.A. Anderson, K.D. McMahon, D.R. Noguera, Development of a solar-powered microbial fuel cell. Journal of Applied Microbiology 2008, 104, 640–650.

  X. Cao, X. Huang, N. Boon, P. Liang, M. Fan, Electricity generation by an enriched phototrophic consortium in a microbial fuel cell. Electrochemistry Communications 2008, 10, 1392–1395.

  Chun-Chong Fu, Tien-Chieh Hung, Wen-Teng Wu, Ten-Chin Wen, Chia-Hung Su, Current and voltage responses in instant photosynthetic microbial cells with Spirulina platensis. Biochemical Engineering Journal 2010, 52, 175-180.

  H. Liu, B.E. Logan, 2004. Environmental Science and Technology 38, 4040–4046.

  Q. Wen, W. Ying, D. Cao, L. Zhao, Q. Sun, 2009. Bioresource Technology 100, 4171–4175.

  N. Lu, S.-G. Zhou, L. Zhuang, J.-T. Zhang, J.-R. Nia, 2009. Biochemical Engineering Journal 43, 246–251.

  Georgia Antonopoulou, Katerina Stamatelatou, Symeon Bebelis, Gerasimos Lyberatos, 2010. Biochemical Engineering Journal 50, 10-15.

  Manaswini Behera, Partha S. Jana, Tanaji T. More, M.M. Ghangrekar, 2010. Bioelectrochemistry 79, 228–233.

  Stefano Freguia, Ee Hoi Teh, Nico Boon, Kar Man Leung , Jurg Keller, Korneel Rabaey, 2010. Bioresource Technology 101, 1233–1238.

  Korneel Rabaey, Geert Lissens, Steven D. Siciliano, Willy Verstraete, 2003. Biotechnology Letters 25, 1531-1535.

  Korneel Rabaey, Nico Boon, Steven D. Siciliano, Marc Verhaege, Willy Verstraete, 2004. Applied and Environmental Microbiology 70, 5373-5382.

  Zhiyongren, Thomase. E. Ward, John M, Regan, 2007. Environ. Sci. Technol. 41, 4781-4786.

  Tunc Catal, Shoutao Xua, Kaichang Li, Hakan Bermek, Hong Liu, 2008. Biosensors and Bioelectronic 24, 849-854.

  Tunc Catal, Kaichang Li, Hakan Bermek, Hong Liu, 2008. Journal of Power Sources 178, 196-200.

  Liping Huang, Raymond J. Zeng, Irini Angelidaki, 2008. Bioresource Technology 99, 4178-4184.

  Lixia Zhang, Shungui Zhou, Li Zhuang, Weishan Li, Jintao Zhang, Na Lu, Lifang Deng, 2008. Electrochemistry Communications 10, 1641-1643.

  Jung Rae Kim, Giuliano C. Premier, Freda R. Hawkes, Jorge Rodriguez, Richard M. Dinsdale, Alan J. Guwy, 2010. Bioresource Technology 101, 1190-1198.

  K. Rabaey, W. Verstraete, Microbial fuel cells: novel biotechnology for energy generation. TRENDS in Biotechnol. 2005, 23, 291-298.

  J.K. Jang, T.H. Pham, I.S. Chang, K.H. Kang, H. Moon, K.S. Cho, B.H. Kim, Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochem. 2004, 39, 1007-1012.

  Bard, A.J., L.R. Faulkner. Electrochemical Methods-Fundamentals and Applications. 2nd ed. 2001, New York: John Wiley & Sons, Inc.

  Zhao, F., F. Hamisch, U. Schroder, F. Scholz, P. Bogdanoff, Hermann, Challenges and constrainsts of using oxygen cathodes in microbial fuel cells. Environ. Sci. Technol. 2006, 40, 5193-5199.

  Feng Zhao, Falk Harnisch, Uwe Schroder, Fritz Scholz,
Peter Bogdanoff, Iris Herrmann, Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochemistry Communications 2005, 2, 1405-1410.

  H. Alt, H. Binder, G. Sandstede, Mechanism of the electrocatalytic reduction of oxygen on metal chelate. J. Catal. 1973, 28, 8-19.

  Shaoan Cheng, Hong Liu, Bruce E. Logan, Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochemistry Communications 2006, 8, 489-494.

