§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0407200714552000
DOI 10.6846/TKU.2007.00137
論文名稱(中文) 連續式熱擴散塔提煉重氫之研究
論文名稱(英文) The Theoretical Study on the Deuterium Enrichment in Continuous Thermal-Diffusion Columns
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 95
學期 2
出版年 96
研究生(中文) 簡君豪
研究生(英文) Chun-Hao Chien
學號 694360339
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2007-06-21
論文頁數 155頁
口試委員 指導教授 - 何啟東(cdho@mail.tku.edu.tw)
委員 - 葉和明(hmyeh@mail.tku.edu.tw)
委員 - 蔡少偉(tsai@mail.cgu.edu.tw)
關鍵字(中) 熱擴散
分離度
出料分率
重氫
關鍵字(英) Flow-Rate Fraction Variations
Separation Efficiency Enrichment
Thermal Diffusion
Deuterium
第三語言關鍵字
學科別分類
中文摘要
本研究之主題是探討以平板型熱擴散塔,提煉氫同位素分離效率之改善研究。本文理論模式係藉由氫同位素之傳送公式及平衡關係,推導出連續式平板型熱擴散塔提煉氫同位素之數學模型,並在連續操作下,探討不同操作參數及設計參數對分離度之影響,例如:出料質量分率、進料體積流率、壓力、進料濃度分率、進料位置、長寬比、固定及無固定操作成本下之板距,以期能提升熱擴散塔之分離效果。
本研究首先推導出料質量分率、進料體積流率及壓力之平板型熱擴散塔的分離度公式;且藉由文獻中之實驗數據來求得數學模型中之傳送係數,接著,引入進料濃度分率及進料位置,討論這些參數對分離度的影響;最後,探討出料分率與改變長寬比及出料分率與有無固定操作成本下之板距對熱擴散塔分離效率之影響。由此可以證明,改善平板型熱擴散塔之操作與設計參數,有助於氫同位素分離效率之提升。
英文摘要
The thermal diffusion separation process can be applied to the separation of highly valuable materials, which are difficult or impossible to separate by other convention means, such as distillation, extraction, etc. The phenomena of mass transfer through a thermogravitational thermal-diffusion column with uniform wall temperature, one heated and the other cooled, has been investigated theoretically by transport equation for low volumetric flow rate and for high volumetric flow rate, respectively.
The influences of the operating and design parameters in a classical Clusius-Dickel column on separation efficiencies for H2-HD-D2 system, have been investigated theoretically. The transport coefficients, H and K, are correlated from the experimental data with the pressure and volumetric flow rate in the previous study. The results of the degree of separation efficiency are represented graphically with the operating parameters (feed rate, feed concentration, pressure, product flow-rate and feed position) and design parameters (aspect ratio, inclined angle, plate spacing and plate-spacing under the considerations of fixed operating expense) as parameters. The effects of the operating and design parameters on the separation efficiency enrichment are also discussed.
第三語言摘要
論文目次
目  錄
中文摘要	I
英文摘要	II
目錄	IV
圖目錄	VII
表目錄	XIV
第一章	緒論			           1
  1.1	熱擴散之起源			  1
  1.2	熱擴散塔之發展與沿革		  5
  1.3	熱擴散之應用			 10
