淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0402201822593700
中文論文名稱 結合彩色派翠網路與複合多評準決策分析探討城際列車車型評選之研究–以臺鐵東部城際列車為例
英文論文名稱 Combining Color-Petri Net and Hybrid MCDM Analysis for Selecting Inter-city Train Types - Using TRA East Inter-city Train as Case Study
校院名稱 淡江大學
系所名稱(中) 運輸管理學系碩士班
系所名稱(英) Department of Transportation Management
學年度 106
學期 1
出版年 107
研究生中文姓名 賴欽琛
研究生英文姓名 Chin-Chen Lai
學號 603660217
學位類別 碩士
語文別 中文
口試日期 2018-01-05
論文頁數 170頁
口試委員 指導教授-許超澤
共同指導教授-杜微
委員-劉建浩
委員-蔡介元
中文關鍵字 複合多評準決策  成本效益分析  彩色派翠網路  城際列車 
英文關鍵字 Hybrid Multiple Criteria Decision Making  Cost Benefit Analysis  Color-Petri Net  Inter-city Train 
學科別分類
中文摘要 在全球環保意識興起下,發展軌道運輸已成為各國運輸部門之政策主軸。由於政府投資經費有限,當鐵路機構在選購列車時,如何建立一套完整客觀的列車評選模型,實有研究之必要性。傳統有關方案評選研究大多利用多評準決策或成本效益分析進行評估,由於兩種評估方式各有利弊,後續學者試圖將兩種方法相互結合,但評估模型較為複雜且難以理解。因此本研究提出一個結合彩色派翠網路與複合多評準決策方法,建立列車車型評選策略之系統化模型,提供決策者更清楚了解決策的分析過程,並以臺鐵東部城際列車評選作為實證研究對象。
本研究首先應用複合多評準決策方法,透過決策實驗室分析法之網路程序分析法,評估城際列車於利益、機會、成本、風險構面下各準則關聯程度與相對權重,並以折衷排序法評估方案偏好結果與理想程度,評選出最具效益之列車方案。其次,本研究建構彩色派翠網路評估模型,將列車成本貨幣化,結合複合多評準決策之方案整體效益進行成本效益分析,探討列車成本效益之未來變化趨勢,評選出最具投資性之列車方案,最後透過專家訪談方式探究兩種分析結果之差異及原因。
研究結果顯示,提升利益與減少成本為評選列車之主要考量,首先必須考量列車是否能帶來很好的營運及維修能量、靈活性及服務品質,其中以提升列車「營運及維修能量」最為重要;而列車的投入成本則是最容易影響其他項目,其中以列車「購置成本」影響最大。然而,「傾斜式列車」成本較效益來的高,不僅無法達到投資門檻,隨著列車最低使用年限,未來將投入更多成本;相較之下,「推拉式列車」效益較成本來得高,且未來投入成本較低,成為最具投資性之列車方案。故針對未來列車評選策略,必須審慎考量列車所需的投入成本,以及列車對於鐵路機構所造成的負擔。
英文摘要 The rise of global environmental awareness, rail transport has become the development goals in all countries transportation sector, due to the government's investment costs are limited, when the railway agencies purchase trains, how to establish a complete and objective train selection model, it is necessary to study. Traditionally, the program selection studies are evaluated by Multiple-Criteria Decision Making (MCDM) or cost-benefit analysis (CBA), due to both methods have advantages and disadvantages, after, some scholars tried to combine the two methods, however, these models are more complicated and difficult to understand, so we propose a systematic model that combining CPN with hybrid MCDM to establish the selection strategy of train types, it can make decision-makers understand the analysis process clearly, and taking the selecting inter-city train types in the Eastern Line of TRA as an empirical study object.
This study first applied hybrid MCDM, using DANP method to evaluate the rankings and weights in dimensions of benefits, opportunities, costs and risks, and VIKOR method to evaluate performance and the ideal level to select the most effective train program. Second, this study established a CPN model, the train cost will be assessed in monetary terms, after, the cost and benefits will be combined for CBA, we can understand the cost changes of the train, as well as the cost-benefit trend in the future, selecting the most investment train program, finally, through expert interviews to explore the differences between the analysis results and the reasons.
