淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0406200810232100
中文論文名稱 快速傅利葉轉換下的選擇權訂價模型-以台指選擇權為例
英文論文名稱 Empirical Comparison of Alternative Option Pricing Models Using Fast Fourier Transform: Evidence from TAIEX Options market.
校院名稱 淡江大學
系所名稱(中) 財務金融學系碩士班
系所名稱(英) Department of Banking and Finance
學年度 96
學期 2
出版年 97
研究生中文姓名 黃昱仁
研究生英文姓名 Yu-Ren Huang
學號 695530542
學位類別 碩士
語文別 中文
口試日期 2008-05-31
論文頁數 75頁
口試委員 指導教授-林允永
共同指導教授-李進生
委員-邱忠榮
委員-謝文良
委員-劉祥熹
中文關鍵字 快速傅利葉轉換  Heston  隨機波動率  VG  定態波動率  誤差分析 
英文關鍵字 FFT  Heston  SV  VG  Ad Hoc BS  Error Regression 
學科別分類 學科別社會科學商學
中文摘要 台指選擇權近年來已逐漸發展成一成熟市場。本文採用快速傅利葉轉換的方法,比較 Heston (1993)年的連續型隨機波動率模型、VG模型、Ad Hoc BS 模型及BS 等四個模型。
實証結果顯示,MAE與MAPE在樣本外一日近月買權的訂價效率以AHBS 模型最好,遠月及整體部份大致以SV模型表現較好。而樣本外七日除了近、遠月及整體的深價內買權以VG模型表現較優外,其餘大部分仍以SV模型表現最好。RMSE則顯示除了樣本外七日遠月無一致性結論外,其他幾乎以SV模型最小,顯示SV模型的誤差穩性性。此外,MPE顯示SV模型有高估價外買權及價內賣權並低估價內買權及價外賣權的傾向,此種風險中立機率集中於左尾的表現,推估原因與波動率和標的資產報酬率之相關係數為負值有關。
誤差來源分析部份,採用的誤差因子包括價性、價性平方項、到期期間與利率。實證結果顯示,除了樣本外七日賣權在價性及利率等兩項因子之迴歸斜率係數不顯著外,其餘係數皆顯著。同時也發現SV模型可以改善波動率微笑。
英文摘要 In the last decade, TXO has become one of the most famous trading derivatives. This article compares empirical performances of four option pricing models: (1). Heston’s continuous-time stochastic volatility model, (2). Madan et al.’s variance gamma model, (3).Dumas et al.’s ad hoc BS model, and (4). BS model.
Our empirical results for one day ahead out–of-sample show that near-month call options perform best, while SV model outperforms the others in the all sample case and forward month case. For one week ahead out–of-sample performances, I find that except deep out- and out-of-the money near-month put options and call options, VG model shows the best performances in deep-in-the-money contracts and SV the others. We also find that SV model generally has min RMSE values that mean large pricing error occurs least. However, we can see SV model also overprices out-of-the-money calls and in-the-money puts and underprices out-of-the-money puts and in-the-money calls from MPE. This type of mispricing indicates an unusual concentration of probability mass in the left tail of the risk neutral distribution of the index returns, part of which can result from negative correlation between index returns and volatility.
In terms of error regression analysis, after taking into account the four error factors (maturity, interest, moneyness and its square term), all slope parameters are significant except moneyness and interest rate in one week ahead put options. Otherwise, we also find SV model improves the volatility smile.
