淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0406201415561900
中文論文名稱 半空間非完全導體之微波成像
英文論文名稱 Microwave Imaging for Half-space imperfectly conductor
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 102
學期 2
出版年 103
研究生中文姓名 張碩朋
研究生英文姓名 Shuo-Peng Chang
電子信箱 aaron78530@hotmail.com
學號 601470262
學位類別 碩士
語文別 中文
口試日期 2014-05-28
論文頁數 57頁
口試委員 指導教授-丘建青
委員-方文賢
委員-李慶烈
中文關鍵字 非完全導體  微波成像  半空間 
英文關鍵字 Imperfectly conductor  Microwave imaging  Half-space 
學科別分類 學科別應用科學電機及電子
中文摘要 本論文比較自我適應之動態差異型演化法和非同步粒子群聚法應用於半空間二維非完全導體之逆散射問題。針對物體照射TM(Transverse Magnetic)極化波之情況,在半空間非完全導體的逆散射進行探討。利用在導體表面的邊界條件及在物體外部量測的散射電場,可推導出一組非線性積分方程,將散射場積分方程式透過動差法求得散射電場相關資訊。在此使用傅立葉極數展開及描述物體的形狀,並在演算法中使用自我適應之動態差異型演化法和非同步粒子群聚法重建半空間非完全導體之形狀和導電率進行比較。
不論初始的猜測值如何,自我適應之動態差異性演化法總會收歛到整體的極值(global extreme),因此在數值模擬顯示中,即使最初的猜測值遠大於實際值,我們仍可求得準確的數值解,成功的重建出物體的形狀函數、導電率。而且在數值模擬顯示中,量測的散射場即使加入均勻分佈的雜訊存在,依然可以得到良好的重建結果,研究證實其有良好的抗雜訊能力。我們也發現,在非完全導體中,形狀函數的收斂速度總是優於導電率。因此可知形狀函數對散射場之貢獻大於導電率,導電率對散射場的貢獻次之。利用上述新型最佳化演算法提供更準確形狀函數的重建,使導電率的重建能更準確。
英文摘要 This paper presents an inverse scattering problem for recovering the shape of an imperfectly conducting cylinder buried in a half space by self-adaptive dynamic differential evolution (SADDE). The imperfectly conducting cylinder of unknown conductivity and shapes are buried in one half-space and illuminated by the transverse magnetic (TM) plane wave from the other half space.
Based on the boundary condition and the measured scattered field, a set of nonlinear integral equation is derived and the imaging problem is reformulated into optimization problem. The particle swarm optimization algorithm is employed to find out the global extreme solution of the object function. Numerical results show that the conductivity and the shape of the conductor are well reconstructed.
論文目次 第一章 簡介 1
1.1 研究動機與相關文獻 1
1.2 本研究之貢獻 10
1.3 各章內容簡述 11
第二章 非完全導體在半空間中的逆散射理論 13
2.1 正散射的理論公式推導 13
2.2 數值方法 17
2.2.1 動差法於積分方程式的應用 17
第三章 隨機式全域最佳化演算法 20
3.1 自我適應之動態差異型演化法 20
3.2 粒子群聚最佳化法 27
第四章 數值分析及模擬結果 33
4.1 自我適應之動態差異型演化法在逆散射的應用 33
4.2 環境模擬介紹 34
4-3 自我適應之動態差異型演化法重建半空間中非完全導體柱體影像 36
第五章 結論 48
附錄一 計算格林函數的方法 50
參考文獻 53

圖目錄
圖 2-1 二維非完全導體在半空間的示意圖 17
圖 3-1 自我適應之動態差異型演化法流程圖 21
圖 3-2 自我適應之動態差異型進化法中突變方法一的示意圖 23
圖 3-2 自我適應之動態差異型進化法中突變方法二的示意圖 24
圖 3-3 自我適應之動態差異型進化法中的交配向量於一個二維目
標函數等位線圖描述的示意圖 26
圖 3-5 粒子群聚法流程圖 29
圖 3-6 粒子群聚法中於二維目標函數等位線圖 30
圖 3-7 二維問題中,三種不同邊界條件示意圖 32
圖 4-1 SADDE重建例子一柱體形狀的情形 37
圖 4-2 SADDE重建例子一柱體的形狀參數相對誤差變化趨勢圖 38
圖 4-3 SADDE重建例子一柱體的形狀錯誤率比較圖 38
圖 4-4 SADDE和PSO重建例子二柱體形狀的情形 40
圖 4-5 SADDE和PSO重建例子二柱體的形狀錯誤率比較圖 40
圖 4-6 SADDE和PSO重建例子三柱體形狀的情形 42
圖 4-7 SADDE和PSO重建例子二柱體的形狀錯誤率比較圖 42
圖 4-8 SADDE和PSO重建例子三柱體形狀的情形 45
圖 4-9 SADDE和PSO重建例子四柱體的形狀錯誤率比較圖 45
圖4-10 PSO重建例子二形狀參數相對誤差變化趨勢圖 46
圖4-11 PSO重建例子三形狀參數相對誤差變化趨勢圖 46
圖4-12 PSO重建例子四形狀參數相對誤差變化趨勢圖 47
參考文獻 [1] E. Wolf, “Three-dimensional structure determination of semi-transparentobjects from holographic data,” Opt. Commun., Vol. 1, pp.153–164, Sep.-Oct. 1969.
