淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0406201822415700
中文論文名稱 探究虛擬實境中視覺認知風格對臨場感與科學感知學習的影響
英文論文名稱 Exploring the Effects of Visual Cognitive Styles on Presence and Science Perceived Learning in Virtual Reality
校院名稱 淡江大學
系所名稱(中) 教育領導與科技管理博士班
系所名稱(英) Doctoral Program of Educational Leadership and Technology Management, College of Education
學年度 106
學期 2
出版年 107
研究生中文姓名 翁鴻仁
研究生英文姓名 Hung-Jen Weng
學號 802760107
學位類別 博士
語文別 中文
口試日期 2018-06-01
論文頁數 148頁
口試委員 指導教授-徐新逸
委員-吳柏林
委員-張鈿富
委員-邱瓊慧
委員-張瓊穗
中文關鍵字 虛擬實境  視覺認知風格  臨場感  科學感知學習 
英文關鍵字 Virtual Reality  Visual Cognitive Style  Presence  Science Perceived Learning 
學科別分類
中文摘要 隨著虛擬實境(Virtual Reality, VR)技術快速發展,其在教育的應用亦逐漸普及。然而,目前的教育應用侷限在桌上型虛擬實境(Desktop VR),而且研究對象也多集中在高等教育階段,在中等學校科學教育的相關軟體及配套仍相當缺乏。在虛擬實境內容方面,多數研究採用具有物件特徵屬性的學習任務,但是在需要空間概念和抽象思考的物理學科學習上,則非常稀少。
本研究採用徐新逸和周雲虎於2017年所開發的「3D雲端虛擬物理實驗室」(CVLab)虛擬實境軟體中的「載流導線」單元,探討在虛擬實境的科學學習體驗後,學生的視覺認知風格屬性─包含物件視覺風格和空間視覺風格,對虛擬實境各向度─包含臨場感、滿意度及科學感知學習的影響。於是,本研究以65位高中學生為對象,探討高、中、低不同程度的物件視覺風格和空間視覺風格,對虛擬實境各向度的影響。此外,更進一步地比較在頭戴式顯示器的沉浸式虛擬實境和桌上型電腦的非沉浸式虛擬實境之科學學習課程中,學生的表現差異。
研究發現,於頭戴式顯示器或桌上型電腦螢幕的情境下,高、中、低不同程度物件視覺風格或空間視覺風格,在臨場感、滿意度和科學感知學習的表現無顯著差異。於前述兩種虛擬實境情境差異分析中,就高空間視覺風格,採用頭戴式顯示器的滿意度顯著優於桌上型電腦螢幕;就中物件和中空間視覺風格,採用頭戴式顯示器的臨場感和滿意度顯著優於桌上型電腦螢幕;就低空間視覺風格,採用頭戴式顯示器的臨場感顯著優於桌上型電腦螢幕。因此,本研究使用空間任務的虛擬實驗室內容與搭配的科技內容教學模式,除補強視覺認知風格在科學教育學習理論的完整性,亦建議對低空間視覺風格學習者給予空間視覺的學習支援。
英文摘要 The educational applications of Virtual Reality (VR) are more popular in diverse areas including high education, engineering, and medical field. However, virtual reality in high school science education has generally been neglected in recent educational researches for a variety of reasons, such as lack of VR equipment and subject-related software. Few studies covering k12 science education are still limited to the desktop VR and learning tasks involving visual object attribute, which are classified as the non-immersive virtual reality and understood by visual attention.
In order to enlarge the scope of visual cognitive styles theory, this study adopted the Head-Mounted Display (HMD) that strove to immerse learners in virtual environment via well-designed spatial learning tasks, thereby greatly investigating the influences of virtual reality on presence, satisfaction, and science perceived learning with visual cognitive styles. The virtual physics laboratory, 3D Cloud Virtual Physics Laboratory (CVLab) developed by Shyu and Chou (2017), was adopted for examining the effects of VR-based learning experience for the high school students with various levels of visual cognitive styles constructed of object visual style and spatial visual style.
