§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0310201409282400
DOI 10.6846/TKU.2014.00105
論文名稱(中文) 用水旋風分離器分離酵母菌懸浮液之分離性能
論文名稱(英文) The separation performance of yeast suspension using hydrocyclone
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 2
出版年 103
研究生(中文) 黃敏哲
研究生(英文) Min-Jhe Hwang
學號 602400102
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2014-07-14
論文頁數 116頁
口試委員 指導教授 - 黃國楨(kjhwang@mail.tku.edu.tw)
委員 - 童國倫(kltung@ntu.edu.tw)
委員 - 鄭東文(twcheng@mail.tku.edu.tw)
關鍵字(中) 水旋風分離器
生質能源
分離效率
關鍵字(英) hydrocyclone
biomass energy
separation efficiency
第三語言關鍵字
學科別分類
中文摘要
本研究分別以10 mm大小的水旋風分離器來進行實驗,並以單支及串聯連接進行酵母菌懸浮液之分離,探討進料速度、壓力、分流比等操作條件對分離效率的影響。並比較活性污泥及乾芒草粉的實驗結果,了解水旋風分離器在生化分離上的應用。
在分離酵母菌懸浮液時,實驗結果顯示,總分離效率會隨著進料速度或分流比的增加而增加。在進料速度12 m/s下,當分流比自0.4增加至10,總分離效率會增加3倍。而在單支及串聯連接下的分級曲線也會隨著分流比的增加而上升。
活性污泥在進料速度12 m/s時,將分流比的數值從0.4增加至5.0時總分離效率可提升76%。在分流比數值為0.8時,芒草粉的分割粒徑會隨著進料壓力的增加而有遞減的情況發生,其範圍從12 μm降至8 μm。
而流體在水旋風分離器中的滯留時間都會小於0.2秒,時間相當短暫。三種物料的粒子平均粒徑之順序為:芒草粉>活性污泥>酵母菌,因此酵母菌懸浮液的粒子離心力最小。
英文摘要
A 10-mm hydrocyclone is used in this study, while separated the yeast particle suspension in single or connected in series. The operating conditions, such as inlet velocity, pressure drop and split ratio, on the separation efficiency are discussed. In order to understand the application of the hydrocyclone in biochemical industry, in this study were also to observe the experimental results of activated sludge and Miscanthus particle (grass particle).
The results show that an increase in inlet velocity or split ratio increases the total separation efficiency in yeast suspension separation. The total separation efficiency improve tripled when split ratio increases from 0.4 to 5 under the inlet velocity in 12 m/s. An increase in split ratio lead to higher partial separation efficiency curve in single or connected in series of hydrocyclone.
When separate the activated sludge, the total separation efficiency improve 76% when split ratio increase from 0.4 to 5. When separate grass powder, the particle cut-size decreases from 14.33 μm to 10μm with increasing the pressure drop in split ratio 0.8.
And the fluid residence time of the hydrocyclone will be less than 0.2 sec, that is quite short. The order of the particle mean diameter with those materials are:grass particle> activated sludge> yeast powder, therefore, the minimum centrifugal force of those marterial is yeast powder.