[2] O. Mudanyalı, S. Yıldız, O. Semerci, A. Yapar and I. Akduman, “A Microwave Tomographic Approach for Nondestructive Testing of Dielectric Coated Metallic Surfaces”, IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 2, pp. 180 - 184, Apr. 2008.
[3] S. Genovesi, E. Salerno, A. Monorchio and G. Manara, “Permittivity range profile reconstruction of multilayered structures from microwave backscattering data by using particle swarm optimization,” Microwave and Optical Technology Letters, Vol. 51, No. 10, pp. 2390 - 2394, Oct. 2009.
[4] T. Rubak, O. S. Kim, P. Meincke, “Computational Validation of a 3-D Microwave Imaging System for Breast-Cancer Screening,” IEEE Transactions on Antennas and Propagation, vol. 57, No. 7, Jul. 2009.
[5] M. Klemm, J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, R. Benjamin, “Microwave Radar-Based Breast Cancer Detection: Imaging in Inhomogeneous Breast Phantoms” IEEE Antennas and Wireless Propagation Letters, Vol. 8, 2009.
[6] J. Bourqui, M. Okoniewski, E. C. Fear, “Balanced Antipodal Vivaldi Antenna With Dielectric Director for Near-Field Microwave Imaging.”, IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, Jul 2010.
[7] A. G. Ramm, “Uniqueness result for inverse problem of geophysics: I,” Inverse Problems, Vol. 6, pp. 635-641, Aug.1990.
[8] V. Isakov, “Uniqueness and stability in multidimensional inverse problems,” Inverse Problems, Vol. 9, pp. 579–621, 1993.
[9] O. M. Bucci and T. Isernia, “Electromagnetic inverse scattering: Retrievable information and measurement strategies,” Radio Sci., Vol. 32, pp. 2123–2138, Nov.–Dec. 1997.
[10] D. Colton and L. Paivarinta, “The uniqueness of a solution to an inverse scattering problem for electromagnetic waves,” Arc. Ration. Mech. Anal., Vol. 119, pp. 59–70, 1992.
[11] S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Transactions on Microwave Theory and Techniques, Vol. 51, no. 4, pp. 1162-1173, Apr. 2003.
[12] M. Bertero and E. R. Pike, Inverse Problems in Scattering and Imaging, ser. Adam Hilger Series on Biomedical Imaging. Bristol, MA: Inst. Phys., 1992.
[13] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems. New York: Springer-Verlag, 1996.
[14] A. M. Denisov, Elements of Theory of Inverse Problems. Utrecht, The Netherlands: VSP, 1999.
[15] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,”, IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, pp.124–141, Jul. 1999.
[16] S. Boutami,; M. Fall, , “Calculation of Free-Space Periodic Green’s Function Using Equivalent Finite Array,” IEEE Transactions on Antennas and Propagation.,Vol. 60, pp.4725-4731,2012.
[17] D. S. Weile and E. Michielssen, “Genetic algorithm optimization applied to electromagnetics: a review ,” IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, pp. 343- 353, Mar. 1997.
[18] J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Transactions on Antennas and Propagation, Vol. 52, No. 3, pp. 397–407, Feb. 2004.
[19] P. Rocca, G. Oliveri, and A. Massa,“Differential Evolution as Applied to Electromagnetics ,” IEEE Antennas and Propagation Magazine, Vol. 53, No. 1, pp. 38–49, May. 2011.
[20] R. M. Lewis, "Physical optics inverse diffraction," IEEE Trans. Antennas Propagat., vol. 17, pp. 308-314, May 1969.