The results show that enhance benefits and reduce costs are major considerations in the selection of trains, first, we must consider whether the train can bring good operation and maintenance energy, flexibility and service quality, of which the most important is to upgrade the "operation and maintenance energy", and the cost of the train is most likely to affect other items, of which the "purchase cost" is the most impact. However, the cost of " Tilting Trains" is higher than the benefits. it will not be able to meet the investment threshold, with the train minimum service life, it will put more costs. In contrast, the benefits of "push-pull trains" are higher than the cost and lower costs in the future, it can become the most investment train program. In view of the train selection strategy in the future, we must carefully consider the train cost, as well as the burden of trains on railway agency.
論文目次 第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 5
1.3 研究範圍與限制 5
1.4 研究流程 6
第二章 文獻回顧 7
2.1 東部城際運輸現況 7
2.1.1 城際運輸 7
2.1.2 東部城際鐵路現況 9
2.1.3 東部城際列車運用 13
2.2 分析網路程序法 24
2.2.1 分析網路程序法之起源 24
2.2.2 分析網路程序法之架構 26
2.2.3 分析網路程序法文獻探討 28
2.2.4 分析網路程序法結合BOCR 29
2.3 複合多評準決策方法 34
2.3.1 DEMATEL方法 35
2.3.2 DANP方法 37
2.3.3 VIKOR方法 38
2.4 成本效益分析 41
2.4.1 成本效益分析理論 41
2.4.2 成本效益分析方法 42
2.4.3 成本效益分析結合多評準決策 44
2.5 派翠網路 49
2.5.1 派翠網路組成 49
2.5.2 高階派翠網路 52
2.5.3 CPN Tools 研究及應用 55
2.6 車輛選擇評估準則探討 56
2.6.1 BOCR構面與準則分析 57
2.6.2 車輛成本分析 63
2.7 小結 66
第三章 研究方法 68
3.1 研究架構 68
3.2 問卷設計與對象 69
3.3 列車評估構面與準則確立 70
3.3.1 BOCR構面與準則 70
3.3.2 成本項目評估準則 72
3.4 研究方法 72
3.4.1 AHP分析程序 72
3.4.2 DEMATEL法分析程序 78
3.4.3 DANP法分析程序 82
3.4.4 VIKOR分析程序 86
3.4.5 CPN模型分析程序 88
3.5 小結 99
第四章 實證分析 101
4.1 複合多評準決策分析 101
4.1.1 DEMATEL分析 101
4.1.2 DANP分析 107
4.1.3 VIKOR分析 111
4.1.4 敏感度分析 112
4.2 成本效益分析 115
4.3.1 成本問卷分析 115
4.3.2 成本計算 117
4.3.3 效益計算 119
4.3.4 益本比計算 125
4.3 專家訪談 126
4.4 小結 128
第五章 結論與建議 129
5.1 結論 130
5.2 建議 133
參考文獻 134
附錄 145
附錄一 臺鐵東部城際列車車型評選之問卷調查 145
附錄二 臺鐵東部城際列車車型『成本』評選之問卷調查 151
附錄三 臺鐵東部城際列車車型評選之專家訪談 157
附錄四 敏感度分析 159
附錄五 CPN Tools程式碼 170

圖1. 1 研究流程架構圖 6
圖2. 1 生活圈之劃分 7
圖2. 2 東部幹線延人公里 12
圖2. 3 推拉式列車 15
圖2. 4 TEMU1000太魯閣號 18
圖2. 5 TEMU2000普悠瑪號 19
圖2. 6 宜蘭線下行站間運行時間 21
圖2. 7 宜蘭線上行站間運行時間 21
圖2. 8 北迴線下行站間運行時間 22
圖2. 9 北迴線下行站間運行時間 22
圖2. 10 花東線下行站間運行時間 22
圖2. 11 花東線上行站間運行時間 23
圖2. 12 ANP網路結構 26
圖2. 13 ANP分析流程圖 27
圖2. 14 ANP架構圖 27