Subjects were 65 high school students in this study. The results in case of immersive virtual reality did not indicate a significant difference in the presence, satisfaction, and science perceived learning that students categorized into high, medium, and low levels of object visual style. This was the same case in the non-immersive virtual reality. Moreover, the data also showed that there were no significant differences in presence, satisfaction, and science perceived learning among the high, medium, and low levels of spatial visual style, both in cases of immersive and non-immersive virtual reality.
Comparisons were made between immersive and non-immersive virtual reality situation in this study as well. It was concluded that presence and satisfaction performed better in immersive virtual reality for the students with medium level of object and spatial visual style, compared to non-immersive virtual reality. Meanwhile, science perceived learning showed the same performance for the students in all three levels of object and spatial visual style, both in terms of immersive and non-immersive virtual reality. This study highlights the importance of providing the adaptive visual support in science curriculum for the students with low spatial visual style.
論文目次 第一章 緒論……………………………………………………… 1
第一節 研究背景與動機………………………………………… 1
第二節 研究目的與問題………………………………………… 8
第三節 名詞釋義………………………………………………… 9
第四節 研究貢獻………………………………………………… 12
第五節 研究範圍與限制………………………………………… 14
第二章 文獻探討………………………………………………… 17
第一節 虛擬實境………………………………………………… 17
第二節 視覺認知風格…………………………………………… 27
第三節 臨場感…………………………………………………… 33
第四節 科學感知學習…………………………………………… 39
第三章 研究方法………………………………………………… 47
第一節 研究架構………………………………………………… 47
第二節 研究假設………………………………………………… 48
第三節 研究對象………………………………………………… 51
第四節 研究工具………………………………………………… 53
第五節 研究流程………………………………………………… 61
第六節 資料分析………………………………………………… 63
第四章 研究結果與討論………………………………………… 69
第一節 視覺認知風格在沉浸式虛擬實境的影響分析………… 69
第二節 視覺認知風格在非沉浸式虛擬實境的影響分析……… 81
第三節 視覺認知風格在不同虛擬實境的影響差異分析……… 94
第五章 結論與建議……………………………………………… 111
第一節 結論……………………………………………………… 111
第二節 建議……………………………………………………… 114
參考文獻………………………………………………………… 119
壹、中文部分…………………………………………………… 119
貳、外文部分…………………………………………………… 120
附錄……………………………………………………………… 133
附錄一 虛擬實驗室軟體………………………………………… 133
附錄二 「預測─觀察─解釋」學習單…………………………… 135
附錄三 專家內容效度意見……………………………………… 141
附錄四 正式問卷………………………………………………… 147

表次
表2-1 不同虛擬實境類型特性摘要表………………………………………… 19
表3-1 沉浸式與非沉浸式虛擬實境之不同視覺認知風格分組人數摘要表… 52
表3-2 載流導線虛擬實驗室POE教學活動任務表…………………………… 56
表3-3 量表初稿修正意見專家學者一覽表…………………………………… 58
表3-4 視覺認知風格與虛擬實驗室預試量表之信度分析結果……………… 60
表4-1 沉浸式虛擬實境中視覺認知風格各向度之敘述性統計摘要表……… 70
表4-2 沉浸式虛擬實境中視覺認知風格量表之各題平均數與標準差表…… 71
