§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0406200813380800
DOI 10.6846/TKU.2008.00101
論文名稱(中文) 利用間歇高壓生物反應器結合砂濾程序去除廢水中有機物之研究
論文名稱(英文) Intermittent high pressure sequential bioreactor(IHPSB) with integration of sand filtration system For synthetic wastewater treatment.
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 96
學期 2
出版年 97
研究生(中文) 曾枱瑋
研究生(英文) Tai-Wei Tzeng
學號 695480243
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2008-05-19
論文頁數 71頁
口試委員 指導教授 - 李奇旺
委員 - 李柏青
委員 - 陳孝行
關鍵字(中) 高壓生物反應器
活性污泥
砂濾
關鍵字(英) High pressure system
activated sludge
sand filtration
第三語言關鍵字
學科別分類
中文摘要
生物處理程序中,常因氧傳效率低及沉澱不良等問題導致放流水懸浮固體物濃度過高、反應槽中微生物大量流失,使得處理效益變差。MBR程序透過薄膜過濾來提昇固液分離效果,但MLSS對薄膜負荷影響很大,將促使通量降低,甚至造成濾膜阻塞而增加操作成本。
本研究之間歇高壓生物處理程序保留SBR程序中操作彈性佳及MBR系統可維持高污泥濃度等優勢,並以高壓曝氣方式提高溶氧濃度梯度來加快氧傳速率,亦利用天然細砂做為出流前阻隔活性污泥之基材。透過高壓曝氣來提升氧氣傳遞速率,使水體溶氧能被快速補充,更可利用砂層阻擋大量污泥,得到懸浮性固體物濃度小於150 mg/L之出流水,若需進一步提升出水品質時,亦可解決MBR系統中MLSS對薄膜之阻抗。
實驗結果發現間歇高壓生物反應器結合砂濾系統(IHPSB)的確能在短時間內提供高濃度溶氧(16~18 mg O2/L)且有效阻隔大量MLSS於反應槽內,加上活性污泥濃度皆維持10 g/L以上,使得系統能承受較高的COD負荷且有良好降解能力(90%)。本系統之高壓操作及砂濾方式相較於傳統處理而言均是一大突破。
英文摘要
In order to obtain high dissolved oxygen (DO) level, a laboratory scale high pressure (3 kg/cm2) bioreactor with a layer of sand in the bottom acting as filter was developed. High DO can support elevated activated sludge growth which in terms can sustain high COD loading. Integration of sand layer inside the reactor can reduce SS in the treated water. During a long-term operation of the intermittent high pressure sequential bioreactor (IHPSB), the results show that the sand filtration effectively reduced treated water SS (< 150 mg/L) when MLSS concentration was less than 18.65 g/L. DO as high as 14 to 18 mg O2/L can be obtained under high pressure aeration. The flux of IHPSB is stable around 500 LMH which is higher than that of MBR. In this study, organic loading rates ranging from 3.34 -14.32 kg COD/m3-day were tested and the removal efficiency of TOC on average was about 90%.
第三語言摘要
論文目次
目錄
目錄	I
圖目錄	IV
表目錄	VI
第一章 緒論	1
1-1 研究背景	1
1-1研究目的	2
第二章 文獻回顧	4
2-1活性污泥之形成及污染物降解原由	4
2-2 傳統活性污泥法(Activated sludge process, CAS)	5
2-2-1 完全混合型(Complete-Mix activated sludge, CMAS)	5
2-2-2 批次式生物處理程序(Sequential biological process, SBR)	6
2-2-3 薄膜生物處理程序(Membrane bioreactor, MBR)	6
2-2  曝氣機制	8
2-3  砂濾機制與反沖洗	9
2-4 除氮技術回顧	10
2-4-1 影響硝化之因子	13
2-5 微生物變性梯度凝膠電泳法原理及其應用	15
第三章 實驗材料與方法	19
3.1 實驗儀器與設備	19
3-1-2 操作方法	21
3-1-1 過濾砂層	23
3-2 實驗藥品	24
3-2-1 人工廢水的製備	24
3-3 水質分析方法及用藥	26
3-4 採樣與分析項目流程	28
3-4-1總有機碳(TOC)	30
3-4-2 溶氧	30
3-4-3 變性梯度凝膠電泳法(DGGE)	34
3-4-3-1樣本DNA萃取及純化	34
