淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0407200714115500
中文論文名稱 考慮信用交易及現金折扣的存貨模式之現金流量折現分析
英文論文名稱 Discount Cash-Flow Analysis on Inventory Model under Trade Credit and Cash Discount
校院名稱 淡江大學
系所名稱(中) 管理科學研究所碩士班
系所名稱(英) Graduate Institute of Management Science
學年度 95
學期 2
出版年 96
研究生中文姓名 張偉傑
研究生英文姓名 Wei-Chieh Chang
學號 694560235
學位類別 碩士
語文別 中文
口試日期 2007-06-11
論文頁數 58頁
口試委員 指導教授-歐陽良裕
委員-楊志德
委員-婁國仁
中文關鍵字 存貨  信用交易  現金折扣  現金流量折現法 
英文關鍵字 Inventory  trade credit  cash discount  Discount Cash-Flow 
學科別分類 學科別社會科學管理學
中文摘要 信用交易的存貨模式近幾年來廣泛地被許多學者所討論。對於供應商而言,提供信用交易可以刺激消費和減少貨物的庫存。另一方面,對於零售商而言,藉由信用交易可以降低成本,增加利潤。過去,有關信用交易的文獻,大都假設倉庫容量沒有限制且需求率和售價無關。但在現實生活中,因為資金有限和土地取得不易,致使自有倉庫容量有所限制,因而零售商需要外租倉庫來存放過多的貨品。再者,需求率常會受到售價高低的影響而非固定的常數,當售價高時則需求率會下降;反之則會上升。因此,我們有必要將變動的需求率納入模式中。
本研究的目的是探討不同的信用交易策略分別對倉庫容量有限,以及需求與售價有關這兩個存貨系統的影響。使用現金流量折現法來求得最適的補貨策略及總成本(利潤)的最小(大)淨現值。第二章假設倉庫容量有限,供應商給予零售商一段固定的信用交易期限,並且若零售商於更早的時點付清貨款時,還可以享受現金折扣的優惠。第三章則在需求與售價有關的情況下,供應商提供零售商一個信用交易期限,並且當零售商訂購達到某一數量時還可以享受現金折扣。對所建立的兩個存貨模式,我們分別得到最適解存在且為唯一的條件,並以數值範例說明求解的過程。第四章則為本研究的結論以及未來的研究方向。
英文摘要 Recently, the inventory models under trade credit have been widely studied by many researchers. Offering a credit period will encourage the supplier’s selling and reduce on-hand stock level. On the other hand, the retailer can take advantages of a credit period to reduce cost and increase profit. Most previous models about trade credit assumed that the capacity of the own warehouse is unlimited and demand rate is independent to the retail price. In fact, it is possible for the management to purchase more goods than can be stored in the owned warehouse. When the stock level exceeds the capacity of the own warehouse, a rented warehouse is used. Also, a lower price will induce more sales and profit. Hence, analysis of an inventory system where the demand rate is influenced by selling price is a practical issue.
The purpose of this research is to study the effect of different trade credit policies on inventory systems with limited warehouse capacity and price-sensitive demand. The Discount Cash-Flow (DCF) approach is applied to find the optimal replenishment policy and the minimum(maximum) net present value of total cost(profit) over the infinite horizon. In chapter 2, we considered an inventory model with limited warehouse capacity, in which the supplier provides both cash discount and delayed payment to the retailer. That is, supplier provides a cash discount to encourage the retailer to pay for goods quickly; otherwise, the full purchasing price must be paid at the due date of credit period. In chapter 3, we established an inventory model with price-sensitive demand and trade credit, in which the supplier further provides a cash discount to the retailer if the order quantity is greater than or equal to a predetermined quantity. In both chapters, the existence and uniqueness of the optimal solutions are proved and numerical examples are provided to illustrate the proposed models. Finally, we provided the conclusions and future research in Chapter 4.
論文目次 目 錄
目 錄 I
表目錄 III
圖目錄 IV
通用符號一覽表 V
基本假設 V
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻探討 4
1.3 本文結構 8
第二章 考慮信用交易及現金折扣的兩倉庫存貨模式之現金流量折現分析 10
2.1 簡介 10
2.2 符號與假設 11
2.3 建立模式 12
2.4 模式的求解 15
2.5 數值範例 23
2.6 敏感度分析 26
第三章 在需求與售價有關下考慮信用交易及現金折扣的存貨模式之現金流量折現分析 29
3.1 簡介 29
3.2 符號與假設 30
3.3 建立模式 31
3.4 模式的求解 34
3.5 數值範例 45
第四章 結論 48
4.1 研究成果 48
4.2 未來研究方向 51
參考文獻 54