  Shijie You, Qingliang Zhao, Jinna Zhang, Junqiu Jiang, Shiqi Zhao, A microbial fuel cell using permanganate as the cathodic electron acceptor. Journal of Power Sources 2006, 162, 1409-1415.

  Jun Li, Qian Fu, Qiang Liao, Xun Zhu, Ding-ding Ye, Xin Tian, Persulfate: A self-activated cathodic electron acceptor for microbial fuel cells. Journal of Power Sources 2009, 194, 269-274.

  Yi Zuo, Shaoan Cheng, Dougcall, Bruce E. Logan, Tubular Membrane Cathodes for Scalable Power Generation in Microbial Fuel Cells. Environ. Sci. Technol. 2007, 41, 3347-3353.

  Zhen He, Haibo Shao, Largus T. Angenent, Increased power production from a sediment microbial fuel cell with a rotating cathode. Biosensors and Bioelectronics 2007, 22, 3252-3255.

  Jeffrey M. Morris, Song Jin, Jiaquan Wang, Chengzhu Zhu, Michael A. Urynowicz, Lead dioxide as an alternative catalyst to platinum in microbial fuel cells. Electrochemistry Communications 2007, 9, 1730-1734.

  Stefano Freguia, Korneel Rabaey, Zhiguo Yuan, Jurg Keller, Sequential anode–cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. WATER RESEARCH 2008, 42, 1387-1396.

  Claire Dumas, Regine Basseguy, Alain Bergel, Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes. Electrochimica Acta 2008, 53, 2494-2500.

  Shi-Jie You, Nan-Qi Ren, Qing-Liang Zhao, Patrick D. Kiely, Jing-YuanWang, Feng-Lin Yang, Lei Fu, Luo Peng, Improving phosphate buffer-free cathode performance of microbial fuel cell based on biological nitrification. Biosensors and Bioelectronics 2009, 24, 3698-3701. 

  Benjamin Erable , Luc Etcheverry, Alain Bergel, Increased power from a two-chamber microbial fuel cell with a low-pH air-cathode compartment. Electrochemistry Communications 2009, 11, 619-622.

  A.P.O. Blanchart, G.J.L. Van Bogaert, C.W.M.V.A. De Brandt, G.J.F. Spaepen, US Patent 4,362,790, 1982.

  Fang Zhang, Shaoan Cheng, Deepak Pant, Gilbert Van Bogaert, Bruce E. Logan, Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochemistry Communications 2009, 11, 2177-2179.

  Qian Deng, Xinyang Li, Jiane. Zuo, Alison Ling, Bruce E. Logan, Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. Journal of Power Source 2010, 195, 1130-1135.

  Jun Li, Qian Fu, Xun Zhu, Qiang Liao, Liang Zhang, Hong Wang, A solar regenerable cathodic electron acceptor for microbial fuel cells. Electrochimica Acta 2010, 55, 2332-2337.

  Yanping Mao, Lehua Zhang, Dongmei Li, Haifeng Shi, Yongdi Liu, Lankun Cai, Power generation from a biocathode microbial fuel cell biocatalyzed by ferro/manganese-oxidizing bacteria. Electrochimica Acta 2010, 55, 7804-7808.

  Xiang Li, Boxun Hu, Steven Suib, Yu Lei, Baikun Li, Electricity generation in continuous flow microbial fuel cells (MFCs) with manganese dioxide (MnO2) cathodes. Biochemical Engineering Journal 2011, 54, 10-15.

  Y.C. Son, V.D. Makwana, A.R. Howell, S.L. Suib, Efficient, catalytic, aerobic oxidation of alcohols with octahedral molecular sieves. Angew. Chem. Int. Ed. 2001, 40, 4280-4283.

  S.L. Suib, Porous Manganese Oxide Octahedral Molecular Sieves and Octahedral Layered Materials. Accounts Chem. Res. 2008, 41, 479-487.

  Fang Zhang, Matthew D. Merrill, Justin C. Tokash, Tomonori Saito, Shaoan Cheng, Michael A. Hickner, Bruce E. Logan, Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors. Journal of Power Sources 2011, 196, 1097-1102.

  Valerie J. Watson, Tomonori Saito, Michael A. Hickner, Bruce E. Logan, Polymer coatings as separator layers for microbial fuel cell cathodes. Journal of Power Sources 2011, 196, 3009-3014.