圖2. 15 BOCR之面向 30
圖2. 16 ANP結合BOCR模型 31
圖2. 17 複合式MCDM模型流程 34
圖2. 18 TOPSIS理想解與負理想解示意圖 39
圖2. 19 VIKOR理想解和妥協解示意圖 40
圖2. 20 EM架構評估過程 48
圖2. 21 CPN成本效益分析架構圖 48
圖2. 22 派翠網路基本元素 49
圖2. 23 派翠網路觸發圖 51
圖2. 24 派翠網路圖形五種型態 52
圖2. 25 模糊派翠網路示意圖 53
圖2. 26 時間派翠網路示意圖 54
圖2. 27 彩色派翠網路示意圖 54
圖2. 28 隨機派翠網路示意圖 55
圖2. 29 運輸績效概念圖 65
圖3. 1 研究架構圖 69
圖3. 2 AHP分析流程圖 73
圖3. 3 AHP架構圖 74
圖3. 4 DEMATEL流程圖 79
圖3. 5 推拉式列車成本計算模型架構圖 90
圖3. 6 傾斜式列車成本計算模型架構圖 90
圖3. 7 方案效益權重模型架構圖 95
圖3. 8 益本比模型流程圖 97
圖4. 1 列車車型評選總影響網絡關係圖 107
圖4. 2 「營運及維修能量B_1」對方案變動結果 114
圖4. 3 列車方案成本趨勢圖 119
圖4. 4 列車方案效益權重 124
圖4. 5 列車方案益本比趨勢圖 125

表2. 1 城際運輸旅次定義 8
表2. 2 臺鐵城際列車運用表 9
表2. 3 花東鐵路瓶頸路段雙軌化暨全線電氣畫計畫預期效益 10
表2. 4 花東服務效能提升計畫預期效益 11
表2. 5 臺鐵路線名稱及區間 11
表2. 6 東部城際列車車輛數量及車齡統計表 12
表2. 7 臺鐵購車計畫預期目標 13
表2. 8 台北至花蓮間城際列車運用表 14
表2. 9 台北至台東間城際列車運用表 14
表2. 10 推拉式列車技術規格 16
表2. 11 傾斜式與傳統列車曲線限速比較 17
表2. 12 太魯閣號與普悠瑪號技術規格 20
表2. 13 推拉式列車與傾斜式列車之優缺點 20
表2. 14 AHP 法與 ANP 法之差異 25
表2. 15 BOCR之定義 29
表2. 16 成本效益分析方法之比較 44
表2. 17 MCDM與CBA之優缺點 45
表2. 18 派翠網路五種型態說明 51
表2. 19 車輛公司評選策略 57
表2. 20 相關研究評選策略 59
表2. 21 車輛BOCR構面與準則分類 62
表2. 22 臺鐵統計資訊項目與說明 64
表2. 23 臺鐵旅客列車變動成本項目 66
表3. 1 BOCR構面與準則項目說明 71
表3. 2 成本準則說明 72
表3. 3 層級分析法之問卷形式 74
表3. 4 評估尺度 75
表3. 5 隨機一致性指標R.I.之數值 77
表3. 6 整體與各層級權重 78
表3. 7 影響程度尺度 79
表3. 8 列車車輛成本項目表 88
表3. 9 推拉式列車客座公里成本費用 89
表3. 10 傾斜式列車客座公里成本費用 89
表3. 11 方案各成本項目評估方式說明 91
表3. 12 推拉式列車數量成本計算流程 92
表3. 13 傾斜式列車數量成本計算流程 92
表3. 14 推拉式列車初期與週期成本計算流程 93
表3. 15 傾斜式列車初期與週期成本計算流程 93
表3. 16 推拉式列車短期與長期成本計算流程 94
表3. 17 傾斜式列車短期與長期成本計算流程 94
表3. 18 方案效益偏離計算流程 96
表3. 19 方案效益權重計算流程 96
表3. 20 成本標準化計算流程 98
表3. 21 益本比計算流程 99
表4. 1 初始直接影響關係矩陣 (A) 102
表4. 2 標準初始直接影響關係矩陣 (X) 103
表4. 3 準則總影響關係矩陣 (T_C) 104
表4. 4 構面總影響關係矩陣 (T_D) 104
表4. 5構面總影響關係表 105
表4. 6準則總影響關係表 105
表4. 7 標準化準則未加權超級矩陣 (W_C) 108
表4. 8 標準化構面未加權超級矩陣 (W_D) 108
表4. 9 加權超級矩陣 (W_W) 109
表4. 10 極限化超級矩陣 (W^*) 110
表4. 11 列車評選構面與準則權重排序 110
表4. 12 列車方案偏好結果與理想程度 112
表4. 13 「營運及維修能量B1」權重變動結果 113
表4. 14 準則成對比較 (問卷編號4) 115
表4. 15 準則權重排序 116
表4. 16 推拉式列車及傾斜式列車方案準則權重排序 117
表4. 17 推拉式列車成本計算結果 118
表4. 18 傾斜式列車成本計算結果 118
表4. 19 初始直接影響關係矩陣 (A) 119
表4. 20 標準初始直接影響關係矩陣 (X) 120
表4. 21 準則總影響關係矩陣 (T_C) 121
表4. 22 構面總影響關係矩陣 (T_D) 121
表4. 23 標準化準則未加權超級矩陣 (W_C) 122
表4. 24 標準化構面未加權超級矩陣 (W_D) 122
表4. 25 加權超級矩陣 (W_W) 122
表4. 26 極限化超級矩陣 (W^*) 123
表4. 27 列車評選構面與準則權重排序 123
表4. 28 列車方案偏好結果與理想程度 124
表4. 29 列車方案成本權重 125
表4. 30 列車方案益本比率 125
參考文獻 <英文文獻>