論文目次 目錄
第一章緒論1
第一節研究背景1
第二節研究目的3
第三節研究流程4
第二章文獻回顧5
第一節各種波動率模型相關文獻5
第二節隨機波動率模型之實證18
第三章研究方法23
第一節三種具封閉解的隨機與定態波動率模型23
第二節快速傅利葉轉換30
第三節估計方法36
第四節預測能力指標37
第五節誤差來源分析39
第四章實證結果41
第一節資料來源及處裡方法41
第二節各模型之誤差分析47
第三節誤差來源分析64
第五章結論與建議68
第一節研究結論68
第二節後續建議71
參考文獻72
附錄75

表目錄
表 4-1-1 台灣加權股價指數買權與賣權樣本特性表43
表 4-2-1 BS隱含波動率表45
表 4-2-2 BS、VG、AHBS、SV模型買權參數表46
表 4-2-3 BS、VG、AHBS、SV模型賣權參數表46
表 4-2-4 近月份台指買權與賣權模型樣本內誤差表 49
表 4-2-5 遠月份台指買權與賣權模型樣本內誤差表 50
表 4-2-6 台指買權與賣權模型樣本內誤差表(all)51
表 4-2-7 近月份台指買權與賣權模型樣本外一日誤差表54
表 4-2-8 遠月份台指買權與賣權模型樣本外一日誤差表55
表 4-2-9 台指買權與賣權模型樣本外一日誤差表(all)56
表 4-2-10 樣本外一日模型定價效率整理57
表 4-2-11 近月份台指買權與賣權模型樣本外七日誤差表60
表 4-2-12 遠月份台指買權與賣權模型樣本外七日誤差表61
表 4-2-13 台指買權與賣權模型樣本外七日誤差表(all)62
表 4-2-14 樣本外七日模型定價效率整理63
表 4-3-1 台指買權與賣權模型樣本外一日誤差迴歸分析表66
表 4-3-2 台指買權與賣權模型樣本外七日誤差迴歸分析表67
附錄 臺灣證券交易所股價指數選擇權契約規格75

圖目錄
圖 1-3-1 研究流程圖4
圖 4-1-1 台灣加權股價指數走勢圖44
參考文獻 1.Amin, K., & Jarrow, R. (1992) “Pricing Options on Risky Assets in a Stochastic Interest Rate Economy”, Mathematical Finance, Vol. 2, pp.217-237.
2.Bakshi, G., Charles Cao & Zhiwu Chen (1997) “Empirical Performance of Alternative Option Pricing Models”, Journal of Finance, Vol. 52, pp.2003-2049.
3.Ball, C. A., & Torous, W. N. (1983) “A Simplified Jump Process for Common Stock on Call Option Pricing”, Journal of Financial and Quantitative Analysis, Vol. 18, No. 1, pp.53-66.
4.Bates, D. S. (1991) “The Crash of ‘87: What It Expected? The Evidence from Option Markets”, Journal of Finance, Vol. 46, pp.1009-1044.
5.Bates, David S. (1996) “Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsch mark options”, Review of Financial Studies, Vol. 9, pp.69-108.
6.Black, F., & Scholes, M. (1973) “The Pricing of Options and Corporate Liabilities”, Journal of Political Economy, Vol. 81, pp.637-659.
7.Blair, B. J., Poon, S. H., & Taylor, S. J. (2000) “Forecasting S&P100 Volatility: the Incremental Information Content of Implied Volatilities and High-frequency Index Returns”, Journal of Econometrics, Vol. 105, pp.5-26.
8.Bollerslev, T. (1986) “Generalized Autoregressive Conditional Heteroscedasticity”, Journal of Econometrics, Vol. 31, pp.307-327.
9.Britten-Jones, M., & Neuberger, A. (1999) “Option Prices, Implied Price Processes, Stochastic Volatility”, Journal of Finance, Vol. 55, No. 2, pp.839-866.
10.Carr, P. & Madan, D. (1999) “Option Valuation using Fast Fourier Transform”, Journal of Computational Finance, Vol. 2, No.4, pp.61-73.
11.Chan, Kam C., L. Cheng, & P. P. Lung (2004) “Net buying pressure, volatility smile, and abnormal profit of Hang Seng Index Options”, Journal of Futures Markets, Vol. 24, pp.1165-1194.
12.Corrado, C. & T. Su (1998) “An Empirical Test of the Hull-White Option Pricing Model”, The Journal of Futures Markets, Vol. 18, No 4, pp.363-378.
13.Cox, J.C. and S.A. Ross (1976) “The Valuation of Options for Alternative Stochastic Processes”, Journal of Financial Economics, Vol. 3, pp.145-166.
14.Derman, E.,. I. Kani, & Zou, J. (1996) “The local volatility surface: Unlocking the information in index option prices”, Financial Analysts Journal, pp.25-36.
15.Dumas, B., J. Fleming, & R. Whaley (1998) “Implied Volatility Functions: Empirical Tests”, Journal of finance, Vol. 53, pp.2059-2106.
16.Dupire, B. (1994) “Pricing with a smile”, RISK 7, pp.18-20.
17.Dupire, B. (1997) “Pricing and hedging with smiles”, in Michael A H. Dempster and Staneley R. Pliska, eds.: Mathematics of Derivative Securities.
18.Ederington, L. H., & W. Guan (2002) “Why are Those Options Smiling?’, Journal of Derivatives, Vol. 10, No. 2, pp.9-34.