  Benjamin Erable, Narcis Duteanu, S.M. Senthil Kumar, Yujie Feng, Makarand M. Ghangrekar, Keith Scott, Nitric acid activation of graphite granules to increase the performance of the non-catalyzed oxygen reduction reaction (ORR) for MFC applications. Electrochemistry Communications 2009, 11, 1547-1549.

  R.A. Sidik, A.B. Anderson, N.P. Subramanian, S.P. Kumaraguru, B.N. Popov, O2 Reduction on Graphite and Nitrogen-Doped Graphite:  Experiment and Theory. J. Phys. Chem. B 2006, 110 (4), 1787–1793.

  Shuiliang Chen, Yu Chen, Guanghua He, Shuijian He, Uwe Schroder, Haoqing Hou, Stainless steel mesh supported nitrogen-doped carbon nanofibers for binder-free cathode in microbial fuel cells. Biosensors and Bioelectronics 2012, 34, 282-285.

  Xinxin Shi, Yujie Feng, Xin Wang, He Lee, Jia Liu, Youpeng Qu, Weihua He, S.M. Senthil Kumar,Nanqi Ren, Application of nitrogen-doped carbon powders as low-cost and durable cathodic catalyst to air–cathode microbial fuel cells. Bioresource Technology 2012, 108, 89-93.

  L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, J. Li, Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films. Adv. Funct. Mater. 2009, 19, 2782–2789.

  K.R. Lee, K.U. Lee, J.W. Lee, B.T. Ahn, S.I. Woo, Electrochemical oxygen reduction on nitrogen doped graphene sheets in acid media. Electrochem. Commun. 2010, 12, 1052–1055.

  Yezhen Zhang, Guangquan Mo, Xuwen Li, Jianshan Ye, Iron tetrasulfophthalocyanine functionalized graphene as a platinum-free cathodic catalyst for efficient oxygen reduction in microbial fuel cells. Journal of Power Sources 2012, 197, 93-96.

  Lovley, D.R., Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 1991, 55, 259-287.

  Boogerd, F.C., J.P.M. de Vrind, Characterization of extracellular Mn-oxidizing activity and isolation of a Mn-oxidizing protein from Leptothrix discophora SS-1. J. Bacteriol. 1987, 169, 489-494.

  Dickinson, W., H., F. Caccavo, B. Olesen, Z. Lewandowski, Ennoblement of Stainless Steel by the Manganese-Depositing Bacterium Leptothrix discophora. Appl. Environ. Microbiol. 1997, 63, 2502-2506.

  Allison Rhoads, Halukbeyenal, Zbigniew Lewandowski, Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ. Sci. Technol. 2005, 39, 4666-4671.

  Annemiek Ter Heijne, Hubertus V. M. Hamelers, Vinnie De Wilde, Rene A. Rozendal, Cees J. N. Buisman, A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells., Environ. Sci. Technol. 2006, 40, 5200-5205.

  Annemiek Ter Heijne, Hubertus V. M. Hamelers, Cees J. N. Buisman, Microbial Fuel Cell Operation with Continuous Biological Ferrous Iron Oxidation of the Catholyte. Environ. Sci. Technol. 2007, 41, 4130-4134.

  Haandel van Adrianus C., Gatz Lettinga, Anaerobic Sewage Treatment, John Wiley & Sons, 1994 Singapore. 
  Logan, B.E., Extracting Hydrogen and Electricity from Renewable Resources. Environ. Sci. Technol. 2004, 38, 160A–167A.

  Angenent, L.T., Karim, K., Al-Dahhan, M.H., Wrenn, B.A., Domı’guez-Espinosa, R., Production of bioenergy and biochemicals from industrial and agricultural wastewater. TRENDS in Biotechnol. 2004, 22, 477–485.

  Rabaey, K., Verstraete, W., Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 2005, 23, 291-298.

  Das, D., Veziroğlu, T.N., Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy 2001, 26, 13-28.

  Yu, H., Zhu, Z., Hu, W., Zhang, H., Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic culture. Int. J. Hydrogen Energy 2002 27, 1359-1365.

  Oh, S.E., Logan, B.E., Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Research 2005, 39, 4673–4682

  Van Ginkel, S., Oh, S.E., Logan, B.E., Increased biological hydrogen production with reduced organic loading. Water Research 2005. 39(16), 3819–3826.