  1.4	重氫及其用途			 14
  1.5	研究動機與目的			 25
第二章	重氫三成份系統之熱物性質估算	 27
  2.1	密度(ρ)之估算			 27
  2.2	平衡常數(Keq)之估算		 28
  2.3	黏度(μ)之估算			 28
  2.4	熱膨脹係數(βT)之估算		 29
  2.5	普通擴散係數(D)之估算		 29
  2.6	減數熱擴散係數(αT)之估算		 30
第三章	重氫系統的傳送係數之估算與低體積流率下提煉重氫效率
         之影響				 32
  3.1	傳送係數(H)與(K)之估算		 32
  3.2	影響熱擴散塔之參數			 47
   3.2.1	出料質量分率、進料體積流率、及壓力之熱擴散塔理論
         分析與討論			 47
第四章	高體積流率下之重氫系統理論模型	 62
  4.1	熱擴散塔之傳送公式			 62
  4.2	簡化後之分離度公式			 64
  4.3	影響熱擴散塔之參數			 66
   4.3.1	出料質量分率、進料體積流率、及壓力之熱擴散塔理論分
         析				 67
   4.3.2	出料質量分率、進料濃度分率及進料位置之熱擴散塔理論
         分析				 68
   4.3.3	出料質量分率、固定操作面積下之長寬比及傾斜角之熱擴
         散塔理論分析			 68
   4.3.4 出料質量分率、板距及固定操作成本下板距之熱擴散塔理
         論分析				 70
第五章	結果與討論			 72
  5.1	出料質量分率、進料體積流率及壓力之結果與討論						 74
  5.2	出料質量分率、進料濃度分率及進料位置之結果與討論					105
  5.3	出料質量分率、固定操作面積下之長寬比及傾斜角之結果
         與討論				118
  5.4	出料質量分率、板距及固定操作成本下板距之結果與討論					121
第六章	結論				129
符號說明					131
參考文獻					138
附錄(A)		 		         150


圖 目 錄
圖(1-1)	Ludwing 的實驗裝置之示意圖             2
圖(1-2)	濃度差所產生的瞬間溫度梯度之示意圖     3
圖(1-3)	溫度差所產生的濃度差之示意圖           4
圖(1-4)	水平式熱擴散塔裝置之示意圖	            6
圖(1-5)	熱重力熱擴散塔裝置之示意圖	            7
圖(1-6)	核分裂與核融合		           16
圖(3.1-1)	連續式平板型熱擴散塔裝置示意           33
圖(3.1-2)	676.5K下重氫系統各成份之平衡關係圖     37
圖(3.1-3)	676.5K下CC與C之關係圖	         	  40
圖(3.1-4)	傳送係數求解之流程圖		  46
圖(3.2-1)	固定進料濃度分率CF=0.171與操作壓力P=35kPa,在不同出料分率下,進料體積流率與分離度之關係圖	  50
圖(3.2-2)	固定進料濃度分率CF=0.171與操作壓力P=45kPa,在不同出料分率下,進料體積流率與分離度之關係圖	  51
圖(3.2-3)	固定進料濃度分率CF=0.171與出料分率r=0.5,在不同操作壓力下,進料體積流率與分離度之關係圖	  52
圖(3.2-4)	固定進料體積流率VF=50cm3/min與進料濃度分率CF=0.171,在不同出料分率下,操作壓力與分離度之關係圖						  53
圖(3.2-5)	固定進料濃度分率CF=0.171與出料分率r=0.5,在不同進料體積流率下,操作壓力與分離度之關係圖	  54
圖(3.2-6)	固定進料濃度分率CF=0.171與操作壓力P=35kPa,在不同進料體積流率下,出料分率與分離度之關係圖	  55
圖(3.2-7)	固定進料濃度分率CF=0.171與操作壓力P=45kPa,在不同進料體積流率下,出料分率與分離度之關係圖	  56
圖(3.2-8)	固定進料體積流率VF=50cm3/min與進料濃度分率CF=0.171,在不同操作壓力下,出料分率與分離度之關係圖						  57
圖(3.2-9)	固定進料體積流率VF=75cm3/min與進料濃度分率CF=0.171,在不同操作壓力下,出料分率與分離度之關係圖						  58
圖(3.2-10)	固定進料體積流率VF=100cm3/min與進料濃度分率CF=0.171,在不同操作壓力下,出料分率與分離度之關係圖						  59
圖(3.2-11)	固定出料分率r=0.5、進料位置δ=0.5與進料濃度分率CF=0.171下,理論值與實驗值之比較	  60
圖(5.1-1)	固定壓力P=30kPa與進料濃度分率CF=0.171,在不同進料體積流率下,出料分率與分離度之關係圖		  76
圖(5.1-2)	固定壓力P=40kPa與進料濃度分率CF=0.171,在不同進料體積流率下,出料分率與分離度之關係圖		  77
圖(5.1-3)	固定壓力P=50kPa與進料濃度分率CF=0.171,在不同進料體積流率下,出料分率與分離度之關係圖		  78
圖(5.1-4)	固定壓力P=30kPa與進料濃度分率CF=0.36,在不同進料體積流率下,出料分率與分離度之關係圖		  79
圖(5.1-5)	固定壓力P=40kPa與進料濃度分率CF=0.36,在不同進料體積流率下,出料分率與分離度之關係圖		  80
圖(5.1-6)	固定壓力P=50kPa與進料濃度分率CF=0.36,在不同進料體積流率下,出料分率與分離度之關係圖		  81