表4-3 沉浸式虛擬實境各向度整體之敘述性統計摘要表…………………… 72
表4-4 沉浸式虛擬實境量表之各題平均數與標準差表……………………… 73
表4-5 視覺認知風格與沉浸式虛擬實境各向度之間相關性係數摘要表…… 74
表4-6 沉浸式虛擬實境中不同物件視覺風格之視覺認知風格檢定摘要表… 76
表4-7 沉浸式虛擬實境中不同物件視覺風格之虛擬實境無母數檢定摘要表 77
表4-8 沉浸式虛擬實境中不同空間視覺風格之視覺認知風格檢定摘要表… 78
表4-9 沉浸式虛擬實境中不同空間視覺風格之虛擬實境無母數檢定摘要表 79
表4-10 沉浸式虛擬實境中視覺認知風格對虛擬實境之無母數檢定歸納表… 81
表4-11 非沉浸式虛擬實境中視覺認知風格各向度之敘述性統計摘要表…… 82
表4-12 非沉浸式虛擬實境中視覺認知風格量表之各題平均數與標準差表… 83
表4-13 非沉浸式虛擬實境各向度整體之敘述性統計摘要表………………… 84
表4-14 非沉浸式虛擬實境量表之各題平均數與標準差表…………………… 85
表4-15 視覺認知風格與非沉浸式虛擬實境各向度之相關係數摘要表……… 86
表4-16 非沉浸式虛擬實境中不同物件視覺風格之視覺認知風格檢定摘要表 87
表4-17 非沉浸式虛擬實境中不同物件視覺風格之虛擬實境檢定摘要表…… 88
表4-18 非沉浸式虛擬實境中不同空間視覺風格之視覺認知風格檢定摘要表 89
表4-19 非沉浸式虛擬實境中不同空間視覺風格之虛擬實境檢定摘要表…… 90
表4-20 非沉浸式虛擬實境中視覺認知風格對虛擬實境之無母數檢定歸納表 93
表4-21 不同虛擬實境中樣本的視覺認知風格差異分析表…………………… 95
表4-22 高物件視覺風格在不同虛擬實境之視覺認知風格各向度差異分析表 96
表4-23 高物件視覺風格在不同虛擬實境之虛擬實境各向度差異分析表…… 97
表4-24 中物件視覺風格在不同虛擬實境之視覺認知風格各向度差異分析表 97
表4-25 中物件視覺風格在不同虛擬實境之虛擬實境各向度差異分析表…… 98
表4-26 低物件視覺風格在不同虛擬實境之視覺認知風格各向度差異分析表 99
表4-27 低物件視覺風格在不同虛擬實境之虛擬實境各向度差異分析表…… 99
表4-28 高空間視覺風格在不同虛擬實境之視覺認知風格各向度差異分析表 100
表4-29 高空間視覺風格在不同虛擬實境之虛擬實境各向度差異分析表…… 101
表4-30 中空間視覺風格在不同虛擬實境之視覺認知風格各向度差異分析表 102
表4-31 中空間視覺風格在不同虛擬實境之虛擬實境各向度差異分析表…… 103
表4-32 低空間視覺風格在不同虛擬實境之視覺認知風格各向度差異分析表 104
表4-33 低空間視覺風格在不同虛擬實境之虛擬實境各向度差異分析表…… 105
表4-34 視覺認知風格在沉浸式與非沉浸式虛擬實境之影響差異分析歸納表 107



圖次
圖2-1 多媒體學習的認知理論………………………………………………… 28
圖2-2 視覺認知風格和言語認知風格模型…………………………………… 29
圖3-1 視覺認知風格對虛擬實境臨場感滿意度和科學感知學習關係架構圖 48
圖3-2 研究流程圖……………………………………………………………… 62
參考文獻 壹、中文部分
吳柏林、謝名娟(2010)。現代教育與心理統計學(Modern Educational & Psychological Statistics)。新北市:華藝數位。
李維蔓、詹岱倫(2010)。SPSS統計分析與專題應用。台北市:學貫行銷。
杜建廣、吳孟恬、湯佩芳、蘇賢德、曾文毅、邱銘章(2016)。認知正常中老年人腦白質徑完整性與步態表現之關聯性。物理治療,41(4),291-292。
周文忠(2005)。虛擬實境之意義與應用。資訊科學應用期刊,1(1),121-127。
科技部(2016)。科技部與教育部聯合記者會新聞資料--PISA 2015臺灣學生的表現。日期:2017年11月26日,取自https://www.most.gov.tw/folksonomy/detail?subSite=&l=ch&article_uid=57b7c383-4064-4300-b481-1a6231dfac3e&menu_id=9aa56881-8df0-4eb6-a5a7-32a2f72826ff&content_type=P&view_mode=listView。
唐麗英、王春和(2013)。從範例學MINTAB統計分析與應用。新北市:博碩文化。
徐新逸(2015)。模擬教學在培訓之應用。研習論壇月刊,172,1-13。
徐新逸、吳芳瑜(2010)。Second Life在大學虛擬校園之應用。教育研究月刊,193,99-112。
徐新逸、周雲虎(2013)。3D互動虛擬實驗室:高中物理實驗篇。行政院科技部專題研究(編號:102-2511-S-032-008-MY2),未出版。
徐新逸、周雲虎(2017)。3D沉浸式虛擬物理實驗之研發與推廣。行政院科技部專題研究(編號:106-2511-S-032-007-MY2),未出版。
教育部(2008a)。97年國民中小學九年一貫課程綱要。日期:2017年11月26日,取自https://www.naer.edu.tw/files/15-1000-7944,c639-1.php?Lang=zh-tw。
教育部(2008b)。高級中學課務發展工作圈,物理科綱要。日期:2017年11月26日,取自http://web.ylsh.ilc.edu.tw/course/overview/08.pdf。
教育部(2013)。高級中學課務發展工作圈,物理科102課綱微調版本。日期:2017年11月26日,取自http://web.ylsh.ilc.edu.tw/course/overview/1020826/08_102adjust.pdf。