  Liu, H., Ramnarayanan, R., Logan, B.E., Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell. Environ. Sci. Technol. 2004, 38, 2281-2285.

  Liu, H., Logan, B.E., Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane. Environ. Sci. Technol. 2004, 38, 4040–4046.

  Min, B., Logan, B.E., Continuous Electricity Generationfrom Domestic Wastewater andOrganic Substrates in a Flat Plate Microbial Fuel Cell. Environ. Sci. Technol. 2004, 38, 5809–5814.

  Booki Min, JungRae Kim, SangEun Oh, John M. Regan, Bruce E. Logan, Electricity generation from swine wastewater using microbial fuel cells. Water Research 2005, 39, 4961–4968.

  Korneel Rabaey, Kirsten Van De Sompel, Lois Maifnien, Nico Boon, Peter Aelterman, Peter Clauwaert, Liesje De Schamphelaire, Hai The Pham, Jan Vermeulen, Marc Verhaege, Piet Lens, Willy Verstraete, Microbial Fuel Cells for Sulfide Removal. Environ. Sci. Technol. 2006, 40, 5218-5224

  M.A. Rodrigo, P. Canizares, J. Lobato, R. Paz, C. Saez, J.J. Linares, Production of electricity from the treatment of urban waste water using a microbial fuel cell. Journal of Power Sources 2007, 169, 198–204.

  Wen-JuanHu, Cheng-GangNiu, YingWang, Guang-MingZeng, ZhenWu, Nitrogenous heterocyclic compounds degradation in the microbial fuel 
cells. Process Safety and Environmental Protection 2011, 89, 133-140.

  Jie Li, Guangli Liu, Renduo Zhang, Yong Luo, Cuiping Zhang, Mingchen Li, Electricity generation by two types of microbial fuel cells using nitrobenzene
as the anodic or cathodic reactants. Bioresource Technology 2010, 101, 4013–4020.

  O. Lefebvre, A. Al-Mamun and H. Y. Ng, A microbial fuel cell equipped with a biocathode for organic removal and denitrification. Water Science & Technology 2008, 58, 881-885.

  Annemiek Ter Heijne, Fei Liu, Renata Van Der Weijden, Jan Weijma, Cees J. N. Buisman, Hubertus V. M. Hamelers, Copper Recovery Combined with Electricity Production in a Microbial Fuel Cell. Environ. Sci. Technol. 2010, 44, 4376–4381.

  Hu-Chun Tao, Wei Li, Min Liang, Nan Xu, Jin-Ren Ni, Wei-Min Wu, A membrane-free baffled microbial fuel cell for cathodic reduction of Cu(II) with electricity generation. Bioresource Technology 2011, 102, 4774-4778.

  Wang, G., Huang, L. Zhang, Y., Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotechnol. Lett. 2008, 30, 1959–1966.

  U.S. Environmental Protection Agency. The drinking water criteria document on chromium; EPA 440/5-84-030; Office of Drinking Water, U.S. EPA: Washington, DC, 1990.

  Marsh, T. L.; McInerney, M. J., Relationship of Hydrogen Bioavailability to Chromate Reduction in Aquifer Sediments. Appl. Environ. Microbiol. 2001, 67, 1517–1521.

  Zhongjian Li, Xingwang Zhang, Lecheng Lei, Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell. Process Biochemistry 2008, 43, 1352–1358

  Madan Tandukar, Samuel J. Huber, Takashi Onodera, Spyros G. Pavlostathis, Biological Chromium(VI) Reduction in the Cathode of a Microbial Fuel Cell. Environ. Sci. Technol. 2009, 43, 8159–8165.

  Xiuping Zhu, Jinren Ni, Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell. Electrochemistry Communications 2009, 11, 274–277.

  Chun-Hua Feng, Fang-Bai Li, Hong-Jian Mai, Xiang-Zhong Li, Bio-Electro-Fenton Process Driven by Microbial Fuel Cell for Wastewater Treatment. Environ. Sci. Technol. 2010, 44, 1875–1880.

  Lei Fu, Shi-Jie You, Guo-quan Zhang, Feng-Lin Yang, Xiao-hong Fang, Degradation of azo dyes using in-situ Fenton reaction incorporated into H2O2-producing microbial fuel cell. Chemical Engineering Journal 2010, 160, 164–169.