第三語言摘要
論文目次
目錄
摘要	I
英文摘要	II
目錄	IV
圖目錄	VIII
表目錄	XIV
第一章	緒 論	1
1-1.	前言	1
1-2.	研究動機	3
第二章  文獻回顧	5
2-1.	水旋風分離器之相關介紹	5
2-1-1水旋風分離器之簡介	5
2-1-2水旋風分離器的結構	6
2-1-3水旋風分離器之近年設計	8
2-1-4 水旋風分離器串聯與並聯之應用	12
2-2.	分級曲線之魚勾現象	13
2-3.	底流效應(underflow effect)與離心力效應(centrifugal effect)		16 
2-4.	理論模型	18
2-5.	分級效率經驗公式	22
2-6.	水旋風分離器之離心加速度	24
2-7.	空氣柱理論(air cone)	25
2-8.	酵母菌之相關應用	26
第三章  理論	32
3-1.	進料壓降與速度	32
3-2.	質量平衡	33
3-3.	分流比	33
3-4.	離心力	34
3-5.	滯留時間	34
3-6.	終端速度	35
3-7.	總分離效率	37
3-8.	分級效率	37
第四章  實驗裝置與方法	39
4-1	水旋風分離器	39
4-2	實驗儀器的配置	41
4-3	實驗物料	43 
4-3-1.	酵母菌	43
4-3-2.	活性污泥	45
4-3-3.	乾芒草粉	47
4-4	實驗儀器與方法	49
4-4-1	實驗儀器	49
4-4-2	分析儀器	50
4-5	實驗步驟	51
4-5-1	懸浮液配置	51
4-5-2	操作步驟	51
第五章  結果與討論	54
5-1.	單支水旋風分離器的分離效果	58
5-1-1進料速度影響	58
5-1-2分流比影響	61
5-2.	串聯模式的分離效率	72
5-3.	活性污泥的分離現象	85
5-3-1.	進料速度影響	85
5-3-2.	分流比影響	87
 
5-4.	乾芒草粉懸浮液的分離現象	92
5-4-1.	進料壓力影響	92
5-4-2.	分流比影響	96
5-5.	離心力與滯留時間探討	101
第六章  結論	107
符號說明		110
參考文獻		113

圖目錄
第二章
Fig.2-1 Hydrocyclone flow structure.	6
Fig.2-2 Structure of the hydrocyclone and the Repds.(2012,Wang)	10
Fig.2-3 A typical curve of partial separation efficiency.(Hwang,2008)	13
Fig.2-4. The construction of a selectivity curve. (Hwang,2008)	16
Fig.2-5 The actual selectivity curve by summing underflow and centrifugal effects. (Hwang,2008)	17
Fig.2-6. Spiral flow profiles inside hydrocyclone. (Sen,2012)	18
Fig.2-7 The axial velocity and LZVV orbit in hydrocyclone. (2002,Holdich)	20
Fig.2-8 Equilibrium orbit at the LZVV with liquid drag and centrifugal forces balanced (2002,Holdich)	21
Fig.2-9 Calculated and measured partition functions for a 25-mm Hydrocyclone using a solid content c V = 0.04, (2014,Dueck)	23
 
Fig.2-10 Hydrocyclones type RWK 21.(Ataide,2013)	30
第四章
Fig.4-1 Dimensions of the hydrocyclone geometry. (unit:mm)	39
Fig.4-2 Schematic diagram of the experimental apparatus.	41
Fig.4-3 Original size distribution of yeast suspension.	43
Fig.4-4. The microscope of yeast suspension.(at 1800X)	44
Fig.4-5. The microscope of yeast suspension.(at 3600X)	44
Fig.4-6. Size distribution (Q v.s diameter ) of activated sludge.	45
Fig.4-7 The microscope of activated sludge suspension. (at 900X)	46
Fig.4-8 The microscope of activated sludge suspension. (at 900X)	46
Fig.4-9 Size distribution (Q v.s diameter )of Miscanthus powder.	47
Fig.4-10 Grass particles observed using microscope. (at 900 X)	48
Fig.4-11 Grass particles observed using microscope. (at 1800X)	48
第五章
Fig.5-1 Inlet velocity in hydrocyclone varies with pressure drop.	54
Fig.5-2 Relationship between Reynolds number and pressure drop.	55
Fig.5-3 Relationship between Euler number and pressure drop.	56
Fig.5-4 The residence time in different inlet velocity.	57
Fig.5-5 A comparison of partial separation efficiency of yeast particles between different inlet velocity at split ratio 1.4.	59
Fig.5-6 Effect of inlet velocity on total separation efficiency of yeast particles at split ratio 1.4	60
Fig.5-7 A comparison of partial separation efficiency of yeast particles between different split ratio at inlet velocity 12 m/s.	62
Fig.5-8 The total separation efficiency of yeast particle at different split ratio when the inlet velocity in 12 m/s.	63
Fig.5-9 The centrifugal force at diferent inlet velocity with differenet yeast particle diameter.	65
Fig.5-10 The particle migration track in cylinder part of hydrocyclone at inlet velocity 4.5m/s and particle size 10 μm	67
Fig.5-11 The radius position of the yeast particle in different and inlet velocity.	68
Fig.5-12 The particle size distribution of yeast in underflow and overflow with different split ratio at inlet velocity 12 m/	69
Fig.5-13 The particle size from 3 to 5 μm of yeast in underflow and overflow with different split ratio at inlet velocity 12 m/s.	70
Fig.5-14 Effect of split ratio on the total separation efficiency of yeast powder under various inlet velocities.	71