表目錄
表2.1 例2.1兩種模式下的最適解與Teng (2006)模式的最適解 24
表2.2 例2.2兩種模式下的最適解 25
表2.3 例2.3兩種模式下的最適解 26
表2.4 在不同零售商之需求率,訂購成本,購買成本和零售商自有倉庫的最大容量下,例2.1的最適解 27
表3.1 例3.1兩種模式下的最適解 46
表3.2 例3.2兩種模式下的最適解 47

圖目錄
圖3.1 訂購數量大於或等於B (即T > = B/D )時的存貨系統 31
圖3.2 訂購數量小於B (即T < B/D )時的存貨系統 33



參考文獻 參考文獻
[1]Aggarwal, S. P. & Jaggi, C. K. (1995), “Ordering policies of deteriorating items under permissible delay in payments,” Journal of the Operational Research Society, Vol. 46, pp. 658-662.

[2]Benkherouf, L. (1997), “A deterministic order level inventory model for deteriorating items with two storage facilities,” International Journal of Production Economics, Vol. 48, No. 2, pp. 167-175.

[3]Bhunia, A. K. & Maiti, M. (1998), “A two-warehouse inventory model for deterio-rating items with a linear trend in demand and shortages,” Journal of the Operational Research Society, Vol. 49, No. 3, pp. 287-292.

[4]Buzacott, J. A. (1975), “Economic order quantities with inflation,” Operational Research Quarterly , Vol. 26, No. 3, pp. 553-558.

[5]Chandra, M. J. & Bahner, M. L. (1985), “The effects of inflation and time value of money on some inventory systems,” International Journal of Production Research , Vol. 23, pp. 723-730.

[6]Chang, C. T. (2004), “An EOQ model for deteriorating items under inflation when supplier credits linked to order quantity,” International Journal of Production Economics, Vol. 88, pp. 307-316.

[7]Chang, C. T., Ouyang, L. Y. & Teng, J. T. (2003), “An EOQ model for deteriorating items under supplier credits linked to ordering quantity,” Applied Mathematical Modelling, Vol. 27, pp. 983-996.

[8]Chang, C. T. & Wu, S. J. (2003), “Optimal payment time under permissible delay in payment for products with deterioration,” Production Planning & Control, Vol. 14, pp. 478-482.

[9]Chapman, C. B. & Ward, S. C. (1988), “Inventory control and trade credit: a further reply,” Journal of the operational research society, Vol. 39, pp. 219-220.

[10]Chung, K. J. & Huang, T. S. (2007), “The optimal retailer’s ordering policies for deteriorating items with limited storage capacity under trade credit financing,” International Journal of Production Economics, Vol. 106, No. 1, pp. 127-145.

[11]Cohen, M. A. (1977), “Joint pricing and ordering policy for exponentially decaying inventory with known demand,” Naval Research Logistic Quarterly, Vol. 24, pp. 257-268.

[12]Dave, U. (1988), “On the EOQ models with two levels of storage,” Opsearch, Vol. 25, pp. 190-196.

[13]Goyal, S. K. (1985), “EOQ under conditions of permissible delay in Payment,” Journal of the Operational Research Society, Vol. 36, pp. 335-338.

[14]Hadley, G. (1964), “A comparison of order quantities computed using the average annual cost and the discounted cost,” Management Science, Vol. 10, No. 3, pp. 472-476.

[15]Haley, C. W. & Higgins, R. C. (1973), “Inventory policy and trade credit financing,” Management Science, Vol. 20, No. 4, pp. 464-471.

[16]Harris, F. W. (1913), “How many parts to make at once,” Factory, The Magazine of Management, Vol. 10, No. 2, pp. 135-136.

[17]Hartley, R. V. (1976), Operations Research−A Managerial Emphasis, Good Year Publishing Company, California, pp. 315-317.

[18]Huang, Y. F. (2006), “An inventory model under two levels of trade credit and limited storage space derived without derivatives,” Applied Mathematical Modelling, Vol. 30, No. 5, pp. 418-436.

[19]Huang, Y. F. & Chung, K. J. (2003), “Optimal replenishment and payment policies in the EOQ model under cash discount and trade credit,” Asia-Pacific Journal of the Operational Research Society, Vol. 20, pp. 177-190.

[20]Hung, M. S. & Fisk, J. C. (1984), “Economic sizing of warehouses─A linear programming approach,” Computer & Operations Research, Vol.11, No.1, pp. 13-18.