圖(5.1-7)	固定進料濃度分率CF=0.171,在不同進料體積流率與壓力下,出料分率與分離度之關係圖		  82
圖(5.1-8)	固定進料濃度分率CF=0.36,在不同進料體積流率與壓力下,出料分率與分離度之關係圖		  83
圖(5.1-9)	固定進料體積流率VF=1000cm3/min與進料濃度分率CF=0.171,在不同壓力下,出料分率與分離度之關係圖						  84
圖(5.1-10)固定進料體積流率VF=1200cm3/min與進料濃度分率CF=0.171,在不同壓力下,出料分率與分離度之關係圖						  85
圖(5.1-11)固定進料體積流率VF=1000cm3/min與進料濃度分率CF=0.36,在不同壓力下,出料分率與分離度之關係圖				           	  86
圖(5.1-12)固定進料體積流率VF=1200cm3/min與進料濃度分率CF=0.36,在不同壓力下,出料分率與分離度之關係圖						  87
圖(5.1-13)固定進料濃度分率CF=0.171,在不同壓力與進料體積流率下,出料分率與分離度之關係圖		  88
圖(5.1-14)固定進料濃度分率CF=0.36,在不同壓力與進料體積流率下,出料分率與分離度之關係圖		  89
圖(5.1-15)固定壓力P=30kPa與進料濃度分率CF=0.171,在不同出料分率下,進料體積流率與分離度之關係圖		  90
圖(5.1-16)固定壓力P=30kPa與進料濃度分率CF=0.36,在不同出料分率下,進料體積流率與分離度之關係圖		  91
圖(5.1-17)固定壓力P=40kPa與進料濃度分率CF=0.171,在不同出料分率下,進料體積流率與分離度之關係圖		  92
圖(5.1-18)固定壓力P=40kPa與進料濃度分率CF=0.36,在不同出料分率下,進料體積流率與分離度之關係圖		  93
圖(5.1-19)固定壓力P=50kPa與進料濃度分率CF=0.171,在不同出料分率下,進料體積流率與分離度之關係圖		  94
圖(5.1-20)固定壓力P=50kPa與進料濃度分率CF=0.36,在不同出料分率下,進料體積流率與分離度之關係圖		  95
圖(5.1-21)固定進料濃度分率CF=0.171與出料分率r=0.5,在不同壓力下,進料體積流率與分離度之關係圖		  96
圖(5.1-22)固定進料濃度分率CF=0.36與出料分率r=0.5,在不同壓力下,進料體積流率與分離度之關係圖		  97
圖(5.1-23)固定進料體積流率VF=1000cm3/min與進料濃度分率CF=0.171,在不同出料分率下,壓力與分離度之關係  98
圖(5.1-24)固定進料體積流率VF=1000cm3/min與進料濃度分率CF=0.36,在不同出料分率下,壓力與分離度之關係圖						  99
圖(5.1-25)固定進料體積流率VF=1200cm3/min與進料濃度分率CF=0.171,在不同出料分率下,壓力與分離度之關係圖						 100
圖(5.1-26)固定進料體積流率VF=1200cm3/min與進料濃度分率CF=0.36,在不同出料分率下,壓力與分離度之關係圖						 101
圖(5.1-27)固定進料濃度分率CF=0.171與出料分率r=0.5,在不同進料體積流率下,壓力與分離度之關係圖	          102
圖(5.1-28)固定進料濃度分率CF=0.36與出料分率r=0.5,在不同進料體積流率下,壓力與分離度之關係圖		 103
圖(5.1-29)固定出料分率r=0.5,在不同進料體積流率與進料濃度分率下,壓力與分離度之關係圖			 104
圖(5.2-1)	固定壓力P=50kPa、出料分率r=0.1與進料體積流率VF=1000cm3/min,在不同進料濃度分率下,進料位置與分離度之關係圖					 107
圖(5.2-2)	固定壓力P=50kPa、出料分率r=0.5與進料體積流率VF=1000cm3/min,在不同進料濃度分率下,進料位置與分離度之關係圖					 108
圖(5.2-3)	固定壓力P=50kPa、出料分率r=0.9與進料體積流率VF=1000cm3/min,在不同進料濃度分率下,進料位置與分離度之關係圖					 109
圖(5.2-4)	固定壓力P=50kPa、進料位置δ=0.5與進料體積流率VF=1000cm3/min,在不同出料分率下,進料濃度分率與分離度之關係圖					 110
圖(5.2-5)	固定壓力P=50kPa、進料位置δ=0.1與進料體積流率VF=1000cm3/min,在不同出料分率下,進料濃度分率與分離度之關係圖					 111
圖(5.2-6)	固定壓力P=50kPa、進料位置δ=0.9與進料體積流率VF=1000cm3/min,在不同出料分率下,進料濃度分率與分離度之關係圖					 112
圖(5.2-7)	固定壓力P=50kPa、進料濃度分率CF=0.36與進料體積流率VF=1000cm3/min,在不同進料位置下,出料分率與分離度之關係圖					 113
圖(5.2-8)	固定壓力P=50kPa、進料濃度分率CF=0.1與進料體積流率VF=1000cm3/min,在不同進料位置下,出料分率與分離度之關係圖					 114
圖(5.2-9)	固定壓力P=50kPa與進料體積流率VF=1000cm3/min,在不同進料濃度分率與進料位置下,出料分率與分離度之關係圖						 115
圖(5.2-10)固定壓力P=50kPa、進料濃度分率CF=0.36與進料體積流率VF=1000cm3/min,在不同出料分率下,進料位置與分離度之關係圖					 116