19.Engle, R. and V, Ng (1993) “Measuring and Testing of the Impact of News on Volatility”, Journal of Finance, Vol. 48, pp.1749-1778.
20.Engle, Robert F. (1982) “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation”, Econometrica, Vol. 50, No. 4, pp.987-1007.
21.Fiorentini, G, A Leon & G Rubio (2002) “Estimation and empirical performance of Heston's stochastic volatility model: the case of a thinly traded market”. Journal of Empirical Finance, Vol. 9, pp.225-255.
22.Fleming, Jeff (1998) “The Quality of Market Volatility Forecasts Implied by S&P100 Index Option Prices”, Journal of Empirical Finance, Vol. 5, No. 4, pp.317-345.
23.Glosten, L. R., Jagannathan, R.,& Runkle, D. E. (1993) “On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks”, Journal of Finance, Vol. 48, pp.1779-1801.
24.Heston, S.L. (1993) “A closed-form solutions of options with stochastic volatility with applications to bond and currency options’, Review of Financial Studies, Vol. 6, pp.327-343.
25.Heston, S.L., Nandi, S. (2000) “A closed-form GARCH option valuation model’, Review of Financial Studies, Vol. 13, pp.585-625.
26.Hull, J., White, A. (1987) “The pricing of options on assets with stochastic volatilities”, Journal of Finance, Vol. 42, pp.281-300.
27.Joseph K. W. Fung (2007) “The Information Content of Option Implied Volatility Surrounding the 1997 Hong Kong Stock Market Crash”, The Journal of Futures Markets, Vol. 27, No.6, pp.555-574.
28.Kim, In Joon, & Sol Kim (2004) “Empirical comparison of alternative stochastic volatility option pricing models: Evidence from Korean KOSPI 200 index options market”, Pacific-Basin Finance Journal, Vol. 12, pp.117–142.
29.Lauterbach, B. & P. Schultz (1990) “Warrants: An Empirical Study of the Black-Scholes Model and Its Alternatives”, Journal of Finance, Vol. 45, No. 4, pp.1181 -1209.
30.Lin, Y., Strong, N., Xu, X. (2001) “Pricing FTSE 100 index options under stochastic volatility”, The Journal of Futures Markets, Vol. 21, No. 3, pp.197-211.
31.Madan, D. B. & Milne, F. (1991) “Option Pricing with VG Martingale Components”, Mathematical Finance, Vol. 1, No. 4, pp.39-55.
32.Madan, D.B.& Seneta, E. (1990) “The Variance Gamma (V.G.) model for share market returns”, Journal of Business, Vol.63, pp.511-524.
33.Merton, R. C (1973) “Theory of Rational Option Pricing?”, Bell Journal of Economics and Management Science, Vol.4, No.1, pp.141-183.
34.Merton, R. C (1976) “Option Pricing When the Underlying Stock Returns Are Discontinuous”, Journal of Financial Economics, Vol. 3, pp.125-144.
35.Nandi, Saikat (1996) “Pricing and Hedging Index Options under Stochastic Volatility: An Empirical Examination” , Working Paper, 96-9, Federal Reserve Bank of Atlanta.
36.Poon, S. H., & Granger, C. W. J. (2003) “Forecasting Volatility in Financial Markets: A Review”, Journal of Economic Literature, Vol. 41, No. 2, pp.478-539.
37.Rubinstein, M. (1994) “Implied Binomial Trees.”, The Journal of Finance, Vol. 49, pp.771-818.
38.Scott, Louis O. (1997) “Pricing Stock Options in a Jump-Diffusion Model withStochastic Volatility and Interest Rates: Applications of Fourier Inversion Methods”, Mathematical Finance, Vol. 7, pp.345-358.
39.Shu, Jinghong, Zhang, Jin E. (2004) “Pricing S&P500 Index Options under Stochastic Volatility with the Indirect Inference Method”, Journal of Derivative Accounting, Vol. 1, No. 2, pp.171-186.
40.Whaley, Robert E., 2000, The Investor Fear Gauge, The Journal of Portfolio Management, 12-17
41.Zhang, Benjamin Yibin, Hao Zhou, & Haibin Zhu (2005) “Explaining Credit Default Swap Spreads with Equity Volatility and Jump Risks of Individual Firms”, Working Paper , Federal Reserve Board.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2008-06-13公開。
  • 同意授權瀏覽/列印電子全文服務,於2008-06-13起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信