教育部(2016)。2016-2020資訊教育總藍圖。日期:2017年11月26日。取自https://ws.moe.edu.tw/001/Upload/3/relfile/6315/46563/3d9a977d-cd20-429f-a5d0-a17a68e86199.pdf。
葉重新(2001)。教育研究法。台北:心理出版社。
郭子祥、陳一平、袁汝儀(2016)。基隆市國小學生心像認知能力與繪畫表現風格的相關性。臺灣教育評論月刊,5(4),166-193。
陳美玲、白菁汝、黃映慈、洪惠君(2008)。高中物理之重心與平衡的教學活動暨教具設計。物理教育學刊,9(2),103-112。
黃福坤(2006)。透過物理模擬動畫進行物理教學與學習。物理雙月刊,28(3),536-543。
楊心怡、劉遠楨(2012)。創新學習:資訊科技的應用與實踐。教學科技與媒體,100,36-41。
楊坤原(1996)。認知風格與科學學習成就的關係(一)。科學教育月刊,194,2-12。
蔡仁政(2014)。十二年國教免試入學超額比序項目適切性評估。臺灣教育評論月刊,3(1),63-69。
貳、外文部分
Andersen, L. (2014). Visual–spatial ability: Important in STEM, ignored in gifted education. Roeper Review, 36(2), 114-121.
Anderson, J. L., & Barnett, M. (2013). Learning physics with digital game simulations in middle school science. Journal of Science Education and Technology, 22(6), 914-926.
Ausburn, L. J., & Ausburn, F. B. (1978). Cognitive styles: Some information and implications for instructional design. Educational Technology Research and Development, 26(4), 337-354.
Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of personality and social psychology, 51(6), 1173-1182.
Barzilai, S., & Blau, I. (2014). Scaffolding game-based learning: Impact on learning achievements, perceived learning, and game experiences. Computers & Education, 70, 65-79.
Biederman, I., & Vessel, E. (2006). Perceptual Pleasure and the Brain A novel theory explains why the brain craves information and seeks it through the senses. American scientist, 94(3), 247-253.
Biocca, F., Harms, C., & Gregg, J. (2001, May). The networked minds measure of social presence: Pilot of the factor structure and concurrent validity. In 4th annual international workshop on presence, Philadelphia, PA (pp. 1-9).
Blajenkova, O., Kozhevnikov, M., & Motes, M. A. (2006). Object‐spatial imagery: a new self‐report imagery questionnaire. Applied Cognitive Psychology, 20(2), 239-263.
Blau, I., & Caspi, A. (2008). Do media richness and visual anonymity influence learning? A comparative study using skype™. In Y. Eshet-Alkalai, A. Caspi & N. Geri (Eds.), Learning in the technological era: Proceedings of the third chais conference on instructional technologies research 2008, (pp.18-25). Raanana, Israel: The Open University of Israel.
Blazhenkova, O., & Kozhevnikov, M. (2009). The new object‐spatial‐verbal cognitive style model: Theory and measurement. Applied cognitive psychology, 23(5), 638-663.
Bulu, S. T. (2012). Place presence, social presence, co-presence, and satisfaction in virtual worlds. Computers & Education, 58(1), 154-161.
Carroll, J. (1993). Human Cognitive Abilities: A Survey of Factor-analytic Studies. New York: Cambridge University Press.
