淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0406201409365200
中文論文名稱 CEPA對香港與中國股市報酬率關聯性結構改變之影響
英文論文名稱 THE EFFECTS OF CEPA ON DEPENDENCE STRUCTURE CHANGE BETWEEN HONG KONG AND CHINESE STOCK MARKET RETURNS
校院名稱 淡江大學
系所名稱(中) 管理科學學系博士班
系所名稱(英) Doctoral Program, Department of Management Sciences
學年度 102
學期 2
出版年 103
研究生中文姓名 李達期
研究生英文姓名 Jeff Ta Chi Lee
學號 894560068
學位類別 博士
語文別 中文
口試日期 2014-05-22
論文頁數 86頁
口試委員 指導教授-莊忠柱
委員-林財源
委員-蔡蒔銓
委員-林忠機
委員-邱建良
委員-曹銳勤
委員-吳志強
中文關鍵字 經濟整合  CEPA  Copula  關聯性結構改變  結構改變時點 
英文關鍵字 Economic Integration  CEPA  Copula  Dependence Structure Change  Structure Change Point 
學科別分類
中文摘要 自1990年代以來,區域經濟整合已蔚為全球經濟發展的主流,為促進香港與中國經貿投資更緊密結合的「更緊密經濟夥伴關係安排」(Closer Economic Partnership Arrangement, CEPA),於2003年6月29日簽訂且於2004年1月1日生效後,是否會造成香港與中國股市報酬率關聯性發生結構改變,一直是大家討論的議題。本文以條件copula方法探討CEPA對香港與中國股市報酬率關聯性結構改變時點與關聯性平均改變水準。
本文以三個面向探討CEPA對香港與中國股市報酬率關聯性結構改變的影響。首先,本文以CEPA生效日為關聯性結構改變時點,藉 為邊際模型,利用Gaussian、Gumbel、Clayton 及 copula探討兩股市報酬率的關聯性結構改變。發現僅Gumbel copula呈現顯著,意謂著兩股市在CEPA生效後,僅同漲時的關聯性有顯著的增加。第二面向假設關聯性結構改變時點為未知且 的邊際模型具有未知波動性結構改變,利用 值選定 copula為最適copula後,再以最大概似比檢定搜尋未知的關聯性結構改變時點。發現香港與中國股市關聯性結構改變時點為2005年2月2日。結構改變時點後關聯性平均水準增加27.21%。最後,考量邊際極端波動性對關聯性結構改變時點的影響,透過 邊際模型,將非尋常消息衝擊所引起的跳躍成份自全部報酬率衝擊中排除,僅以尋常消息衝擊配適所選定的 copula。發現在排除邊際的極端波動後,兩股市的關聯性結構改變時點為2005年7月19日。結構改變時點後關聯性平均水準增加28.23%。
由於關聯性的增加使得兩股市的風險趨向一致,不利於國際投資人的風險分散。本文用以探討關聯性結構改變的方法與結果,可供國際投資人在資產配置及政府部門在制定相關政策上的重要參考。
英文摘要 Since the 1990s, economic integration has become widespread in the world economy. To strengthen the economic relationship between Hong Kong and China, the two economies signed the Closer Economic Partnership Arrangement (CEPA) on June 29, 2003, and the arrangement became effective on January 1, 2004. Whether the CEPA changed the dependence structure between the Hong Kong and Chinese stock markets has become a popular issue in recent years. This dissertation employs conditional copula to investigate this issue, and searches for the dependence structure change point and dependence average change level between the Hong Kong and Chinese stock markets.
This dissertation explores the dependence structure change between the Hong Kong and Chinese stock markets in three aspects. First, it assumes the date in which the CEPA became effective as a known dependence structure change point. By using as a marginal distribution and using the Gaussian, Gumbel, Clayton and copulas as dependence structure models, this dissertation finds that only the Gumbel copula is significant, which means that only when the prices of the Hong Kong and Chinese stock markets are both rising, does the dependence significantly increase. Second, this dissertation assumes that the dependence structure change points are unknown, and furthermore, considers that there are unknown volatility structure change points in a marginal distribution. After choosing the copula