3-4-3-2聚合酶鏈鎖反應(Polymerase Chain Reaction, PCR)	36
第四章 結果與討論	38
4-1 出流水品質	38
4-1-1 生物濃度對出流水懸浮固體物濃度探討	40
4-2混合液懸浮固體物濃度對砂層過濾速率	41
4-3 間歇高壓曝氣系統對有機物之去除效能	44
4-4 間歇加壓操作對系統中溶氧探討	48
4-5 高壓好氧之硝化效益	54
4-5-1 常壓曝氣之硝化試驗	54
4-5-2 間歇高壓曝氣之硝化試驗	55
4-6 微生物膠羽粒徑探討	60
4-7 利用DGGE對高壓及常壓污泥之菌相探討	63
第五章 結論	66
參考文獻	68
 
圖目錄
圖1 好氧生物代謝過程	4
圖2 活性污泥法處理流程圖	6
圖3 Ludzack-Ettinger系統之除氮程序	11
圖4 氨氮組態隨pH變化情形	14
圖5 典型聚合酶鏈鎖反應原理圖	17
圖6生物反應槽體示意圖	20
圖7 各操作單元之電池閥與時間控制器電控線路圖	21
圖8 間歇高壓生物反應系統各項水質及生物分析流程	29
圖9 總碳及總有機碳樹狀圖	30
圖10 取樣後利用搖晃使釋出溶氧再次溶回藥劑	32
圖11 氮氣針筒法測定高壓純水溶氧步驟流程圖	33
圖12 採樣及過濾閥件示意圖	34
圖13 活性污泥生長情況與出流水之懸浮固體物濃度	38
圖14 跳躍式及漸增式有機負荷對出水質與活性污泥濃度關係圖	41
圖15 出水通量與活性污泥濃度之關係	43
圖16 反沖洗對系統通量之影響	44
圖17 間歇式高壓生物反應器結合砂濾系統有機物去除效率	47
圖18 間歇高壓系統以處理週期半小時之有機物去除效率	48
圖19 高壓純水理論溶氧與實測溶氧之關係圖	51
圖20 取樣時高壓生物反應器之水體溶氧釋出情形	51
圖21 不同曝氣循環時間反應槽中溶氧之變化	52
圖22 於3kg/cm2下,反應槽內混合液溶解氧濃度對時間變化	53
圖23 常壓曝氣之氮平衡圖	55
圖24 間歇高壓曝氣之氮平衡圖	57
圖25 系統連續操作下,出流水硝酸鹽氮濃度之變化	58
圖26 系統連續硝化反應圖	60
圖27 生物膠羽粒徑分佈圖	62
圖28 生物膠羽粒徑分佈圖	62
圖29 高壓與常壓曝氣培養污泥之變性梯度凝膠電泳圖	65
 
表目錄
表1 掃流與沉浸式MBR操作特性比較表	7
表2 一般活性污泥之操作條件與設計參數	8
表3 濾池濾材特性	10
表4 操作時間設計與系統電池閥之相互關係	23
表5 填料級配與出水水質	24
表6 人工廢水使用藥品清單	25
表7 進流廢水濃度對生物反應槽有機負荷關係	26
表8 水質檢測方法	27
表9 水質檢測藥品清單	28
表10 DGGE分析使用之引子序列	36
表11 PCR 反應溶液組成	37
表12 PCR 溫度程序	37
表13 生物處裡系統對有機物去除效益之比較	46
表14 不同壓力下CO2溶入水體後pH之變化	59
參考文獻
Anthonisen, A.C., Loehr, R.C., Prakasam, T.B.S., Srinath, E.G., 1976. Inhibition of nitrification by ammonia and nitrous acid. Journal of the Water Pollution Control Federation 48, 835-852.
Bae, T.-H., Tak, T.-M., 2005. Interpretation of fouling characteristics of ultrafiltration membranes during the filtration of membrane bioreactor mixed liquor. Journal of Membrane Science 264, 151-160.
Balmelle, B., Nguyen, K.M., Capdeville, B., Cornier, J.C., Deguin, A., 1992. Study of factors controlling nitrite build-up in biological processes for water nitrification. Water Science and Technology 26, 1017-1025.
Bollyky, L.J., 1981. MASS TRANSFER OF OZONE INTO WATER: ENERGY REQUIREMENTS - STATE OF THE ART. Ozone: Science and Engineering 3, 181-210.
Bouhabila, E.H., R, B.A., H, B., 2001. Fouling characterisation in membrane bioreactors. Separation and Purification Technology 22-23, 123-132.
Burhanettin, F., and Bulent, Keskinler, 2006. Sludge characteristics and effect of crossflow membrane filtration on membrane fouling in a jet loop membrane bioreactor (JLMBR). Journal of Membrane Science, 578–587.
Chiu, Y.C., Lee, L.L., Chang, C.N., Chao, A.C., 2007. Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor. International Biodeterioration and Biodegradation 59, 1-7.