Caspi, A., & Blau, I. (2011). Collaboration and psychological ownership: how does the tension between the two influence perceived learning?. Social Psychology of Education, 14(2), 283-298.
Chabris, C. F., Jerde, T. E., Woolley, A. W., Gerbasi, M. E., Schuldt, J. P., Bennett, S. L., Hackman, J. R., & Kosslyn, S. M. (2006). Spatial and object visualization cognitive styles: Validation studies in 3800 individuals. Group brain technical report, (2). Retrieved November 26, 2017 from http://www.academia.edu/download/ 30709929/Chabris2006d.pdf.
Chang, C. S., Wong, M. T., & Chien, F. L. (2017). Development and Evaluation of the Operational Management Simulation Game E-Café. Journal of Applied Science and Engineering, 20(1), 95-106.
Cheng, L. K., Chieng, M. H., & Chieng, W. H. (2014). Measuring virtual experience in a three-dimensional virtual reality interactive simulator environment: a structural equation modeling approach. Virtual Reality, 18(3), 173-188.
Chiu, C. H., & Hsiao, H. F. (2010). Group differences in computer supported collaborative learning: Evidence from patterns of Taiwanese students’ online communication. Computers & Education, 54(2), 427-435.
Choi, D. H., Dailey-Hebert, A., & Estes, J. S.(Ed.). (2016). Emerging tools and applications of virtual reality in education. (pp.25). Pennsylvania, PA: IGI Global.
Chou, Y., & Shyu, H. (2015, October). Development of the Virtual Physical Laboratory–Simple Pendulum. In E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education (pp. 1074-1078). Association for the Advancement of Computing in Education (AACE). Retrieved November 26, 2017 from https://www.learntechlib.org/p/152129.
Cobb, S. C. (2011). Social presence, satisfaction, and perceived learning of RN-to-BSN students in web-based nursing courses. Nursing Education Perspectives, 32(2), 115.
Daineko, Y., Dmitriyev, V., & Ipalakova, M. (2017). Using virtual laboratories in teaching natural sciences: An example of physics courses in university. Computer Applications in Engineering Education, 25(1), 39-47.
Dyrberg, N. R., Treusch, A. H., & Wiegand, C. (2017). Virtual laboratories in science education: students’ motivation and experiences in two tertiary biology courses. Journal of Biological Education, 51(4), 358-374.
Ekstrom, R. B., French, J. W., & Harman, H. H. (1976). Kit of factor-referenced cognitive tests. Princeton, NJ: Educational Testing Service.
Fortin, D. R., & Dholakia, R. R. (2005). Interactivity and vividness effects on social presence and involvement with a web-based advertisement. Journal of business research, 58(3), 387-396.
Gamito, P., Oliveira, J., Coelho, C., Morais, D., Lopes, P., Pacheco, J., ... & Barata, A. F. (2017). Cognitive training on stroke patients via virtual reality-based serious games. Disability and rehabilitation, 39(4), 385-388.
Gerard A. Postiglione, & Jason Tan. (2007). Schooling in Taiwan. In Chou, C. P. & Ho, A. H.(Eds), Going to school in East Asia (pp. 344-377). Santa Barbara, CA: Greenwood Publishing Group.
Ghanbarzadeh, R., & Ghapanchi, A. H. (2016). Investigating various application areas of three‐dimensional virtual worlds for higher education. British Journal of Educational Technology. doi:10.1111/bjet.12538.
Gil, A., Peidro, A., Reinoso, O., & Marin, J. M. (2014). Implementation and assessment of a virtual laboratory of parallel robots developed for engineering students. IEEE Transactions on Education, 57(2), 92-98.
Haxby, J. V., Grady, C. L., Horwitz, B., Ungerleider, L. G., Mishkin, M., Carson, R. E., Herscovitch, P., Schapiro, M. B., & Rapoport, S. I. (1991). Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proceedings of the National Academy of Sciences, 88(5), 1621-1625.
Herga, N. R., Čagran, B., & Dinevski, D. (2016). Virtual Laboratory in the Role of Dynamic Visualisation for Better Understanding of Chemistry in Primary School. Eurasia Journal of Mathematics, Science & Technology Education, 12(3), 593-608.