1.Annema, J. A., Mouter, N., and Razaei, J. (2015), “Cost-benefit analysis (CBA), or multi-criteria decision-making (MCDM) or both: Politicians’ perspective in transport policy appraisal,” Transportation Research Procedia, 10, pp. 788-797.
2.Barfod, M. B., Salling, K. B., and Leleur, S. (2011), “Composite decision support by combining cost-benefit and multi-criteria decision analysis,” Decision Support Systems, 51(1), pp. 167-175.
3.Barfod, M. B. and Salling, K. B. (2015), “A new composite decision support framework for strategic and sustainable transport appraisals,” pp. 1-15.
4.Beria, P., Maltese, I., and Mariotti, I. (2012), “Multicriteria versus cost benefit analysis: A comparative perspective in the assessment of sustainable mobility,” European Transport Research Review, 4(3), pp. 137-152.
5.Bodin, L. and Gass, S. I. (2003), “On teaching the analytic hierarchy process,” Computers and Operations Research, 30(10), pp. 1487-1497.
6.Chang, B., Chang, C., and Wu, C. (2011), “Fuzzy DEMATEL method for developing supplier selection criteria,” Expert Systems with Applications, 38(3), pp. 1850-1858.
7.Chang, Y., Wey, W., and Tseng, H. (2009), “Using ANP priorities with goal programming for revitalization strategies in historic transport: A case study of the alishan forest railway,” Expert Systems with Applications, 36(4), pp. 8682-8690.
8.Chen, S., Ke, J., and Chang, J. (1990), “Knowledge representation using fuzzy petri nets,” IEEE Transactions on Knowledge and Data Engineering, 2(3), pp. 311-319.
9.Chiu, W., Tzeng, G., and Li, H. (2013), “A new hybrid MCDM model combining DANP with VIKOR to improve e-store business,” Knowledge-Based Systems, 37, pp. 48-61.
10.Churchill, G. A. and Iacobucci, D. (2006), “Marketing research: Methodological foundations,” The Dryden Press: New York, pp. 1-7.
11.Erdoğmuş, Ş., Kapanoglu, M., and Koc, E. (2005), “Evaluating high-tech alternatives by using analytic network process with BOCR and multiactors,” Evaluation and Program Planning, 28(4), pp. 391-399.
12.Fielding, G. J. (1987), “Managing public transit strategically,” A comprehensive approach to strengthening service and monitoring performance.
13.Florin, G. and Natkin, S. (1982), “Evaluation based upon stochastic petri nets of the maximum throughput of a full duplex protocol,” Application and theory of petri nets, pp. 280-288.