as the best-fitting copula by criteria and using the supremum likelihood ratio test to search for unknown dependence structure change points, this dissertation finds that the dependence structure change point is February 2, 2005, and that the average dependence level increased by 27.21% after the structure change point. Finally, this dissertation further considers the influence of marginal extreme volatilities on the dependence structure change. To avoid the influences of marginal extreme volatilities, this dissertation employs as a marginal distribution. After excluding the jump components, which are caused by unusual news innovation, from the total innovation, this dissertation uses normal news innovation to fit the copula and finds that the dependence structure change point is July 19, 2005, and that the average dependence level increased by 28.23% after the structure change point.
The consistency of the dependence between the Hong Kong and Chinese stock markets undermines
international investors’ efforts in risk diversification. The results and methods in this dissertation can provide valuable implications for international investors in asset reallocation and for governments in decision making.
論文目次 目錄
頁次
目錄………………………………………………………………………I
表目錄 …………………………………………………………………IV
圖目錄 ………………………………………………………………V
第一章 緒論 ……………………………………………………………1
1.1 研究背景 ………………………………………………………1
1.2 研究動機 ………………………………………………………4
1.3 研究目的 ……………………………………………………9
1.4 論文結構 ……………………………………………………10
第二章 結構改變時點確定下的CEPA對香港與中國股市的關聯性結構影響 ………………………………………………………12
2.1 前言 …………………………………………………………12
2.2 樣本與研究方法 ……………………………………………13
2.2.1 樣本資料與基本敘述統計量 ………………………13
2.2.2 研究方法 ……………………………………………15
2.3 實證結果分析…………………………………………………19
2.3.1 邊際模型的估計 ……………………………………19
2.3.2 不具結構改變的條件關聯性估計 …………………21
2.3.3 改變時點確定下條件關聯性結構改變的估計與檢
定 ……………………………………………………23
2.4 小結……………………………………………………………25
第三章 結構改變時點未知下的CEPA對香港與中國股市的關聯性結
構影響 ………………………………………………………27
3.1 前言……………………………………………………………27
3.2 樣本與研究方法 ……………………………………………30
3.2.1 樣本資料與基本敘述統計量 ………………………30
3.2.2 實證模型 ……………………………………………34
3.3 實證結果分析…………………………………………………43
3.3.1 邊際模型的估計 ……………………………………43
3.3.2 最適copula函數 ……………………………………46
3.3.3 改變時點未知下條件關聯性結構改變的估計及檢
定 ……………………………………………………48
3.3.4 邊際波動性控制效果與極端樣本效果 ……………49
3.4 小結……………………………………………………………52
第四章 改變時點未知且調整跳躍波動下的CEPA對香港與中國股市
關聯性結構影響………………………………………………54
4.1 前言……………………………………………………………54
4.2 樣本與研究方法………………………………………………56
4.2.1 資料與基本敘述統計量 ……………………………56
4.2.2 邊際模型的參數估計 ……………57
4.2.3 條件copula模型 ……………………………………61
4.2.4 關聯性結構改變時點的估計與檢定方法 …………65
4.3 實證結果分析…………………………………………………69
4.3.1 邊際模型的估計與檢定 …………69
4.3.2 最適copula函數 ……………………………………73
4.3.3 關聯性結構改變時點的估計與檢定 ………………73
4.4 小結……………………………………………………………75
第五章 結論與建議……………………………………………………76
5.1 結論……………………………………………………………76
5.2 建議……………………………………………………………78
5.2.1 實務上建議 …………………………………………78
5.2.2 未來研究方向 ………………………………………80
參考文獻 ………………………………………………………………82