Cho, D., Fane, A.G., Ghayeni, S.B., Kim, K.J., Parameshwaran, K., 1999. Biological Waste Water Treatment and Membranes. Proceeding of International Specialized Conference on Membrane Technology in Environmental Management.
Droste, R.L., 1996. Theory and practice of water and wastewater treatment. Wiley.
Farizoglu, B., Keskinler, B., 2006. Sludge characteristics and effect of crossflow membrane filtration on membrane fouling in a jet loop membrane bioreactor (JLMBR). Journal of Membrane Science 279, 578-587.
Gelsomino, A., Keijzer-Wolters, A.C., Cacco, G., Van Elsas, J.D., 1999. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. Journal of Microbiological Methods 38, 1-15.
Hanaki, K., Wantawin, C., Ohgaki, S., 1990. Effects of the activity of heterotrophs on nitrification in a suspended-growth reactor. Water Research 24, 289-296.
Huang, X., Gui, P., Qian, Y., 2001. Effect of sludge retention time on microbial behaviour in a submerged membrane bioreactor. Process Biochemistry 36, 1001-1006.
Jin, Y.L., Lee, W.N., Lee, C.H., Chang, I.S., Huang, X., Swaminathan, T., 2006. Effect of DO concentration on biofilm structure and membrane filterability in submerged membrane bioreactor. Water Research 40, 2829-2836.
Lehninger, Albert L., 1982 Principles of biochemistry New York 
Lodish, 2003. Molecular Cell Biology. 5th edi. W H Freeman & Co.
Male, P.C., Pretoruis, W.A., 2001. Aerobic treatment of inhibitory wastewater using a high-pressure bioreactor with membrane separation. Water Science and Technology, pp. 51-58.
Meng, F., Zhang, H., Yang, F., Liu, L., 2007. Characterization of cake layer in submerged membrane bioreactor. Environmental Science and Technology 41, 4065-4070.
Metcalf, Eddy, 1991. Wastewater Engineering-treatment : Disposal and reuse, 3nd. New York, McGraw-HILL.
Metcalf, Eddy, 2004. Wastewater Engineering Treatment and Reuse Fourth Edition. McGraw-Hill.
Munch, E.V., Lant, P., Keller, J., 1996. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. Water Research 30, 277-284.
Pollice, A., Laera, G., Saturno, D., Giordano, C., Sandulli, R., 2008. Optimal sludge retention time for a bench scale MBR treating municipal sewage. Water Science and Technology, pp. 319-322.
Rice, R.G.a.M.E.B., 1981. Ozone Treatment of Industrial Wastewater. Noyes Deta Corporation, New Jersey, USA.
Shin, J.H., Lee, S.M., Jung, J.Y., Chung, Y.C., Noh, S.H., 2005. Enhanced COD and nitrogen removals for the treatment of swine wastewater by combining submerged membrane bioreactor (MBR) and anaerobic upflow bed filter (AUBF) reactor. Process Biochemistry 40, 3769-3776.
Ueda, T., Hata, K., Kikuoka, Y., 1996. Treatment of domestic sewage from rural settlements by a membrane bioreactor. In: Ballay, D., Asano, T., Bhamidimarri, R., Chin, K.K., Grabow, W.O.K., et al. (Eds.). Water Science and Technology. Elsevier Science Inc., Singapore, Singapore, pp. 189-196.
Van De Peer, Y., Van Den Broeck, I., De Rijk, P., De Wachter, R., 1994. Database on the structure of small ribosomal subunit RNA. Nucleic Acids Research 22, 3488-3494.
Woese, C.R., 1987. Bacterial evolution. Microbiol. Rev., 221-271.
Xing, C.H., Yamamoto, K., Fukushi, K., 2006. Performance of an inclined-plate membrane bioreactor at zero excess sludge discharge. Journal of Membrane Science 275, 175-186.
Zeng, R.J., Lemaire, R., Yuan, Z., Keller, J., 2003. Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor. Biotechnology and Bioengineering 84, 170-178.
林志取, 2001. 捲氣式反應器高濃度溶氧質傳及放大之研究. 國立台灣科技大學化學工程系碩士學位論文.
徐麗花, 李亞新, 2007. 一種耗氧生物處理有機廢水的新工藝設備-生物曝氣濾池(http://hk.wanfangdata.com/wf/~kjqk/jsps/jsps99/jsps9911/991101.htm).
楊昀尉, 2004. 利用循序分批是濾膜生物反應槽探討並模擬同時硝化脫硝現象之研究. 東海大學環境科學系碩士論文.
謝昶毅, 2003. 以PCR-DGGE 技術分析石油碳氫化合物污染地下水之微生物相. 國立中山大學生物科學學系(研究所)碩士論文.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信