Höffler, T. N., Koć‐Januchta, M., & Leutner, D. (2017). More Evidence for Three Types of Cognitive Style: Validating the Object‐Spatial Imagery and Verbal Questionnaire Using Eye Tracking when Learning with Texts and Pictures. Applied Cognitive Psychology, 31(1), 109-115.
Höffler, T. N., Prechtl, H., & Nerdel, C. (2010). The influence of visual cognitive style when learning from instructional animations and static pictures. Learning and Individual Differences, 20(5), 479-483.
Holmbeck, G. N. (2002). Post-hoc probing of significant moderational and mediational effects in studies of pediatric populations. Journal of pediatric psychology, 27(1), 87-96.
Hong, J. C., Hwang, M. Y., Liu, M. C., Ho, H. Y., & Chen, Y. L. (2014). Using a “prediction–observation–explanation” inquiry model to enhance student interest and intention to continue science learning predicted by their Internet cognitive failure. Computers & Education, 72, 110-120.
Huk, T. (2006). Who benefits from learning with 3D models? The case of spatial ability. Journal of computer assisted learning, 22(6), 392-404.
IBM (2017). IBM support. Retrieved November 26, 2017 from http://www-01.ibm.com/support/docview.wss?uid=swg21479073.
Ijsselsteijn, W. A., Freeman, J., & Ridder, H. D. (2001). Presence: Where are we? CyberPsychology and Behavior, 4(1), 179-182.
Jimoyiannis, A. (2010). Designing and implementing an integrated technological pedagogical science knowledge framework for science teachers professional development. Computers & Education, 55(3), 1259-1269.
Jou, M., & Wang, J. (2013). Investigation of effects of virtual reality environments on learning performance of technical skills. Computers in Human Behavior, 29(2), 433-438.
Kang, M., & Im, T. (2013). Factors of learner–instructor interaction which predict perceived learning outcomes in online learning environment. Journal of Computer Assisted Learning, 29(3), 292-301.
Kauffman, H. (2015). A review of predictive factors of student success in and satisfaction with online learning. Research in Learning Technology, 23(1), 26507. http://dx.doi.org/10.3402/rlt.v23.26507.
Kim, Y. J., Almond, R. G., & Shute, V. J. (2016). Applying Evidence-Centered Design for the Development of Game-Based Assessments in Physics Playground. International Journal of Testing, 16(2), 142-163.
Kosslyn, S. M., Ganis, G., & Thompson, W. L. (2001). Neural foundations of imagery. Nature Reviews Neuroscience, 2(9), 635-642.
Kozhevnikov, M., Evans, C., & Kosslyn, S. M. (2014). Cognitive style as environmentally sensitive individual differences in cognition: A modern synthesis and applications in education, business, and management. Psychological Science in the Public Interest, 15(1), 3-33.
Kozhevnikov, M., Hegarty, M., & Mayer, R. E. (2002). Revising the visualizer-verbalizer dimension: Evidence for two types of visualizers. Cognition and Instruction, 20(1), 47-77.
Kozhevnikov, M., Kosslyn, S., & Shephard, J. (2005). Spatial versus object visualizers: A new characterization of visual cognitive style. Memory & cognition, 33(4), 710-726.
Lee, E. A. L., & Wong, K. W. (2014). Learning with desktop virtual reality: Low spatial ability learners are more positively affected. Computers & Education, 79, 49-58.
Lee, E. A. L., Wong, K. W., & Fung, C. C. (2010). How does desktop virtual reality enhance learning outcomes? A structural equation modeling approach. Computers & Education, 55(4), 1424-1442.
Lee, K. M. (2004). Why presence occurs: Evolutionary psychology, media equation, and presence. Presence: Teleoperators and Virtual Environments, 13(4), 494-505.
Lessiter, J., Freeman, J., Keogh, E., & Davidoff, J. (2001). A cross-media presence questionnaire: The ITC-Sense of Presence Inventory. Presence: Teleoperators and virtual environments, 10(3), 282-297.
Li, N., Marsh, V., Rienties, B., & Whitelock, D. (2016). Online learning experiences of new versus continuing learners: A large-scale replication study. Assessment & Evaluation in Higher Education, 1-16.
Marks, D. F. (1973). Visual imagery differences in the recall of pictures. British Journal of Psychology, 64, 17–24.