表目錄
頁次
表2-1香港股市與中國股市日報酬率基本敘述統計量 …………14
表2-2邊際模型參數估計與檢定 …………………………………20
表2-3不具結構改變的條件關聯性參數估計與檢定 ……………21
表2-4結構改變時點確定下的條件關聯性參數估計與檢定 ……24
表3-1香港與中國股市日報酬率基本敘述統計量 ………………32
表3-2報酬率波動性結構改變時點的估計與檢定 ………………44
表3-3 邊際模型的參數估計與檢定……………45
表3-4 常見copula的 值 ………………………………………47
表3-5不同樣本期間下的最適copula函數 ……………………………48
表3-6結構改變時點未知下的關聯性結構改變估計與檢定 ……49
表3-7關聯性結構改變的控制效果與刪除效果 …………………50
表4-1香港及中國股市日報酬率基本敘述統計量 ………………57
表4-2 邊際模型參數估計 ………………………70
表4-3常見copula函數的 與 值(全部樣本) ………………73
表4-4 改變時點未知且調整跳躍波動下關聯性結構改變估計與檢定
………………………………………………………………………… 74
表4-5關聯性結構改變日期與最適copula函數 …………………75

圖目錄
頁次
圖1-1 香港與中國貿易總額及香港股市H股與紅籌股成交金額…3
圖2-1 香港股市與中國股市的條件相關性 ……………………… 22
圖 3-1香港股市與中國股市股價與報酬率走勢圖…………………31
圖 3-2香港股市與中國股市報酬率Q-Q圖 ………………………33
圖4-1邊際為標準常態分配下的Gaussian、 Gumbel、Clayton與 copula等高線圖 ( , ) ………………………63
圖 4-2香港股市與中國股市的動態跳躍強度走勢圖 ………………72



參考文獻 參考文獻

1. Aggarwal, R. and Kyaw, N. A. (2005). Equity market integration in the NAFTA region: Evidence from unit root and cointegration test. International Review of Financial Analysis, 14(4), 393-406.

2. Akaike, H. (1974). A new look to the statistical model identification. IEEE Transaction on Automatic Control, 19(6), 716-723.

3. Andrew, D. W. K. (1993). Tests for parameters instability and structural change with unknown change point. Econometrica, 61(4), 821-856.

4. Asgharian, H. and Nossman, M. (2013). Financial and economic integration’s impact on Asian equity markets’ sensitivity to external shocks. Financial Review, 48(2), 343-363.

5. Bai, J. (1997). Estimating multiple breaks one at a time. Econometric Theory, 13(3), 315-352.

6. Bai, J. and Perron, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica, 66(1) , 47-78.

7. Bartram, S. M., Taylor, S. J., and Wang, Y. H. (2007). The Euro and European financial market dependence. Journal of Banking & Finance, 31(5), 1461-1481.

8. Bekaert, G. and Harvey, C. R. (2000). Foreign speculators and emerging equity markets. Journal of Finance, 55(2), 565-613.

9. Bekaert, G., Harvey, C. R. and Ng, A. (2005). Market integration and contagion. Journal of Business, 78(1), 39-69.

10. Bollerslev, T. (1986). Generalized autoregressive conditional
heteroskedasticity. Journal of Econometrics, 31(3), 307-327.

11. Boyer, B. H., Kumagai, T. and Yuan, K. (2006). How do crises
spread? Evidence from accessible and inaccessible stock indices.
Journal of Finance, 61(2), 957-1003.

12. Caillault, C. and Guegan, D. (2005). Empirical estimation of tail
dependence using copula. Application to Asian markets. Quantitative Finance, 5(5), 489-501.

13. Chan, W. H. and Maheu, J. M. (2002). Conditional jump dynamics in
stock market returns. Journal of Business & Economic Statistics, 20 (3), 377-389.

14. Chang, K. L. (2012). The time-varying and asymmetric dependence
between crude oil spot and futures markets: Evidence from the
mixture copula-based ARJI-GARCH model. Economic Modelling,
29(6), 2298-2309.

16. Cherubini, U., Luciano, E., and Vecchiato, W. (2004). Copula Methods in Finance, New York: John Wiley and Sons.

17. Chow, G. C. (1960). Tests of equality between sets of coefficients in two linear regressions. Econometrica, 28(3), 591-603.

18. Chuang, C. C. and Lee, J. (2013). Has CEPA increased stock market dependence between Hong Kong and China? The application of
conditional copula technique. International Journal of Innovative
Computing, Information and Control, 7( 9), 2461-2466.

19. Clayton, D. G. (1978). A model for association in bivariate life tables and its application in eqidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65(1), 141-151.