14.Förstberg, J. (2000), “Ride comfort and motion sickness in tilting trains,” Human responses to motion environments in train and simulator experiments, Department of Vehicle Engineering Royal Institute of Technology, pp. 1-234.
15.Gigović, L., Pamučar, D., Božanić, D., and Ljubojević, S. (2017), “Application of the GIS-DANP-MABAC multi-criteria model for selecting the location of wind farms: A case study of vojvodina, serbia,” Renewable Energy, 103, pp. 501-521.
16.Gühnemann, A., Laird, J. J., and Pearman, A. D. (2012), “Combining cost-benefit and multi-criteria analysis to prioritise a national road infrastructure programme,” Transport Policy, 23, pp. 15-24.
17.Huang, C., Shyu, J. Z., and Tzeng, G. (2007), “Reconfiguring the innovation policy portfolios for taiwan's SIP mall industry,” Technovation, 27(12), pp. 744-765.
18.Huang, C., Shyu, J. Z., and Tzeng, G. (2007), “Reconfiguring the innovation policy portfolios for taiwan's SIP mall industry,” Technovation, 27(12), pp. 744-765.
19.Ivanović, I., Grujičić, D., Macura, D., Jović, J., and Bojović, N. (2013), “One approach for road transport project selection,” Transport Policy, pp. 22-29.
20.Jensen, K. (1989), “Coloured petri nets: A high level language for system design and analysis,” International Conference on Application and Theory of Petri Nets, pp. 342-416.
21.Jharkharia, S. and Shankar, R. (2007), “Selection of logistics service provider: An analytic network process (ANP) approach,” Omega, 35(3), pp. 274-289.
22.Liou, J. and Chuang, Y. (2010), “Developing a hybrid multi-criteria model for selection of outsourcing providers,” Expert Systems with Applications, 37(5), pp. 3755-3761.
23.Liou, J., Tsai, C., Lin, R., and Tzeng, G. (2011), “A modified VIKOR multiple-criteria decision method for improving domestic airlines service quality,” Journal of Air Transport Management, 17(2), pp. 57-61.
24.Kang, M., Chen, C., Ke, Y., Lee, A. H., Ku, T., and Kang, H. (2013), “Applications of FANP and BOCR in renewable Energy—Study on the choice of the sites for wind farms,” IEEE Transactions on Industry Applications, 49(2), pp. 982-989.
25.Klutho, S. (2013), “Mathematical decision making,” An Overview of the Analytic Hierarchy Process, pp. 1-45.
26.Liang, C. and Li, Q. (2008), “Enterprise information system project selection with regard to BOCR,” International Journal of Project Management, 26(8), pp. 810-820.
27.Lee, W. (2014), “A new hybrid MCDM model combining DANP with VIKOR for the selection of location—real estate brokerage services,” International Journal of Information Technology and Decision Making, 13(1), pp. 197-224.
28.Lin, C. and Wu, W. (2008), A causal analytical method for group decision-making under fuzzy environment,” Expert Systems with Applications, 34(1), pp. 205-213.
29.McCollum, D. L., Wilson, C., Pettifor, H., Ramea, K., Krey, V., Riahi, K., Fujisawa, S. (2016), “Improving the behavioral realism of global integrated assessment models: An application to consumers’ vehicle choices,” Transportation Research Part D: Transport and Environment, pp. 1-21.
30.Murata, T. (1989), “Petri nets: Properties, analysis and applications,” Proceedings of the IEEE, 77(4), pp. 541-580.
31.Nuzzolo, A., Crisalli, U., and Gangemi, F. (2000), “A behavioural choice model for the evaluation of railway supply and pricing policies,” Transportation Research Part A: Policy and Practice, 34(5), pp. 395-404.
32.Opricovic, S. (1998), “Multicriteria optimization of civil engineering systems,” Faculty of Civil Engineering, Belgrade, 2(1), pp. 5-21.
33.Opricovic, S. and Tzeng, G. (2004), “Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS,” European Journal of Operational Research, 156(2), pp. 445-455.
34.Park, B. and Kim, R. Y. (2014), “Making a decision about importance analysis and prioritization of use cases through comparison the analytic hierarchy process (AHP) with use case point (UCP) technique,” International Journal of Software Engineering and its Applications, 8(3), pp. 89-96.