Mayer, R. E. (2008). Applying the science of learning: Evidence-based principles for the design of multimedia instruction. American psychologist, 63(8), 760.
Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational psychologist, 38(1), 43-52.
McGee, M. G. (1979). Human Spatial Abilities: Psychometric Studies and Environmental, Genetic, Hormonal, and Neurological Influences. Psychological Bulletin, 86(5), 889-918.
McKinney, V., Yoon, K., & Zahedi, F. M. (2002). The measurement of web-customer satisfaction: An expectation and disconfirmation approach. Information systems research, 13(3), 296-315.
Merchant, Z., Goetz, E. T., Cifuentes, L., Keeney-Kennicutt, W., & Davis, T. J. (2014). Effectiveness of virtual reality-based instruction on students' learning outcomes in K-12 and higher education: A meta-analysis. Computers & Education, 70, 29-40.
Monteiro-Junior, R. S., Figueiredo, L. F. D. S., Maciel-Pinheiro, P. D. T., Abud, E. L. R., Engedal, K., Barca, M. L., ... & Deslandes, A. C. (2017). Virtual Reality–Based Physical Exercise With Exergames (PhysEx) Improves Mental and Physical Health of Institutionalized Older Adults. Journal of the American Medical Directors Association, 18(5), 454.e1-454.e9.
Motes, M. A., Malach, R., & Kozhevnikov, M. (2008). Object-processing neural efficiency differentiates object from spatial visualizers. Neuroreport, 19(17), 1727-1731.
Mujber, T. S., Szecsi, T., & Hashmi, M. S. (2004). Virtual reality applications in manufacturing process simulation. Journal of materials processing technology, 155, 1834-1838.
Nichols, S., Haldane, C., & Wilson, J. R. (2000). Measurement of presence and its consequences in virtual environments. International Journal of Human-Computer Studies, 52(3), 471-491.
Paivio, A. (1971). Imagery and verbal processes. New York: Holt, Rinehart & Winston.
Pan, Z., Cheok, A. D., Yang, H., Zhu, J., & Shi, J. (2006). Virtual reality and mixed reality for virtual learning environments. Computers & Graphics, 30(1), 20-28.
Pantelidis, V. S. (2009). Reasons to use virtual reality in education and training courses and a model to determine when to use virtual reality. Themes in Science and Technology Education, 2, 59-70.
Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrović, V. M., & Jovanović, K. (2016). Virtual laboratories for education in science, technology, and engineering: A review. Computers & Education, 95, 309-327.
Richardson, J. C., Maeda, Y., Lv, J., & Caskurlu, S. (2017). Social presence in relation to students' satisfaction and learning in the online environment: A meta-analysis. Computers in Human Behavior, 71, 402-417.
Richardson, J. C., & Swan, K. (2003). Examining social presence in online courses in relation to students' perceived learning and satisfaction. Journal of Asynchronous Learning Networks, 7(1), 68-88.
Riding, R., & Cheema, I. (1991). Cognitive styles—an overview and integration. Educational psychology, 11(3-4), 193-215.
Roberts, J., & Styron, R. (2010). Student satisfaction and persistence: Factors vital to student retention. Research in Higher Education Journal, 6(3), 1-18.
Rodrigues, M., & Carvalho, P. S. (2013). Teaching physics with Angry Birds: exploring the kinematics and dynamics of the game. Physics Education, 48(4), 431.
Ronggang, Z., & Kan, Z. (2004). Presence and Measuring Presencein Virtual Environment [J]. Advances in Psychological Science, 12(2), 201-208.
Rutten, N., van Joolingen, W. R., & van der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58(1), 136-153.
Ruxton, G. D. (2006). The unequal variance t-test is an underused alternative to Student's t-test and the Mann–Whitney U test. Behavioral Ecology, 17(4), 688-690.
Sanford, D., Ross, D., Rosenbloom, A., & Singer, D. (2017). Course convenience, perceived learning, and course satisfaction across course formats. The E-Journal of Business Education & Scholarship of Teaching, 11(1), 69.
Scott, P. H., Asoko, H. M., & Driver, R. H. (1991). Teaching for conceptual change: A review of strategies. Connecting research in physics education with teacher education, 71-78.