20. Darbar, S. M. and Deb, P. (2002). Cross-market correlations and transmission of information. Journal of Future Market, 22(11), 1059-1082.
21. Darrat, A. F. and Zhong, M. (2005). Equity market linkage and multinational trade accords: The case of NAFTA. Journal of International Money and Finance, 24(5), 793-817.

22. Dias, A. and Embrechts, P. (2004). Change-point analysis for dependence structures in finance and insurance. In G. Szego (ed.), Risk measures for the 21st century (321-35). Chichester: Wiley Finance Series.

23. Dias, A. and Embrechts, P. (2009). Testing for structural change in
exchange rates’ dependence beyond linear correlation. European Journal of Finance, 15(7), 619-637.

24. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of the United Kingdom inflation. Econometrica, 50(4), 987-1007.

25. Forbes, K. J. and Rigobon, R. (2002). No contagion, only interdependence: Measuring stock market comovements. Journal of Finance, 57(5), 2223-2261.

26. Glosten, L. R., Jagannathan, R. and Runkle, D. E. (1993). On the relation between the expected value and the volatility of nominal excess return on stocks. Journal of Finance, 48(5), 1779-1801.

27. Gombay, E. and Horvath, L. (1996). On the rate of approximations for maximum likelihood tests in change-point models. Journal of Multivariate Analysis, 56(1), 120-152.

28. Guegan, D. and Zhang, J. (2010). Change analysis of a dynamic copula for measuring dependence in multivariate financial data. Quantitative Finance, 10(4), 421-430.

29. Gumbel, E. J. (1960). Bivariate exponential distribution. Journal of the American Statistical Association, 55(292), 698-707.

30. Inclan, C. and Tiao, G. C. (1994). Use of cumulative sums of squared for retrospective detection of changes of variance. Journal of the American Statistical Association, 89(427), 913-923.


31. Joe, H. (1997). Multivariate models and dependence concepts. London: Chapman & Hall.

32. Johansson, A. (2011). Financial markets in East Asia and Europe during the global financial crisis. World Economy, 34(7), 1088-1105.

33. Johnson, R. and Soenen, L. (2003). Economic integration and stock market comovement in the Americas. Journal of Multinational Financial Management, 13(1), 85-100.

34. Liu, H. H. and Tu, T. T. (2011). Mean-reverting and asymmetric volatility switching properties of stock price index, exchange rate and foreign capital in Taiwan. Asian Economic Journal, 25(4), 375-395.

35. Longin, F. and Solnik, B. (2001). Extreme correlation of international equity markets. Journal of Finance, 56(2), 649-676.

36. Maheu, J. M. and Mccurdy, T. H. (2004). New arrival, jump dynamics, and volatility components for individual stock returns. Journal of Finance, 59(2), 755-793.

37. Manner, H. and Candelon, B. (2010). Testing for asset market linkages: A new approach based on time-varying copulas. Pacific Economic Review, 15(3), 364-384.

38. Mendes, B.V. (2005). Asymmetric extreme interdependence in emerging equity markets. Applied Stochastic Models in Business and Industry, 21(6), 483-498.

39. Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59(2), 347-370.

40. Patton, A. J. (2001). Modelling time-varying exchange rate dependence using the conditional copula. University of California San Diego, Department of Economic, working paper, 2001-09.

41. Patton, A. J. (2006). Modelling asymmetric exchange rate dependence. International Economic Review, 47(2), 527-556.
42. Phylaktis, K. and Ravazzolo, F. (2002). Measuring financial and economic integration with equity prices in emerging markets. Journal of International Money and Finance, 21(6), 879-903.

43. Rodriguez, J. C. (2007). Measuring financial contagion: A copula approach. Journal of Empirical Finance, 14(3), 401-423.

44. Sarno, L. and Valente, G. (2005). Modelling and forecasting stock returns: Exploiting the futures market, regime shifts and international spillovers. Journal of Applied Econometrics, 20(3), 345-376.

45. Wang, K., Chen, Y. H. and Huang, S. W. (2011). The dynamic dependence between the Chinese market and other international stock market: A time-varying copula approach. International Review of Economics and Finance, 20(4), 654-664.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-06-17公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-06-17起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信