[21] N. N. Bojarski, "A survey of the physical optics inverse scattering identity," IEEE Trans. Antennas Propagat., vol. 30, pp. 980-989,Sept. 1982.
[22] T. H. Chu and N. H. Farhat, "Polarization effects in microwave diversity imaging of perfectly conducting cylinders," IEEE Trans. Antennas Propagar., vol.37, pp. 235-244, Feb. 1989.
[23] D. B. Ge, "A study of Lewis method for target-shape reconstruction," Inverse Problems, vol. 6, pp. 363-370, June 1990.
[24] D. Colton, H. Haddar and Piana," The linear sampling method in inverse electromagnetic scattering theory," Inverse Problems, vol. 19, pp. 105-137, December 2003.
[25] M. Brignone and M. Piana, " The use of constraints for solving inverse scattering problems: physical optics and the linear sampling method," Inverse Problems, vol. 21, pp. 207-222, February 2005.
[26] T. H. Chu and D. B. Lin, "Microwave diversity imaging of perfectly conducting objects in the near-field region," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 480-487, Mar. 1991.
[27] D. Van Orden,;V. Lomakin, “Rapidly Convergent Representations for Periodic Green’s Functions of a Linear Array in Layered Media,” IEEE Transactions on Antennas and Propagation., vol 60, issue 2, pp.870 - 879, 2012.
[28] G. W. Hohmann, "Electromagnetic scattering by conductors in the earth near a line source of current," Geophysics, vol. 36, pp. 101-131,Feb. 1971.
[29] N. Osumi and K. Ueno, "Microwave holographic imaging of underground objects," IEEE Trans. Antennas Propagat., vol. AP-33,pp. 152-159, Feb. 1985.
[30] L. Chommeloux, C. Pichot, and J. C. Bolomey, "Electromagnetic modeling for microwave imaging of cylindrical buries inhomogeneities," IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp. 1064-1076, Oct. 1986.
[31] B. Duchene, D. Lesselier, and W. Tabbara, "Acoustical imaging of 2D fluid targets buried in a half-space: a diffraction tomography approach," IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. UFFC-34, pp. 540-549, Sept. 1987.
[32] W. Tabbara, B. Duchene, C. Pichot, D. Lesselier, L. Chommelous,and N. Joachimowicz, "Diffraction tomography: contribution to the analysis of some applications in microwaves and ultrasonics, "Inverse Problems, vol. 4, pp. 305- 331, May 1988.
[33] R. F. Harrmgton, Field Computation by Moment Method, New York: Macmillan, 1968.
[34] T. Moriyama, Z. Meng, and T. Takenaka, "Forward-backward time-stepping method combined with genetic algorithm applied to breast cancer detection", Microwave and Optical Technology Letters, Vol. 53, No. 2, pp.438-442, 2011.
[35] R. Persico, R. Bernini, and F. Soldovieri, “The Role of the Measurement Configuration in Inverse Scattering From Buried Objects Under the Born Approximation,” IEEE Transactions on Antennas and Propagation, Vol. 53, No.6, pp. 1875-1887, Jun. 2005.
[36] X. Chen, K. Huang and X.-B. Xu, “Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method:” Progress In Electromagnetic Research. PIER 53, pp. 283-298, 2005.
[37] A. Massa, D. Franceschini, G. Franceschini, M. Pastorino, M. Raffetto, and M. Donelli, “Parallel GA-Based Approach for Microwave Imaging Applications,” IEEE Transaction on Antennas and Propagation, Vol. 53, No. 10, pp. 3118 - 3127, Oct. 2005.
[38] R A. Wildman and D S. Weile, “Greedy Search And A Hybrid Local Optimization/Genetic Algorithm For Tree-Based Inverse Scattering,” Microwave and Optical Technology Letters, Vol. 50, No. 3, pp. pp. 822-825, Mar. 2008.
[39] A. Saeedfar, and K. Barkeshli, “Shape reconstruction of three-dimensional conducting curved plates using physical optics, number modeling, and genetic algorithm, ” IEEE Transaction on Antennas and Propagation, Vol. 54, No. 9, 2497-2507, Sep. 2006.
[40] A. Semnani, I.T. Rekanos, M. Kamyab, T.G. Papadopoulos, “Two-Dimensional Microwave Imaging Based on Hybrid Scatterer Representation and Differential Evolution,” IEEE Transaction on Antennas and Propagation, Vol. 58, No. 10, pp. 3289 - 3298, Oct. 2010.
