§ 瀏覽學位論文書目資料
系統識別號 U0002-0309201915101600
DOI 10.6846/TKU.2019.00090
論文名稱(中文) 用於無線傳能與無線通訊之整合型天線設計
論文名稱(英文) Integrated Antenna Design For Wireless Energy Transfer and Wireless Communication
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 2
出版年 108
研究生(中文) 趙志燁
研究生(英文) CHIH-YEH CHAO
學號 606440096
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2019-07-12
論文頁數 54頁
口試委員 指導教授 - 紀俞任(yjchi@mail.tku.edu.tw)
委員 - 李慶列(chingliehli@gmail.com)
委員 - 甘堯江(yckan@saturn.yzu.edu.tw)
關鍵字(中) 整流天線
微波能量傳輸
多頻帶天線
無線充電
關鍵字(英) Rectenna
Microwave Power Transmission
Multiband Antenna
Wireless Charging
第三語言關鍵字
學科別分類
中文摘要
隨著無線通信與物聯網技術的快速發展,近年來有越來越多行動裝置利用無線充電技術對行動裝置進行充電,目前較主流的技術是磁耦合以及磁共振。這兩種方法皆需一個大面積的線圈進行電磁能轉換。然而手機的設計常向輕薄短小發展,手機內的空間有限,卻得塞入非常多無線系統的天線,如LTE/GSM/PCS/DCS/UMTS/WIFI/BlueTooth/GPS/NFC/QC等。因為NFC與無線充電同為線圈結構,目前文獻上僅有將無線充電線圈與NFC整合的設計。為了增加空間的使用效率已習系統整合性,本研究提出一款結合無線充電線圈與多頻段天線的設計。該設計不但可用於無線充電外,也可提供一般3G手機所需的無線通訊頻段,是一款新穎的天線設計。
        除了高功率的近距離無線充電外,遠距離、低功率的微波傳能/無線能量採集技術的發展也受到矚目,用於環境監測用的無線節點需求也日益上升。監測環境的無線節點可以安裝在一些不易觸及的地方,方便我們長時間監測環境。這些裝置可以使用無線微波傳能的方式進行充電,免去有線設備的種種限制、或是電池更換的麻煩以及不可小覷的維護成本。但有文獻指出,在相同頻率下,由於無線傳能的功率較大,因此會對無線通訊造成干擾。為了避免這樣的問題,可採用間歇的方式進行無線傳能與通訊,類似分時多功的做法。然而分時多功會降低資料傳輸速率,因此本研究擬設計一款用於微波傳能及無線通訊之極化自適應整流天線。此天線設計能夠針對微波傳能的極化方向改變通訊天線的極化方向,使兩者互相正交避免干擾。當微波傳能以水平極化輸入、通訊天線便可自動切換為垂直極化;反之,當微波傳能以垂直極化輸入、通訊天線便可自動切換為水平極化。如此便可有效提升資料傳輸量以及微波傳能效率。

關鍵字:整流天線、微波能量傳輸、多頻帶天線、無線充電
英文摘要
In recent years, more and more mobile devices use wireless charging technology to charge mobile devices. The current mainstream technologies are magnetic coupling and magnetic resonance. Both methods require a large area of coil for electromagnetic energy conversion. However, the design of mobile phones is often light and short, and the space inside the mobile phone is limited, but it has to be inserted into antennas of many wireless systems, such as LTE/GSM /PCS/DCS/UMTS/WIFI/BlueTooth /GPS/NFC/QC. Because NFC and wireless charging are both coil structures, there is currently only a design that integrates wireless charging coils with NFC. In order to increase the efficiency of space use system integration, this study proposes a design that combines a wireless charging coil with a multi-band antenna. This design can be used not only for wireless charging, but also for the wireless communication band required by general 3G mobile phones. It is a novel antenna design.
In addition to high-power short-range wireless charging, the development of long-range, low-power microwave energy/wireless energy harvesting technology has also attracted attention. The demand for wireless nodes for environmental monitoring is also increasing. The wireless nodes that monitor the environment can be installed in places that are not easily accessible, allowing us to monitor the environment for a long time. These devices can be charged using wireless microwave energy transfer, eliminating the limitations of wired devices, the hassle of battery replacement, and the maintenance costs that cannot be underestimated. However, it is pointed out in the literature that at the same frequency, due to the high power of wireless transmission, it will cause interference to wireless communication. In order to avoid such problems, wireless transmission and communication can be carried out in an intermittent manner, similar to the practice of time sharing. However, time sharing and multi-function will reduce the data transmission rate. Therefore, this study intends to design a polarization adaptive rectification antenna for microwave energy transmission and wireless communication. The antenna design can change the polarization direction of the communication antenna for the polarization direction of the microwave energy transmission, so that the two are orthogonal to each other to avoid interference. When the microwave transmission is horizontally polarized, the communication antenna can be automatically switched to vertical polarization. Conversely, when the microwave transmission is vertically polarized, the communication antenna can be automatically switched to horizontal polarization. This can effectively increase the amount of data transmission and the efficiency of microwave transmission.
第三語言摘要
論文目次
目錄	VII
圖目錄	IX
表目錄	XIII
第一章、緒論	1
1.1.研究動機與背景	1
1.2.文獻探討	2
1.3.章節介紹	4
第二章、天線與無線技術概述	5
2.1.無線充電	5
2.1.1.電感耦合	6
2.1.2.EM波輻射	7
2.1.3.磁共振耦合	8
第三章、極化自適應整流天線設計	9
3.1電子式極化可切換天線設計	13
3.1.1 單刀雙擲開關	15
3.1.2微帶貼片天線	20
3.2整流天線設計	21
3.2.1槽孔天線	22
3.2.2全波整流器	24
3.3模擬與測量結果	26
第四章、結合無線充電線圈之多頻天線設計	30
4.1.天線結構	32
4.2.設計流程	35
4.3.模擬與量測結果	43
第五章、結論	50
參考文獻	52
圖目錄
圖2. 1 電感耦合示意圖	6
圖2. 2 磁共振耦合示意圖	8