圖(5.2-11)固定壓力P=50kPa、出料分率r=0.5與進料體積流率VF=1000cm3/min,在不同進料濃度分率下,進料位置與分離度之關係圖					 117
圖(5.3-1)	固定於直立塔(θ=0o)、壓力P=50kPa、進料體積流率VF=1000cm3/min與進料濃度分率CF=0.36,在不同出料質量分率下,長寬比與分離度之關係圖			 119
圖(5.3-2)	固定於直立塔(θ=0o)、壓力P=50kPa、進料體積流率VF=1000cm3/min與出料質量分率r=0.5,在不同進料濃度分率下,長寬比與分離度之關係圖			 120
圖(5.4-1)	在固定操作成本下,固定壓力P=50kPa、進料體積流率VF=1000cm3/min與進料濃度分率CF=0.36,在不同板距下,出料質量分率與分離度之關係圖			 123
圖(5.4-2)	在無固定操作成本下,固定壓力P=50kPa、進料體積流率VF=1000cm3/min與進料濃度分率CF=0.36,在不同板距下,出料質量分率與分離度之關係圖			 124
圖(5.4-3)	在固定操作成本下,固定壓力P=50kPa、進料體積流率VF=1000cm3/min與出料質量分率r=0.5,在不同進料濃度分率下,板距與分離度之關係圖				 125
圖(5.4-4)	在無固定操作成本下,固定壓力P=50kPa、進料體積流率VF=1000cm3/min與出料質量分率r=0.5,在不同進料濃度分率下,板距與分離度之關係圖				 126
圖(5.4-5)	在固定操作成本下,固定壓力P=50kPa、進料體積流率VF=1000cm3/min與進料濃度分率CF=0.36,在不同出料質量分率下,板距與分離度之關係圖			 127
圖(5.4-6)	在無固定操作成本下,固定壓力P=50kPa、進料體積流率VF=1000cm3/min與進料濃度分率CF=0.36,在不同出料質量分率下,板距與分離度之關係圖			 128


表 目 錄
表(1-1)	熱擴散塔分離高價物質之實例摘要一覽表	  11
表(1-2)	普通水與重水之比較		           15
表(3-1)	文獻[93]中設計與操作參數	           44
表(3-2)	文獻[93]中之實驗數據	           44
表(3-3)	實驗數據求得之傳送係數	           45
表(3-4)	固定出料分率r=0.5、進料位置δ=0.5與進料濃度分率CF=0.171下,分離因子之理論值與實驗值[93]比較    61
表(5-1)	傳送係數、熱物性質、設計與操作之參數	  73
參考文獻
1.	Ludwig, C., “Diffusion zwischen ungleich erwarmten Orten gleich zusammengesetzter Losungen,” Sitz. ber. Akad. Wiss. Wien Math.-naturw. Kl, 20, 539 (1856).
2.	Dufour, L., “The Diffusion Thermoeffect,” Arch. Sci. (Geneva), 45, 9 (1872).
3.	Enskog, D., “A Generalization of Maxwell’s Second Kinetic Gas Theory,” Physik. Z., 12, 56 (1911).
4.	Chapman, S. and Dootson, F. W., “Thermal Diffusion,” Phil. Mag., 33, 248 (1917).
5.	Chapman, S., “Thermal Diffusion of Rare Constituents in Gas Mixtures And Isotopes,” Phil. Mag., 7, 1 (1929).
6.	Clusius, K. and Dickel, G., “New Process for Separation of Gas Mixtures and Isotopes,” Naturwiss., 26, 546 (1938).
7.	Clusius, K. and Dickel, G., “The Separation-Tube Process for Liquids,”, Naturwiss., 27, 148 (1939).
8.	Powers, J. E. and Wilke, C. R., “Separation in Liquids by Thermal Diffusion,” AIChE J., 3, 213 (1957).
9.	Cheuh, P. L. and Yeh, H. M., “Thermal Diffusion in a Flat-Plate Column Inclined for Improved Performance,” AIChE J., 13, 37 (1967).
10.	Yeh, H. M., “The Effect of Plate Spacing on the Degree of Separation in Inclined Thermal Diffusion Columns With Fixed Operating Expense,” Sep. Sci. Technol., 18, 585 (1983).
11.	Yeh, H. M., “Enrichment of Heavy Water in a Continuous-Type Inclined Thermal Diffusion Column,” Sep. Sci. Technol., 20, 101 (1985).