Fig.5-15 The inlet pressure v.s. inlet velocity in HC1 and HC2 at HCl split ratio 2.	74
Fig.5-16 The inlet pressure v.s. inlet velocity in HC1 and HC2 at HCl split ratio 7.	74
Fig.5-17 The total separation efficiency in HC1 and HC2 with different inlet velocity at HC1 split ratio 2.	75
Fig.5-18 The particle size distribution of yeast in HC1 underflow and overflow with different inlet velocity at HC1 split ratio 2.	76
Fig.5-19 The particle size distribution of yeast in HC1 underflow and overflow with different inlet velocity at HC1 split ratio 2.	77
Fig.5-20 The particle size distribution of yeast in HC1 and HC2 underflow with inlet velocity 12 m/s at HC1 split ratio 2.	78
Fig.5-21 The comparison of centrifugal force and particle size at HC1 in different inlet velocity with yeast suspension.	79
Fig.5-22 The comparison of centrifugal force and particle size at HC2 in different inlet velocity with yeast suspension.	80
Fig.5-23 A comparison of partial separation efficiency of yeast particles between different inlet velocity at HC1 in split ratio 7.	81
Fig.5-24 A comparison of partial separation efficiency in HC2 of yeast particles between different inlet velocity with HC1 split ratio 7.	82
Fig.5-25 A comparison of particle size distribution of activated sludge particles between different inlet velocity in split ratio 0.4.	86
Fig.5-26 A comparison of partial separation efficiency of activated sludge between different inlet velocity with split ratio 0.4、2.0、5.0.	88
Fig.5-27 The centrifugal force at two different inlet velocity with the activated sludge.	89
Fig.5-28 The activated sludge particle migration track in cylinder part of hydrocyclone at inlet velocity 12m/s and particle size 40 μm.	90
Fig.5-29 The total separation efficiency at different inlet velocity in split ratio 0.4、2.0、5.0 .	91
Fig.5-30 A comparison of partial separation efficiency of Miscanthus powder between different inlet pressure with split ratio 0.8.	93
Fig.5-31 Cut-size of Miscanthus powder under a split ratio of 0.8 and various pressure drops	94
Fig.5-32 Total separation efficiency of particles under a split ratio of 0.8 and various pressure drops	95
Fig.5-33 A comparison of partial separation efficiency of Miscanthus powder between different inlet velocity with split ratio 0.6、0.8、1.0.	96
Fig.5-34 Total separation efficiency of particles under a inlet pressure of 0.4 MPa and various split ratio.	97
Fig.5-35 The centrifugal force at different inlet pressure with the Miscanthus powder.	98
Fig.5-36 The Miscanthus powder particle migration track in cylinder part of hydrocyclone at inlet velocity 6m/s and particle size 10 μm.	99
Fig.5-37 The centrifugal force at different inlet velocity in different materials with mean diameter.	103
Fig.5-38 A comparison shape of partial separation efficiency in three different materials.	105 

表目錄
第二章
Table 2-1. Results obtained with hydrocyclone. (Pazouki,2007)	27

第五章
Table.5-1 The inlet pressure v.s. inlet velocity in HC1 and HC2 at HCl split ratio 2.	73
Table.5-2 The inlet pressure v.s. inlet velocity in HC1 and HC2 at HCl split ratio 7.	73
Table.5-3 The total separation efficiency in different inlet velocity and split ratio in the experiment.	100
Table.5-4 The centrifugal force and residence time in different inlet velocity with yeast powder (particle size in 4 μm).	101
Table.5-5 The centrifugal force and residence time in different inlet velocity with Activated sludge. (particle size in 35 μm).	102
Table.5-6 The centrifugal force and residence time in different inlet pressure with Miscanthus powder. (particle size in 52 μm) .	102
參考文獻
Bicalho, I.C., Mognon, J.L., Shimoyama, J., Ataide, C.H., Duarte, C.R., “Effects of operating variables on the yeast separation process in a hydrocyclone”, Science Technology, 48, 915-922 (2013). 