[41] A. Qing, “Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems,” IEEE Transactions on Geoscience and Remote Sensing, Vol 44, Issue 1, pp. 116 – 125, Jan. 2006.
[42] K. A. Michalski, “Electromagnetic Imaging of Circular-Cylindrical Conductors and Tunnels Using A Differential Evolution Algorithm,” Microwave and Optical Technology Letters, Vol. 27, No. 5, pp. 330 - 334, Dec. 2000.
[43] M. Dehmollaian, “Through-Wall Shape Reconstruction and Wall Parameters Estimation Using Differential Evolution,” IEEE Geoscience and Remote Sensing Letter, Vol. 8, 201-205, 2011.
[44] I. T. Rekanos, “Shape Reconstruction of a Perfectly Conducting Scatterer Using Differential Evolution and Particle Swarm Optimization,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 7, pp. 1967-1974, Jul. 2008.
[45] A. Semnani and M. Kamyab, “An Enhanced Hybrid Method for Solving Inverse Scattering Problems,” IEEE Transactions on Magentics, Vol. 45, No. 3, pp. 1534-1537, Mar. 2009.
[46] G. Franceschini, M. Donelli, R. Azaro and A. Massa, “Inversion of Phaseless Total Field Data Using a Two-Step Strategy Based on the Iterative Multiscaling Approach,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No.12, pp. 3527-3539, Dec. 2006.
[47] M. Donelli and A. Massa, ”Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers” IEEE Transactions on Microwave Theory and Techniques Vol. 53, Issue 5, pp.1761 – 1776, May 2005.
[48] T. Huang and A. S. Mohan,” Application of particle swarm optimization for microwave imaging of lossy dielectric objects” IEEE Transaction on Antennas and Propagation, Vol. 1B, pp.852 – 855, 2005.
[49] M. Donelli, G.. Franceschini, A. Martini and A. Massa,” An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems” IEEE Transactions on Geoscience and Remote Sensing, Vol 44, Issue 2, pp.298 – 312, Feb. 2006.
[50] M. Donelli, D. Franceschini, P. Rocca and A. Massa,” Three-Dimensional Microwave Imaging Problems Solved Through an Efficient Multiscaling Particle Swarm Optimization” IEEE Transactions on Geoscience and Remote Sensing, Vol 47, No. 5, pp.1467 – 1481, May. 2009.
[51] Y. Xia, G. Feng and J. Wang, “A Novel Recurrent Neural Network for Solving Nonlinear Optimization Problems With Inequality Constraints”, IEEE Transactions on Neural Network, Vol. 19, No. 8, pp. 1340 – 1353, Aug. 2008.
[52] C. C. Chiu, C. H. Sun and W. L. Chang “Comparison of Particle Swarm Optimization and Asynchronous Particle Swarm Optimization for Inverse Scattering of a Two- Dimensional Perfectly Conducting Cylinder.”, International Journal of Applied Electromagnetics and Mechanics Vol. 35, No.4, pp. 249-261,Apr. 2011.
[53] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,”, IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, pp.124–141, Jul. 1999.
[54] T. B. A. Senior, “Approximation boundary conditions,” IEEE Trans. Antennas Propagat., vol. AP-29, pp. 826-829, Sept. 1981.
[55] F. M. Tesche, “On the inclusion of loss in time domain solutions of electromagnetic interaction problems,” IEEE Trans. Electromagn. Compat., vol. EMC-32, pp. 1-4, Feb. 1990.
[56] R. Storn, and K. Price, “Differential Evolution - a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces,” Technical Report TR-95-012, International Computer Science Institute, Berkeley, 1995.
[57] C. H. Sun and C. C. Chiu “Inverse Scattering of Dielectric Cylindrical Target Using Dynamic Differential Evolution and Self-Adaptive Dynamic Differential Evolution,” International Journal of RF and Microwave Computer-Aided Engineering, Vol. 23, Issue 5, pp. 579–585, Sept. 2013.
[58] C. C. Chiu, C. H. Sun, C. L. Li and C. H. Huang, “Comparative Study of Some Population-based Optimization Algorithms on Inverse Scattering of a Two- Dimensional Perfectly Conducting Cylinder in Slab Medium,” IEEE Transactions on Geoscience and Remote Sensing, vol. 51, pp. 2302–2315, Apr. 2013.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-06-30公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-06-30起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信