12.	Yeh, H. M., Yang, F. T. and Yang, S. C., “Optimal Design of Flat-Plate Thermal Diffusion with Fixed Plates Surfaces,” Chem. Eng. J., 31, 45 (1985).
13.	Yeh, H. M. and Yang, S. C., “Thermal Diffusion of the Frazier Scheme with Columns Inclined for Improved Performance,” J. Chin. Inst .Chem. Engrs., 18, 249 (1987).
14.	Yeh, H. M., Yang, F. T. and Yang, S. C., “The Effect of Varied Cross-Section Area on the Separation Efficiency of a Flat-Plate Thermal Diffusion Column with Fixed Plate-surface Area,” J. Chin. Inst .Chem. Engrs., 19, 241 (1988).
15.	Yeh, H. M., “Separation Theory of An Inclined Thermal Diffusion Column with Fixed Operating Expense,” J. Chin. Inst .Chem. Engrs., 20, 263 (1989).
16.	Yeh, H. M., “Thermal Diffusion in a Flat-Plate Column Inclined for Improved Performance with Transverse Sampling Streams,” J. Chin. Inst. Chem. Engrs., 23, 127 (1992).
17.	Yeh, H. M., “The Best Performance of Inclined Flat-Plate Thermal Diffusion Columns,” Separation. Tech., 5, 115 (1995).
18.	Yeh, H. M., “Enrichment of Heavy Water in Flat-Plate Thermal Diffusion Columns of the Frazier Scheme Inclined for Improved Performance,” Separation. Sci. & Tech., 30, 1025 (1995).
19.	Yeh, H. M., “Best Performance of Inclined Thermal Diffusion Columns of the Frazier Scheme,” The Canadian J. of Chem. Eng., 74, 152 (1996).
20.	Yeh, H. M., “Optimum Design of Inclined Frazier-Scheme Thermal Diffusion Columns for Enriching Heavy Water,” Separation and Puri. Tech., 17, 243 (1999).
21.	Yeh, H. M., “The Combined Effect of Inclined Angle Plate Spacing on the Performances of Flat-Plate Thermal-Diffusion Columns,” Chem. Eng. Comm., 179, 179 (2000).
22.	Yeh, H. M., “Effect of Inclined Angle and Plate Spacing on the Enrichment of Heavy Water in Batch-Type Flat-plate Thermal Diffusion Columns,” Sepatation and Puri. Tech., 24, 147 (2001).
23.	Yeh, H. M., “Enrichment of Heavy Water in Flat-Plate Thermal Diffusion Columns Inclined for Improved Performance,” Separation and Puri. Tech., 26, 227 (2002).
24.	Washall, T. A. and Melpolder, F.W., “Improving the Separation Efficiency of Liquid Thermal Diffusion Columns,” Ind. Eng. Chem. Proc. Des. Dev., 1, 26 (1962).
25.	Yeh, H. M. and Ward, H. C., “The Improvement in Separation of Concentric Tube Thermal Diffusion Columns,” Chem. Eng. Sci., 26, 937 (1970).
26.	Rabinovich, G. D., Ivakhnik, V. P., Zimina, K. I. and Sorokina, N. G., “Use of Spiral Inserts In Thermal-Diffusion Columns,” Inzh. Fiz. Zh., 35, 278 (1978).
27.	Yeh, H. M. and Yang, S. C., “The Enrichment of Heavy Water in A Concentric-Tube Wired Thermal Diffusion Column,” Nat'l Cheng Kung Univ. J., 20, 179 (1985).
28.	Yeh, H. M., “Thermal Diffusion in a Wired Concentric-Tube Column with Transverse Streams,” J. Chin. Inst .Chem. Engrs., 24, 343 (1993).
29.	Yeh, H. M., “Enrichment of Heavy Water by Thermal Diffusion, ”Chem. Eng. Comm, 167, 167 (1998)
30.	Yeh, H. M., “Heavy Water Enrichment in Wired Concentric-Tube Thermal-Diffusion Columns with Transverse Sampling Streams,” J. Chin. Inst .Chem. Engrs., 32, 453 (2001).
31.	Yeh, H. M. and Cheng, S. M., “Theory in Rotary Thermal Diffusion Columns,” National Ceng Kung Univ. Journal, 7, 73 (1972).
32.	Yeh, H. M. and Cheng, S. M., “A Study of The Separation Efficiency of Rotary Thermal Diffusion Columns,” Chem. Eng. Sci., 28, 1803 (1973).
33.	Yeh, H. M. and Ho, F. K., “A Study of the Separation Efficiency of Wired Thermal Diffusion Columns with Tubes Rotating in Opposite Directions,” Chem. Eng. Sci., 30, 1381 (1975).