  Chunhua Feng, Fangbai Li, Haiyang Liu, Xuemei Lang, Shuanshi Fan, A dual-chamber microbial fuel cell with conductive film-modified anode and
cathode and its application for the neutral electro-Fenton process. Electrochimica Acta 2010, 55, 2048–2054.

  Yan Li, Anhuai Lu, Hongrui Ding, Xin Wang, Changqiu Wang, Cuiping Zeng, Microbial fuel cells using natural pyrrhotite as the cathodic heterogeneous Fenton catalyst towards the degradation of biorefractory organics in landfill leachate. Yunhua Yan, Electrochemistry Communications 2010, 12, 944–947.

  Li Zhuang, Shungui Zhou, Yongtao Li, Tinglin Liu, Deyin Huang, In situ Fenton-enhanced cathodic reaction for sustainable increased electricity generation in microbial fuel cells. Journal of Power Sources 2010, 195, 1379–1382.

 Antonia Galvez, John Greenman, Ioannis Ieropoulos, Landfill leachate treatment with microbial fuel cells; scale-up through plurality. Bioresource Technology 2009, 100, 5085–5091.

  Jian Sun, Yong-you Hu, Zhe Bi, Yun-qing Cao, Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Bioresource Technology 2009, 100, 3185–3192.

  Hongrui Ding, Yan Li, Anhuai Lu, Song Jin, Chao Quan, Changqiu Wang,
Xin Wang, Cuiping Zeng, Yunhua Yan, Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode. Bioresource Technology 2010, 101, 3500–3505.

  Rozendal et al., Effects of Membrane Cation Transport on pH and Microbial Fuel Cell Performance. Environmental Science and Technology 2006, 40, 5206–5211.

  Mohanakrishna et al., Bio-electrochemical treatment of distillery wastewater in microbial fuel cell facilitating decolorization and desalination along with power generation. Journal of Hazardous Materials 2010, 177, 487–494.

  Cao et al., A New Method for Water Desalination Using Microbial Desalination Cells. Environmental Science and Technology 2009, 43, 7148–7152.

  Bruce E. Logan, 2008. Microbial Fuel Cells, John Wiley & Sons, Inc. 125.

  Liu H., Grot S., Logan B.E., 2005. Environ. Sci. Technol. 39(11), 4317-4320.

  R.A. Rozendal, H.V.M. Hamelers, G.J.W. Euverink, S.J. Metz, C.J.N. Buisman, 2006. Int. J. Hydrogen Energy 31, 1632–1640.

  Oh S.-E., Logan B.E., 2005. Water Research 39(19), 4673-4682.

  Douglas F. Call, Matthew D. Merrill, Bruce E. Logan, 2009. Environ. Sci. Technol. 43, 2179-2183.

  Marcelo, D., Dell’Era, 2008. Int. J. Hydrogen Energy 33 (12), 3041–3044.

  Olivares-Ramirez, J. M.; Campos-Cornelio, M. L.; Uribe Godinez, J.; Borja-Arco, E.; Castellanos, R. H., 2007. Int. J. Hydrogen Energy 32 (15), 3170–3173.

  Yogesh Sharma, Baikun Li, 2010. Int. J. Hydrogen Energy 35, 3789-3797.

  Yifeng Zhanf, Irini Angelidaki, 2012. Water Research 46, 2727-2736.

  B.E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J.Keller, S.Freguia, P.Aelterman, W. Verstraete, K.Rabaey, Microbial fuel cells: Methodology and technology. Environ.Sci.Technol. 2006, 40, 5181–5192.

  MFC Single Chamber (Jean-Michel Monier, Ampere Lab, Ecole Centrale de Lyon
genomenviron.org.( http://www.genomenviron.org/Research/MFC.html)

  Allison Rhoads, Halukbeyenal, Zbigniew Lewandowski, Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ. Sci. Technol. 2005, 39, 4666-4671.

  Korneel Rabaey, Peter Clauwaert, Peter Aelterman, Willy Verstraete, Tubular Microbial Fuel Cells for Efficient Electricity Generation. Environ. Sci. Technol. 2005, 39, 8077-8082.

  Xiaozi Yuan, HaijiangWang, Jian Colin Sun, Jiujun Zhang, International Journal of Hydrogen Energy, 2007, 32, 4365-4380.