35.Peker, I., Baki, B., Tanyas, M., and Murat Ar, I. (2016), “Logistics center site selection by ANP/BOCR analysis: A case study of turkey,” Journal of Intelligent and Fuzzy Systems, 30(4), pp. 2383-2396.
36.Ramchandani, C. (1973), “Analysis of Asynchronous Concurrent Systems by Timed Petri Nets,” Submitted to the Department of Electrical Engineering on July 3, 1973, pp. 1-220.
37.Ratzer, A. V., Wells, L., Lassen, H. M., Laursen, M., Qvortrup, J. F., Stissing, M. S., and Jensen, K. (2003), “CPN Tools for editing, simulating, and analysing coloured petri nets,” International Conference on Application and Theory of Petri Nets, pp. 450-462.
38.Ribas, M., Furtado, C., de Souza, J. N., Barroso, G. C., Moura, A., Lima, A. S., and Sousa, F. R. (2015), “A petri net-based decision-making framework for assessing cloud services adoption: The use of spot instances for cost reduction,” Journal of Network and Computer Applications, 57, pp. 102-118.
39.Saaty, T. L. (1980), Analytic hierarchy process. Wiley Online Library.
40.Saaty, T. L. and Takizawa, M. (1986), “Dependence and independence: From linear hierarchies to nonlinear networks,” European Journal of Operational Research, 26(2), pp. 229-237.
41.Saaty, T. L. (1996), “The analytical network process,” Pittsburgh: RWS Publications, pp. 1-28.
42.Saaty, T. L. (2001), “Decision making with the analytic network process (ANP) and its super decisions software: The national missile defense (NMD) example,” ISAHP 2001 Proceedings, Bern, Switzerland, pp. 2-4.
43.Saaty, T. L. (2004), “Fundamentals of the analytic network process—multiple networks with benefits, costs, opportunities and risks,” Journal of Systems Science and Systems Engineering, 13(3), pp. 348-379.
44.Saaty, T. L. and Ozdemir, M. (2003), “Negative priorities in the analytic hierarchy process,” Mathematical and Computer Modelling, 37(9-10), pp. 1063-1075.
45.Selmic, M. and Macura, D. (2013), “Model for reducing traffic volume: Case study of belgrade, serbia,” Journal of Transportation Engineering, 140(2).
46.Seyed-Hosseini, S., Safaei, N., and Asgharpour, M. (2006), “Reprioritization of failures in a system failure mode and effects analysis by decision making trial and evaluation laboratory technique,” Reliability Engineering and System Safety, 91(8), pp. 872-881.
47.Tsai, W. and Chou, W. (2009), “Selecting management systems for sustainable development in SMEs: A novel hybrid model based on DEMATEL, ANP, and ZOGP,” Expert Systems with Applications, 36(2), pp. 1444-1458.
48.Tzeng, G., Chiang, C., and Li, C. (2007), “Evaluating intertwined effects in e-learning programs: A novel hybrid MCDM model based on factor analysis and DEMATEL,” Expert Systems with Applications, 32(4), pp. 1028-1044.
49.Wang, W., Lee, A. H., Peng, L., and Wu, Z. (2013), “An integrated decision making model for district revitalization and regeneration project selection,” Decision Support Systems, 54(2), pp. 1092-1103.
50.Wijnmalen, D. J. (2005), “Improved BOCR analysis with the AHP/ANP,” Proceedings of ISAHP 2005, pp. 8-10.
51.Wijnmalen, D. J. (2007), “Analysis of benefits, opportunities, costs, and risks (BOCR) with the AHP–ANP: A critical validation,” Mathematical and Computer Modelling, 46(7), pp. 892-905.
52.Wu, B., Xu, H., and Zhang, W. (2009), “Identifying the cause and effect factors of traffic safety at freeway work zone based on DEMATEL model,” International Conference on Transportation Engineering 2009, pp. 2183-2188.
53.Wu, W. (2008), “Choosing knowledge management strategies by using a combined ANP and DEMATEL approach,” Expert Systems with Applications, 35(3), pp. 828-835.