34.	Yeh, H. M. and Tsai, S. W., “Improvement in Separation of Concentric-Tube Thermal Diffusion Columns with Viscous Heat Generation under Consideration of the Curvature Effect,” Sep. Sci. Technol., 16, 63 (1981).
35.	Yeh, H. M. and Tsai, S. W., “A Study of the Separation Efficiency of Rotated Concentric-Tube Thermal Diffusion Columns with Helical Plane inserted as a Spacer in the Annulus,” J. Chem. Eng. Japan, 14, 90 (1981).
36.	Yeh, H. M. and Tsai, S. W., “Separation Efficiency of Rotary Thermal Diffusion Columns with Inner Tube Cooled and Outer Tube Heated,” Separation Sci. & Tech., 17, 1075 (1982).
37.	Yeh, H. M. and Hsieh, S. J., “A Study on the Separation Efficiencies of Rotating-Tube Wired Thermal-Diffusion Columns under Higher Flow-Rate Operations,” Sep. Sci. Technol., 18, 1065 (1983).
38.	Yeh, H. M. and Yang, S. C., “The Enrichment of Heavy Water in A Wired Thermal Diffusion Column with Tube Rotated,” J. Chin. Inst .Chem. Engrs., 17, 1 (1986).
39.	Sullivan, L. J., Ruppel, T. C. and Willingham, C. B., “Rotary and Packed Thermal Diffusion Fractionating Columns for Liquids,” Ind. Eng. Chem., 47, 208 (1955).
40.	Lorenz, M. and Emery, A. H., “The Packed Thermal Diffusion Column,” Chem. Eng. Sci., 11, 16 (1959).
41.	Emery, A. E. and Lorenz, M., “Thermal Diffusion in a Packed Column,” AIChE, 9, 660 (1963).
42.	Yeh, H. M., Chu, T. Y and Hong, C. H., “Theory in Continuous-Type Packed Thermal Diffusion Columns,” J. Chin. Inst .Chem. Engrs., 2, 135 (1971).
43.	Yeh, H. M. and Chu, T. Y., “A Study of the Separation Efficiency of  Continuous-Type Packed Thermal Diffusion Columns,” Chem. Eng. Sci., 29, 1421 (1974).
44.	Dorozush, V. M. and Rabinovich, G. D., “Thermal Diffusion in a Packed Column,” J. Eng. Phys., 30, 600 (1976).
45.	Yeh, H. M., “Theory of Isotope Separation by Improved Thermal Diffusion Columns,” J. Chin. Inst .Chem. Engrs., 10, 89 (1979).
46.	Dorozush, V. M. and Rabinovich, G. D., “Use of Packed Thermal Diffusion Columns to Determine the Soret Coefficient in a Benzene-Carbon Tetrachloride Mixture,” J. Eng. Phys., 41, 1007 (1981).
47.	Jamet, Ph. and Fargue, D. and Costeseque, P., “Determine of the effective transport Coefficients for the Separation of Binary Mixtures of Organic Compounds into Packed Thermal Diffusion Columns,” Chem. Eng. Sci., 51, 4463 (1996).
48.	Tsai, S. W. and Yeh, H. M., “A Study of the Separation Efficiency of Horizontal Thermal Diffusion Columns with External Reflexes,” The Canadian J. of Chem. Eng., 63, 406 (1985).
49.	Tsai, S. W. and Yeh, H. M., “A Study of the Separation Efficiency of The Concentric-Type Thermal Diffusion Column with An Impermeable Barrier between The Plates,” J. Chem. Eng. Japan, 19, 548 (1986).
50.	Yeh, H. M., Tsai, S. W. and Lin, C. S., “A Study of Separation Efficiency in Thermal Diffusion Columns with a Permeable Vertical Barrier,” AIChE J., 32, 971 (1986).
51.	Tsai, S. W. and Yeh, H. M., “A Study of the Separation Efficiency of The Batch-Type Thermal Diffusion Column with An Impermeable Barrier Inserted Between the Plates,” I & EC Fundamentals, 25, 367 (1986).
52.	Yeh, H. M., Tsai, S. W. and Chen, W. H., “Improvement of Separation Efficiency in the Continuous-Type Horizontal Thermal Diffusion Column with Permeable Barrier between the Plates,” The Canadian J. of Chem. Eng., 64, 687 (1986).
53.	Tsai, S. W. and Yeh, H. M., “Improvement in Separation of The Batch-Type Thermal Diffusion Column with Impermeable Barriers Inserted between the Plates,” The Canadian J. of Chem. Eng., 67, 589 (1989).