[21]Jamal, A., Sarker, B. & Wang, S. (1997), “An ordering policy for deteriorating items with allowable shortage and permissible delay in payment,” Journal of the Operational Research Society, Vol. 48, pp. 826-833.

[22]Kang, S. & Kim, I. (1983), “A study on the price and production level of the deteriorating inventory system,” International Journal of Production Research, Vol. 21, No. 6, pp. 899-908.

[23]Kingsman, B. G. (1983), “The effect of payment rules on ordering and stocking in purchasing,” Journal of the Operational Research Society , Vol. 34, No. 11, pp. 1085-1098.

[24]Misra, R. B. (1975), “Optimum production lot size model for a system with deteri-orating inventory,” International Journal of Production Research, Vol. 13, No. 5, pp. 495-505.

[25]Murdeshwar, T. M. & Sathe, Y. S. (1985), “Some aspects of lot size model with two levels of storage,” Opsearch, Vol. 22, No. 4, pp. 255-262.

[26]Ouyang, L. Y., Chen, M. S. & Chung, K.W. (2002), “Economic order Quantity model under cash discount and payment delay,” International Journal of Information and Management Sciences, Vol. 13, pp. 1-10.

[27]Ouyang, L. Y., Teng, J. T. & Chen, L. H. (2006), “Optimal ordering policy for deteriorating items with partial backlogging under permissible delay in payments,” Journal of Global Optimization, Vol. 34, pp. 245-271.

[28]Papachristos, S. & Skouri, K. (2003), “An inventory model with deteriorating items, quantity discount, pricing and time-dependent partial backlogging,” International Journal of Production Economics, Vol. 83, No. 3, pp. 247-256.

[29]Sarker, B. R., Jammal, A. M. M. & Wang, S. (2000), “Supply chain models for perishable products under inflateion and permissible delay in payment,” Computers and Operations Research, Vol. 27, pp. 59-75.

[30]Sarker, B. R. & Pan, H. (1994), “Effect of inflation and time value of money on order quantity and aloeable shortage,” International Jurnal of Production Economics, Vol. 34, pp. 65-72.

[31]Sarma, K. V. S. (1983), “A deterministic inventory model with two level of storage and an optimum release rule,” Opsearch, Vol. 20, pp. 175-180.

[32]Sarma, K. V. S. (1987), “A deterministic order level inventory model for deteriorating items with two storage facilities,” European Journal of Operational Research, Vol. 29, No. 1, pp. 70-73.

[33]Sun, D. & Queyranne, M. (2002), “Production and inventory model using net present value,” Operations Research, Vol. 50, No. 3, pp. 528-537.

[34]Teng, J. T. (2002), “On the economic order quantity under conditions of permissible delay in payments,” Journal of the Operational Research Society, Vol. 53, pp. 915-918.


[35]Teng, J. T. (2006), “Discount cash-flow analysis on inventory control under various supplier’s trade credits,” International Journal of Operations Research, Vol. 3, No. 1, pp. 23-29.

[36]Teng, J. T. & Chang, C. T. (2005), “Economic production quantity models for de-teriorating items with price- and stock-dependent demand,” Computers & Operations Research, Vol. 32, No. 2, pp. 297-308.

[37]Trippi, R.R., & Lewin, D.E. (1974),”A present value formulation of classical EOQ Problem,” Decision Science, Vol.5, pp. 30-35.

[38]Wee, H. M. (1997), “A replenishment policy for items with a price-dependent demand and a varying rate of deterioration,” Production Planning & Control, Vol. 8, No. 5, pp. 494-499.

[39]Wee, H. M. (1999), “Deteriorating inventory model with quantity discount, pricing and partial backordering,” International Journal of Production Economics, Vol. 59, No. 1, pp. 511-518.

[40]Wilson, R. H. (1934), “A scientific route for stock control,” Harvard Business Review, Vol. 13, pp. 116-128.

[41]Yang, H. L.(2004), “Two-warehouse inventory models for deteriorating items with shortages under inflation,” European Journal of Operational Research, Vol. 157, No. 2, pp. 344-356.

[42]Yang, H. L. (2006), “Two-warehouse partial backlogging inventory models for dete-riorating items under inflation,” International Journal of Production Economics, Vol. 103, No. 1, pp. 362-370.

[43]Zhou, Y. W. (2003), “A multi-warehouse inventory model for items with time-varying demand and shortages,” Computers & Operations Research, Vol. 30, No. 14, pp. 2115-2134.

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-07-16公開。
  • 同意授權瀏覽/列印電子全文服務,於2007-07-16起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信