54.Wu, W. and Lee, Y. (2007), “Developing global managers’ competencies using the fuzzy DEMATEL method,” Expert Systems with Applications, 32(2), pp. 499-507.
55.Ou Yang, Y., Shieh, H., Leu, J., and Tzeng, G. (2008), “A novel hybrid MCDM model combined with DEMATEL and ANP with applications,” International Journal of Operations Research, 5(3), pp. 160-168.
56.Yeh, M., Liu, H., Tseng, C., Tzeng, G., and Liu, W. (2012), “Enhancing investigation quality for the police in traffic accidents by constructing the structural relationship of factors,” SCIS-ISIS 2012, pp. 2276-2279.
57.Yilmaz, A. K. (2009), “Importance of the enterprise risk management practice for airline management: ANP-based approach. International Journal of Business and Management, 3(5), pp. 138-146.
58.Yun, C. J., Yeh, C., and Bedingfield, S. (2014), Customer order-driven BOCR-based supplier selection,” System Sciences (HICSS), 2014 47th Hawaii International Conference on, pp. 1095-1102.
59.Yu, P. (1973), “A class of solutions for group decision problems,” Management Science, 19(8), pp. 936-946.
60.Zeleny, M. (1982), “Multiple criteria problem solving,” New York: McGraw-Hill.
61.Zimmerman, S. L. and Levinson, H. (2004), “Vehicle selection for BRT: Issues and options,” Journal of Public Transportation, 7(1), pp. 83-103.
62.Zoffer, J., Bahurmoz, A., Hamid, M. K., Minutolo, M., and Saaty, T. (2008), “Synthesis of complex criteria decision making: A case towards a consensus agreement for a middle east conflict resolution,” Group Decision and Negotiation, 17(5), pp. 363-385.  
<中文文獻>
1.彭玥箖、林谷鴻 (2010),「自行車品牌權益要素之分析-分析網路程序法之應用」,工程科技與教育學刊,7(3),456-467。
2.馮正民 (2001),「台灣永續運輸的願景與發展策略---總計畫暨子計畫一: 城際永續運輸的願景與發展策略 (i)」,行政院國家科學委員會專題研究計畫成果報告,1-77。
3.呂玲 (2012),「大專校院數位學習課程認證指標關聯性與重要性之研究」,國立交通大學資訊學院數位圖書資訊學程研究所碩士班學位論文,1-87。
4.李芾 (2000),「國外擺式列車發展和運用概況」,西南交通大學學報,35(6),569-575。
5.林政佑、劉聖幸、王建驊、龐金宗 (2013),「應用模糊分析網路程序法於臺鐵服務品質之評估」,全球商業經營管理學報,(5),101-111。
6.林盈岑 (2010),「多目標最佳化模式應用於公路建設方案評選之研究-以東西向快速公路改善計畫為例」,臺北大學不動產與城鄉環境學系學位論文,1-140。
7.林國顯 (2011),「行車成本調查分析與交通建設計畫經濟效益評估之推廣應用 (2/2)」,中華民國政府出版品。
8.羅信 (2014),「深圳地鐵環中線車輛選型及編組方案研究」 Urban Mass Transit, 17(4),4。
9.龍百畫 (2013),「城市地鐵車輛選型思考」,都市快軌交通,(6),100-102。