  J.K. Lee, J. Choi, S.J. Kang, J.M. Lee, Y. Tak, J. Lee, Electrochim. Acta, 2007, 52, 2272.

  H. Kima, S.J. Shin, Y.G. Park, J. Song, H.T. Kim, J. Power Sources, 2006, 160, 440.

  C.Y. Chen, P. Yang, Y.S. Lee, K.F. Lin, J. Power Sources, 2005, 141, 24.

  C.Y. Chen, J.Y. Shiu, Y.S. Lee, J. Power Sources. 2006, 159, 1042.

  X. Wang, J.M. Hu, I.M. Hsing, J. Electroanal. Chem., 2004, 56, 273.

  K.T. Jeng, C.C. Chien, N.Y. Hsu,W.M. Huang, S.D. Chiou, S.H. Lin, J. Power Sources, 2007, 164, 33.

  C.Y. Du, T.S. Zhao, C. Xu, J. Power Sources, 2007, 167, 265.

  J.S. Lee, K.I. Han, S.O. Park, H.N. Kim, H. Kim, Electrochim. Acta, 2004, 50, 807.

  H.C. Cha, C.Y. Chen, R.X. Wang, C.L. Chang, J. Power Sources, 2011, 196, 2650.

  Zhao, F., Harnisch, F., Schroder, U., Scholz, F., Bogdanoff, P., Herrmann, I., Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ. Sci. Technol. 2006, 40, 5193–5199.

  Clauwaert, P., Aelterman, P., Pham, T.H., Schamphelaire, L.D., Carballa, M., Rabaey, K., Verstraete, W., Minimizing losses in bio-electrochemical systems: the road to applications. Appl. Microbiol. Biotechnol. 2008, 79, 901–913.

  R. N. Singh, J. F. Koening, G. Poillerate, P. Chartier, Thin films of Co3O4 and NiCo2O4 prepared by the method of chemical spray pyrolsis for electrocatalysis: Part IV. The electrocatalysis of Oxygen reduction, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1991, 314, 241-257.

  M. Hamdani, R. N. Singh, P. Chartier, Co3O4 and Co- based bifunctional oxygen electrodes, Int. J. Electrochem. Sci. 2010, 5, 556-577.

  Gil, G.-C., Chang, I.-S., Kim, B.H., Kim, M., Jang, J.-K., Park, H.S., Kim, H.J., Operational parameters affecting the performance of a mediator-less microbial
fuel cell. Biosens. Bioelectron. 2003, 18, 327–334.

  Rozendal, R.A., Hamelers, H.V.M., Buisman, C.J.N., Effects of membrane cation transport on ph and microbial fuel cell performance. Environ. Sci. Technol. 2006, 40, 

  Beliaev, A.S., Klingeman, D.M., et al., Microarray Transcription Profiling of a Shewanella oneidensis etrA Mutant. J. Bacteriol. 2005, 187, 7138–7145.

  Dague, E., Duval, J., et al., Probing Surface Structures of Shewanella spp. by Microelectrophoresis. Biophys. J. 2006, 90, 2612–2621.

  Gaboriaud, F., Bailet, S., et al., Surface Structure and Nanomechanical Properties of Shewanella putrefaciens Bacteria at Two pH values (4 and 10) Determined by Atomic Force Microscopy. J. Bacteriol. 2005, 187, 3864–3868.

  Gao, H.,Wang, Y., et al., Global Transcriptome Analysis of the Heat Shock Response of Shewanella oneidensis. J. Bacteriol. 2004, 186, 7796–7803.

  Leaphart, A.B., Thompson, D.K., et al., Transcriptomic and Proteomic Characterization of the Fur Modulon in the Metal-Reducing Bacterium Shewanella oneidensis. J. Bacteriol. 2006, 188 (4), 1633–1642.

  Rozendal, R.A., Hamelers, H.V.M., Buisman, C.J.N., Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Technol. 2006, 40, 5206–5211.

  Ren, Z.Y., Ward, T.E., Regan, J.M., Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ. Sci. Technol. 2007, 41, 4781–4786.