Sebastianelli, R., Swift, C., & Tamimi, N. (2015). Factors affecting perceived learning, satisfaction, and quality in the online MBA: A structural equation modeling approach. Journal of Education for Business, 90(6), 296-305.
Shute, V. J., Ventura, M., & Kim, Y. J. (2013). Assessment and learning of qualitative physics in newton's playground. The Journal of Educational Research, 106(6), 423-430.
Shyu, H. Y. & Chou, Y. H. (2014). Game-based APP in Teaching Newton's Three Laws of Motion for High School Students. Proceedings of 22nd International Conference on Computers in Education. Nara, Japan. 635-641
Shyu, H. Y., & Chou, Y. H. (2015, October). How a Virtual Lab Can Help High School Students on Static Equilibrium Experiment. In E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education (pp. 926-930). Association for the Advancement of Computing in Education (AACE). Retrieved November 26, 2017 from https://www.learntechlib.org/p/152109.
Slater, M. (1999). Measuring presence: A response to the Witmer and Singer presence questionnaire. Presence: Teleoperators and Virtual Environments, 8(5), 560-565.
Slater, M., McCarthy, J., & Maringelli, F. (1998). The influence of body movement on subjective presence in virtual environments. Human Factors, 40(3), 469-477.
Srisawasdi, N. (2012). The role of TPACK in physics classroom: case studies of preservice physics teachers. Procedia-Social and Behavioral Sciences, 46, 3235-3243.
Steuer, J. (1992). Defining virtual reality: Dimensions determining telepresence. Journal of communication, 42(4), 73-93.
Tatli, Z., & Ayas, A. (2013). Effect of a virtual chemistry laboratory on students' achievement. Journal of Educational Technology & Society, 16(1), 159.
Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47, 599-604.
Vrellis, I., Avouris, N., & Mikropoulos, T. A. (2016). Learning outcome, presence and satisfaction from a science activity in Second Life. Australasian Journal of Educational Technology, 32(1), 59-77.
Weibel, D., & Wissmath, B. (2011). Immersion in computer games: The role of spatial presence and flow. International Journal of Computer Games Technology, 2011, 6. doi:10.1155/2011/282345.
Weng, H. J., Chang, D. F., & Shyu, H. Y. (2015). Testing the Effect of Mnemonic Strategy Embedded in Digital Game. Innovative Computing Information and Control Express Letter, 9(3), 827-833.
Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence: Teleoperators and virtual environments, 7(3), 225-240.
Wu, J. H., Wang, S. C., & Tsai, H. H. (2010). Falling in love with online games: The uses and gratifications perspective. Computers in Human Behavior, 26(6), 1862-1871.
Xu, L., Huang, D., & Tsai, W. T. (2014). Cloud-based virtual laboratory for network security education. IEEE Transactions on Education, 57(3), 145-150.
Yeh, Y. F., Hwang, F. K., & Hsu, Y. S. (2015). Applying TPACK-P to a teacher education program. In Development of Science Teachers' TPACK, 71-88. Springer Singapore.
Yoon, S. Y., Choi, Y. J., & Oh, H. (2015). User attributes in processing 3D VR-enabled showroom: Gender, visual cognitive styles, and the sense of presence. International Journal of Human-Computer Studies, 82, 1-10.
Yoon, S. Y., Laffey, J., & Oh, H. (2008). Understanding usability and user experience of web-based 3D graphics technology. International Journal of Human-Computer Interaction, 24(3), 288-306.
Zeng. W. X., Richardson. A. (2016). Adding Dimension to Content: Immersive Virtual Reality for e-Commerce. Proceedings of the 27th Australasian Conference on Information Systems, University of Wollongong Faculty of Business. Retrieved November 26, 2017 from http://ro.uow.edu.au/acis2016/papers/1/72.
Zhang, X., Jiang, S., Ordóñez de Pablos, P., Lytras, M. D., & Sun, Y. (2017). How virtual reality affects perceived learning effectiveness: a task–technology fit perspective. Behaviour & Information Technology, 36(5), 548-556.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2019-07-02公開。
  • 同意授權瀏覽/列印電子全文服務,於2019-07-02起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信