10.管孟忠、林君孺、陳之寧 (2012),「應用複合多評準決策建立創新行銷專案績效評價體系」,資訊與管理科學,5(2),1-16。
11.洪敏琛 (2010),「應用隨機派翠網路於臺鐵捷運化運轉整理之模擬研究」,淡江大學運輸管理學系碩士班學位論文,1-115。
12.黃聖哲 (2008),「以決策實驗室法探討企業物流績效之研究」,開南大學物流與航運管理學系研究所碩士班學位論文,1-101。
13.簡竣諒 (2011),「運用DEMATEL與ANP方法探討直升機飛安管理」,中華大學科技管理學系研究所碩士班學位論文,1-69。
14.紀岱玲 (2006),「供應商績效評估研究-結合ANP及DEMATEL之應用」,國立政治大學資訊管理研究所碩士班學位論文,1-88。
15.何思怡 (2011),「我國重大交通建設財務風險-以高雄捷運平準基金為例」,中國文化大學國際企業管理研究所碩士班學位論文,1-109。
16.何昇璉 (1990),「臺鐵旅客列車變動成本之研究-以自強號、莒光號、復興號為對象」,國立交通大學管理科學研究所碩士班學位論文,1-100。
17.賈連志、汪侃 (2012),「城市軌道交通的車輛選型和列車編組方案選擇」,城市軌道交通研究,15(5),77-79。
18.徐宗祥 (2009),「我國城市軌道交通市域快線車輛選型研究」,電力機車與城軌車輛, 32(3),1-3。
19.薛克仲 (2003),「城市軌道車輛車體材料選擇」,城市軌道交通研究,6(1),14-19。
20.許迎杰、管春玲 (2000),「新時速擺式動車組壽命週期成本技術和維修性設計的應用」,鐵道車輛,38(7),10-12。
21.周小斌 (2010),「長沙市軌道交通車輛制式的選擇」,交通科技,(2),100-102。
22.周立新、鄧怡、杜磊 (2001),「擺式列車在中國應用的前景初探」,鐵道工程學報, 18(4),16-19。
23.張馨仁 (2007),「供應商垂直整合策略之研究-以電子零件商為例」,中華大學科技管理學系研究所碩士班學位論文,1-72。
24.鄭純媛、劉福興、吳振賢 (2008),「工程經濟學與決策程序」,臺灣:全華圖書股份有限公司。
25.陳勇昇 (2012),「應用複合多評準決策與模糊積分法探討台北都會區聯營公車服務品質」,淡江大學運輸管理學系碩士班學位論文,1-143。
26.陳星豪 (1997),「高速鐵路技術型式評估準則及方法之研究-模糊與灰色決策理論之應用」,國立成功大學交通管理科學系研究所碩士班學位論文,1-101。
27.施宏奇 (2010),「應用模糊理論於彩色派式網路之系統模擬控制」,國立臺灣科技大學工業管理系研究所碩士班學位論文,1-82。
28.曾曉瑜 (2006),「阿里山森林鐵路民營化再生方案之評估」,成功大學交通管理科學系學位論文,1-87。
29.蔡清嵐 (2015),「應用決策實驗室分析法 (DEMATEL) 於企業雲端化移轉評估分析」,桃園創新學報,(35),311-330。
30.宋健、馬成功 (2003),「上海市軌道交通車輛選擇及列車編組若干問題的探討」, 城市軌道交通研究,6(1),46-50。
31.吳佩青 (2011),「臺灣電子業綠色策略績效評估之研究-應用成本與利益控制準則下之分析網路程序法」,淡江大學管理科學研究所碩士班學位論文,1-81。
32.吳姿樺 (2013),「結合 DEMATEL 與 DANP 法探討中部高快速道路績效之多評準決策」,逢甲大學運輸科技與管理學系碩士班學位論文,1-112。
33.吳志仁 (2011),「鐵路路線最適方案評選模式之研究-以北宜直鐵為例」,臺北科技大學土木與防災研究所學位論文,1-135。
34.吳怡萱 (2014),「應用 PLS 與 DANP 改善機場服務品質缺口之研究: 以桃園機場為例」,淡江大學運輸管理學系碩士班學位論文,1-139。
35.王昌言 (2010),「Uh-1h 機隊改善方案的探討」,成功大學航空太空工程學系碩士在職專班學位論文,1-76。
<網頁檢索>
1.經濟部能源局:http://energymonthly.tier.org.tw/
2.行政院主計總處:https://www.dgbas.gov.tw/mp.asp?mp=1
3.交通部臺灣鐵路管理局:http://www.railway.gov.tw/
4.交通部鐵路工程改建局:http://www.rrb.gov.tw/
5.維基百科:https://zh.wikipedia.org/wiki/
6.公務出國報告資訊網: http://report.nat.gov.tw/
7.國家發展委員會:http://www.ndc.gov.tw/
8.交通部運輸研究所:http://www.iot.gov.tw/
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2018-02-05公開。
  • 同意授權瀏覽/列印電子全文服務,於2018-02-05起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信