54.	Yeh, H. M., “A Study of the Separation Efficiency in Horizontal Permeable-Barrier Thermal Diffusion Columns with Walls Set in Parallel Opposite Motion,” J. Chin. Inst .Chem. Engrs., 25, 317 (1991).
55.	Frazier, D., “Analysis of Transverse-Flow Thermal Diffusion,” Ind. Eng. Chem. Proc. Dev., 1, 237 (1962).
56.	Grasselli, R. and Frazier, D., “A Comparative Study of Continuous Liquid Thermal Diffusion Systems,” Ind. Eng. Chem. Proc. Des. Dev., 1, 241 (1962).
57.	Yeh, H. M. and Yang, S. C., “Thermal Diffusion of The Frazier Scheme with Columns Inclined for Improved Performance,” J. Chin. Inst .Chem. Engrs., 18, 249 (1987).
58.	Yeh, H. M., “Thermal Diffusion in a Flat-Plate Column Inclined for Improved Performance with Transverse Sampling Streams,” J. Chin. Inst .Chem. Engrs., 23, 127 (1992).
59.	Yeh, H. M. and Wang, Y. T., “The Modified Frazier-Scheme Thermal-Diffusion Columns with Column Length Varied at A Constant Ratio,” Separations Tech., 2, 192 (1992).
60.	Yeh, H. M., “The Effect of Plate Spacing on the Degree of Separation in Inclined Thermal Diffusion Columns with Transverse Sampling Streams,” J. Chin. Inst .Chem. Engrs., 25, 71 (1994).
61.	Yeh, H. M., “Further Work on the Modification of the Frazier Thermal Diffusion System,” Separations Tech., 4, 1 (1994).
62.	Yeh, H. M., “The Optimum Plate-Spacing in Flat-Plate Thermal Diffusion Columns with Transverse Sampling Streams,” J. Chin. Inst .Chem. Engrs., 25, 329 (1994).
63.	Yeh, H. M., “Thermal Diffusion in Inclined Flat-Plate Columns of The Frazier Scheme,” The Canadian J. of Chem. Eng., 72, 815 (1994).
64.	Yeh, H. M., “Enrichment of Heavy Water in Flat-Plate Thermal Diffusion columns of the Frazier Scheme Inclined for Improved Performance,” Separation Sci. & Tech., 30, 1025 (1995).
65.	Yeh, H. M., “Thermal Diffusion in A Flat-Plate Column with Transverse Sampling Streams,” Chem. Eng. Comm., 138, 225 (1995).
66.	Yeh, H. M., “Optimum Plate-Spacing for the Best Performance of the Enrichment of Heavy Water in Flat-Plate Thermal Diffusion Columns of the Frazier Scheme,” Separation Sci. & Tech., 31, 2543 (1996).
67.	Yeh, H. M., “The Optimum Plat-Spacing for the Best Performance in A Flat-Plate Thermal Diffusion Column with Transverse Sampling Streams,” Chem. Eng. Comm., 157, 135 (1997).
68.	Yeh, H. M., “The Optimum Plate Aspect Ratio for the Best Performance in a Flat-Plate Thermal Diffusion Column of the Frazier Scheme,” The Canadian J. of Chem. Eng., 75, 605 (1997).
69.	Yeh, H. M., “The Optimum Plate-Spacing for the Best Performance in Flat-Plate Thermal Diffusion Columns of the Frazier Scheme,” Chem. Eng. Comm., 165, 227 (1998).
70.	Yeh, H. M., “The Optimum Plate Aspect Ratio for the Best Performance in a Flat-Plate Thermal Diffusion Column with Transverse Sampling Streams,” Separation Sci. & Tech., 33, 227 (1998).
71.	Yeh, H. M., “Optimum Design of Inclined Frazier Scheme Thermal Diffusion Columns for Enriching Heavy Water,” Separation and Puri. Tech., 17, 243 (1999).
72.	Yeh, H. M., “Enrichment of Heavy Water in Flat-Plate Thermal Diffusion Columns of the Frazier Scheme with the Optimal Plate Aspect Ratio for Best Performance,” The Canadian J. of Chem. Eng., 78, 596 (2000).
73	Yeh, H. M., “Enrichment of Heavy Water in and Inclined Flat-Plate Thermal-Diffusion Column with Transverse Sampling Streams,” J. Chin. Inst .Chem. Engrs., 32, 63 (2001).
74.	Yeh, H. M., “Thermal Diffusion in a Countercurrent-Flow Frazier Scheme Inclined for Improved Performance,” Chem. Eng. Sci., 56, 2889 (2001).
75.	Yeh, H. M., “Heavy Water Enrichment in Wired Concentric-Tube Thermal-Diffusion Columns with Transverse Sampling Streams,” J. Chin. Inst .Chem. Engrs., 32, 453 (2001).