Bicalho, I.C., Mognon, J.L., Shimoyama, J., Ataide, C.H., Duarte, C.R., “Separation of yeast from alcoholic fermentation in small hydrocyclones”, Separation and Purification Technology, 87, 62-70 (2012). 
Bo, Z.W., Yi, M., You-hai, J., “Simulation and experiment of flow field in axial-flow hydrocyclone”, Chemical Engineering Research Design, 89, 603-610 (2011). 
Chu, L., Chen, W., Lee, X., “Enhancement of hydrocyclone performance by controlling the inside turbulence structure”, Chemical Engineering Science, 57, 207-212 (2002).  
Cilliers, J.J., Harrison, S.T.L., “The application of mini-hydrocyclones in the concentration of yeast suspensions”, The Chemical Engineering Journal, 65, 21-26 (1997).
Frachon, M., Cilliers, J.J., “A general model for hydrocyclone partition curves”, Chemical Engineering Journal, 73, 53-59 (1999).
Ghadirian, M., Hayes, R.E., Mmbaga, J., Afacan, A., Xu, Z., “On the simulation of hydrocyclones using CFD”, The Canadian Journal of Chemical Engineering, 91, 950-958 (2013). 
Hwang, K.J., Hsueh, W.S., Nagase, Y., “Mechanism of particle separation in small hydrocyclone”, Drying Technology, 26, 1002-1010 (2008). 
Hwang, K.J., Lyu, S., Nagase, Y., “Particle separation efficiency in two 10-mm hydrocyclones in series”, Journal of the Taiwan Institute of Chemical Engineers, 40, 313-319 (2009). 
Habibian, M., Pazouki, M., Ghanaie, H., Abbaspour-Sani, K., “Application of hydrocyclone for removal of yeasts from alcohol fermentations broth”, Chemical Engineering Journal, 138, 30-34 (2008).  
Liu, M., Mao, Y., Wang, J., Sun, X., Xu, C., “Effect of swirl on hydrodynamics and separation performance of a spray granulation tower with array nozzles”, Powder Technology, 227, 61-66 (2012).
Nenu, T.R.K., Yoshida, H., “Comparison of separation performance between single and two inlets hydrocyclones”, Advanced Powder Technology, 20, 195-202 (2009).
Pinto, A.A., Bicalho, I.C., Mognon, J.L., Duarte, C.R., Ataide, C.H., “Separation of saccharomyces cerevisiae from alcoholic fermentation broth by two commercial hydrocyclones”, Separation and Purification Technology, 120, 69-77(2013).
Trawinski, H.F., ‘‘Solid/Liquid Separation Equipment Scale UP’’, Ed. D. B. Purchas, Uplands Press, England, 241-286 (1997).
Wang, L., Wang, J., “Experimental study of the drag reduction and separation efficiency for a new hydrocyclone with a reducing pressure drop stick”, Separation and Purification Technology, 98, 7-15 (2012). 
Yoshida, H., Fukui, K., Pratarn, W., Tanthapanichakoon, W., “Particle separation performance by use of electrical hydro-cyclone”, Separation and Purification Technology, 50, 330-335 (2006).
Yang, J., Sun, G., Gao, C., “Effect of the inlet dimensions on the maximum-efficiency cyclone height”, Separation and Purification Technology, 105, 15-23(2013).
Yang, Q., Li, Z., Lv, W., Wang, H., “On the laboratory and field studies of removing fine particles suspended in wastewater using mini-hydrocyclone”, Separation and Purification Technology, 110, 93-100 (2013).
Yang, Q., Wang, H., Liu, Y., Li, Z., “Solid/liquid separation performance of hydrocyclones with different cone combinations”, Separation and Purification Technology, 74, 271-279 (2010).
Dueck, J., Farghaly, M., Neesse, Y., “The theoretical partition curve of the hydrocyclone”, Minerals Engineering, 62, 25-30 (2014).
呂維明 編著,“固液過濾技術”,高立圖書館, 台北, (2004)。
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信