  Biffinger, J.C., Pietron, J., Bretschger, O., Nadeau, L.J., Johnson, G.R., Williams, C.C., Nealson, K.H., Ringeisen, B.R., The influence of acidity on microbial fuel cells containing Shewanella oneidensis. Biosens. Bioelectron. 2008, 24, 900–905.

 http://www.straininfo.net/strains/21578/browser;jsessionid=8DF9042883B5326DD7FEEA9895D0463B

  Aelterman, P., 2009. Microbial fuel cells for the treatment of waste streams with nergy recovery, Ghent University. Faculty of Bioscience Engineering.

  Justin C. Biffinger, Jacqueline N. Byrd, Breanna L. Dudley, Bradley R. Ringeisen, Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells. Biosensors and Bioelectronics 2008, 23, 820-826.

  Catal, T., Li, K., Bermek, H., Liu, H., Electricity production from twelve
monosaccharides using microbial fuel cells. J. Power Sources 2008, 175, 196–200.

  Manohar, A.K., Mansfeld, F., The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions. Electrochem. Acta. 2009, 54, 1664–1670.

  Hyung Joo Kim, Hyung Soo Park, Moon Sik Hyun, In Seop Chang, Mia Kim, Byung Hong Kim, A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens.Enzyme and Microbial Technology 2002, 30, 145-152.

  Jang J. K., Pham T. H., Chang I. S., Kim B. H., Kang K. H., Moon H. S., Cho K. S., Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochemistry 2007, 39, 1007-1012

  Liu H., Cheng S., Logan B. E., Power generation in fed-batch microbial fuel cells as functions of ionic strength, temperature and reactor configuration. Environ. Sci. Technol. 2004, 38, 2281-2285.

  Ghangrekar M. M., Shinde V. B., Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresource Technology 2007, 98, 2879-2885. 

  Zhao, F., Harnisch, F., Schroder, U., Scholz, F., Bogdanoff, P., Herrmann, I., Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ. Sci. Technol. 2006, 40, 5193–5199.

  Clauwaert, P., Aelterman, P., Pham, T.H., Schamphelaire, L.D., Carballa, M., Rabaey, K., Verstraete, W., Minimizing losses in bio-electrochemical systems: the road to applications. Appl. Microbiol. Biotechnol. 2008, 79, 901–913.

  Fan, Y., Sharbrough, E., Liu, H., Quantification of the Internal Resistance Distribution of Microbial Fuel Cells. Envrion. Sci. Technol. 2008, 42, 8101–8107.

  Liang, P., Huang, W., Fan, M.Z., Cao, X.X., Wang, C., Composition and distribution of internal resistance in three types of microbial fuel cells. Appl. Microbiol. Biotechnol. 2007, 77, 551–558.

  Logan, B.E., Hamelers, B., Rozendal, R., Schro˝der, U., Keller, J., Frequia, S., Aelterman, P., Verstraete, W., Rabaey, K., Microbial Fuel Cells: Methodology and Technology. Environ. Sci. Technol. 2006, 40, 5181–5192.

  Aswin K. Manohar, Orianna Bretschger, Kenneth H. Nealson, Florian Mansfeld, The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell. Bioelectrochemistry 2008, 72, 149–154.

  Liang, P., Huang, W., Fan, M.Z., Cao, X.X., Wang, C., Composition and distribution of internal resistance in three types of microbial fuel cells. Appl. Microbiol. Biotechnol. 2007, 77, 551–558.

  Jin-Na Zhang, Qing-Liang Zhao, Peter Aelterman , Shi-Jie You, Jun-Qiu Jiang, Electricity generation in a microbial fuel cell with a microbially catalyzed cathode. Biotechnol Lett. 2008, 30, 1771–1776.

  Bard, A.J., L.R. Faulkner. Electrochemical Methods-Fundamentals and Applications. 2nd ed. 2001, New York: John Wiley & Sons, Inc.
  F. Mansfeld,W.J. Lorenz, in: R. Varma, J.R. Selman (Eds.), Techniques for Characterization of Electrodes and Electrochemical systems, J. Wiley, 1991, p. 581.

  F. Mansfeld, in: P. Marcus, F. Mansfeld (Eds.), Analytical Methods in
Corrosion Science and Engineering, CRC Press, 2005, p. 463.

  Young-Gab Chun, Chang-Soo Kim, Dong-Hyun Peck, Dong-Ryul Shin, Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes. Journal of Power Sources 1998, 71, 174-178.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信