76.	Yeh, H. M., “Enrichment of Heavy Water by Thermal Diffusion in Countercurrent-Flow Frazier Scheme Inclined for Improved Performance,” Separation Sci. & Tech., 36, 3015 (2001).
77.	黃慰國,“熱擴散塔中提煉重水之最佳進料位置”,淡江大學碩士論文(1998).
78.	潘家寅譯“核燃料”,徐氏基金會出版,p.95(1967).
79.	Taleyarkhan, R. P. et al, “Evidence for Nuclear Emissions During Acoustic Cavitation,” Science, 295, 1868 (2002).
80.	Cristescu, I., Cristescu, I. and Peculea, M., “Study of Chemical Equilibrium for Tricomponent Mixtures of Hydrogen Isotopes,” Revue Roumaine de chimie, 44, 831 (1999).
81	Farkas, A., “Orthohydrogen, Parahydrogen and Heavy Hydrogen,” Cambridge University Press, New York (1935).
82.	Velásquez, J. E., Chejne, F. and Hill, A. F. J., “Mathematical Model and Simulation of a Thermal Diffusion Column,” Journal of Heat Transfer, 125, 266 (2003).
83.	Hirschfelder, J. O., Curtiss, C. F. and Bird, R. B., “Molecular Theory of Gases and Liquids,” John Wiley & Sons, New York (1965).
84.	Lide, D. R. and Kehiaian, H. V., “CRC Handbook of Thermophysical and Thermochemical Data,” CRC Press, Boca Raton, Fla. (1994).
85.	Herbert, M. S., “New Chemical Engineering Separation Techniques,” John Wiley & Sons, New York (1962).
86.	Jones, R. C. and Furry, W. H., “The Separation of Isotopes by Thermal Diffusion,” Rev. Mod. Phys., 18, 151 (1946).
87.	Jones, R. C., “The Theory of Thermal Diffusion Coefficient for Isotopes Ⅱ,” Phys. Rev., 59, 1019 (1941).
88.	Saviron, J. M., Gonzalez, D., Brun, J. L. and Madariaga, J. A., “Non-Steady Separation of Multicomponent Isotopic Mixtures in Cluisus-Dickel Columns,” J. Phys. Soc. Japan, 39, 1417(1975).
89.	Rutherford, W. M., “Separation of Isotopes in the Thermal Diffusion Column,” Sep. Pur. Meth., 4, 305 (1975).
90.	Yeh, H. M. and Yang, S. C., “The Enrichment of Heavy Water in a Batch-Type Thermal Diffusion Column,” Chem. Eng. Sci., 39, 1277 (1984).
91.	Rutherford, W. M. and Lindsay, C. N., “Separation of Hydrogen Isotopes by Thermal Diffusion,” Fusion Technology, 8, 2278 (1985).
92.	Yeh, H. M. , Ho, C. D. and Yen, Y. L., “Further Study on the Enrichment of Heavy Water in Continuous-Type Thermal-diffusion Columns,” Sep. Sci. Technol., 37, 1179 (2002).
93.	Arita, T., Yamanishi, T., Okuno, K. and Yamamoto, I., “Experimental Study of Separative Characteristics of Cryogenic-wall Thermal Diffusion Column for H-D and H-T mixtures,” Fusion Engineering and Design, 39, 1021 (1998).
94.	張光榮,“圓管型熱擴散塔提煉重水之解析解研究”,淡江大學碩士論文(2004)。
95.	Furry, W. H., Jones, R. C., and Onsager, L., “On the Theory of Isotope Separation by Thermal Diffusion,” Phys. Rev., 55, 1083 (1939).
96.	Yeh, H. M. and Tsai, S. W., “The Improvement of Separation Theory in a Continuous Thermal Diffusion Column,” Separation Sci. & Tech., 19, 497 (1984).
97.	Yeh, H. M. and Tsai, S. W., “A Study of the Separation Efficiency of Thermal Diffusion Columns with Best Feed Location,” Chem. Eng. J., 29, 141 (1985).
98.	Yeh, H. M., “The Optimum Plate Aspect-Ratio for the Best Performance in Flat-Plate Thermal Diffusion Column,” J. Chem. Eng. Japan, 28, 609 (1995).
99.	Yeh, H. M., “Optimal Plate-Spacing in Flat-Plate Thermal Diffusion Columns,” Bulletin of The College of Eng., Nate Taiwan Univ., 46, 107 (1989).
100.	Yeh, H. M., “The Optimum Plate-Spacing for The Best Performance in Flat-Plate Thermal Diffusion Columns,” Chem. Eng. Sci., 49, 2027 (1994).
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信