圖3.1極化自適應整流天線	10
圖3. 2整流天線運作示意圖	11
圖3. 3電子式極化可切換天線運作示意圖	12
圖3. 4電子式極化可切換天線	13
圖3. 5貼片天線	14
圖3. 6單刀雙擲開關端口編號	16
圖3. 7單刀雙擲開關隔離測試	16
圖3. 8單刀雙擲開關之反射係數及插入損耗模擬結果	17
圖3. 9單刀雙擲開關接地隔離實驗	17
圖3. 10單刀雙擲開關延伸接地點後之反射係數及插入損耗模擬結果	18
圖3. 11單刀雙擲開關接地電流分布	18
圖3. 12單刀雙擲開關之直流電控制電路位置示意圖	19
圖3. 13單刀雙擲開關元件圖	19
圖3. 14普通50歐姆貼片天線	20
圖3. 15整流天線直流電去向示意圖	21
圖3. 16槽孔天線規格圖	22
圖3. 17雙重線性極化貼片天線	23
圖3. 18雙重線性極化貼片天線測試結果	24
圖3. 19全波整流電路	25
圖3. 20 HSMS-2852封裝圖	25
圖3. 21極化自適應整流天線設計實作成品圖	26
圖3. 22極化自適應整流天線端點編號圖	27
圖3. 23極化自適應整流天線反射係數模擬圖	28
圖3. 24極化自適應整流天線模擬與實作反射係數結果比較圖	28
圖3. 25極化 自適應整流天線主、正交增益差模擬圖	29

圖4.1結合無線充電線圈之多頻天線設計	32
圖4. 2線圈距接地面示意圖	33
圖4.3結合無線充電線圈之多頻天線設計天線規格示意圖	34
圖4.4指叉電容結構規格	34
圖4.5結合無線充電線圈之多頻天線設計初版	35
圖4.6結合無線充電線圈之多頻天線設計初版反射係數模擬結果圖	36
圖4.7單極天線短分支長度參數分析結果圖	36
圖4.8單極天線長分支長度參數分析結果圖	37
圖4.9結合無線充電線圈之多頻天線設計-寄生元件版	38
圖4.10結合無線充電線圈之多頻天線設計-寄生元件版反射係數比較圖	39
圖4. 11寄生元件長度參數分析結果圖	39
圖4.12結合無線充電線圈之多頻天線設計完成版	40
圖4.13L形槽孔長度參數分析結果圖	41
圖4.14指叉電容切縫深度參數分析結果圖	41
圖4.15結合無線充電線圈之多頻天線設計完成版反射係數結果圖	42
圖4.16結合無線充電線圈之多頻天線設計實作圖	43
圖4.17結合無線充電線圈之多頻天線設計反射係數模擬與實作比較圖	44
圖4.18結合無線充電線圈之多頻天線設計座標軸示意圖	45
圖4.19 0.79GHz正規化輻射場型圖	45
圖4.20 0.86GHz正規化輻射場型圖	46
圖4.21 0.93GHz正規化輻射場型圖	46
圖4.22 1.6GHz正規化輻射場型圖	47
圖4.23 1.96GHz正規化輻射場型圖	47
圖4.24 2.4GHz正規化輻射場型圖	48
圖4.25結合無線充電線圈之多頻天線最大增益模擬結果	49
表目錄
表3.1 極化自適應整流天規格表	10
表3.2 全波電路元件表	25
表4.1結合無線充電線圈之多頻天線設計涵蓋頻率與天線規格表	31
表4.2各頻率最大增益列表	48
參考文獻
[1]	A. W. Green, J. T. Boys, "10 kHz inductively coupled power transfer-concept and control", Proc. ICPE-VSD, pp. 694-699, 1994
[2]	J. T. Boys, G. A. Covic, A. W. Green, "Stability and control of inductively coupled power transfer systems", Proc. Electric Power Appl., vol. 147, no. 1, pp. 37-43, 2000.
[3]	Y. Jang, M. M. Jovanovic, "A contactless electrical energy transmission system for portable-telephone battery chargers", IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, Jun. 2003.
[4]	B. Choi, J. Nho, H. Cha, T. Ahn, S. Choi, "Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device",IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 140-147, Feb. 2004.
[5]	J.-P. Curty, M. Declercq, C. Dehollain, and N. Joehl, Design and Optimization of passive UHF RFID Systems. New York: Springer, 2006.
[6]	K. Huang ; X. Zhou “Cutting the last wires for mobile communications by microwave power transfer,” IEEE Communications.Mag.,vol.53,no.6,pp.86-93,Jun.2015
[7]	L. Xie ; Y. Shi ; Y. T. Hou “Wireless power transfer and applications to sensor networks” IEEE wirelessCommun. Mag., vol. 20, no4, pp.140-145, Aug.2013.
[8]	N. Suzuki ; T. Mitani ; N. Shinohara “Study and development of a microwave power receiving system for ZigBee device” Proceeding of Asia-Pacific Microwave Conference2010, WEIC-2, pp.45-48,Yokohama, Dec. 2010.
[9]	T. Ichihara ; T. Mitani ;N. Shinohara, “Study on intermittent microwave power transmission to a ZigBee device ” in Proc. IMWS-IWPT2012, FRI-G-2, pp. 209-212, Kyoto, May 2010.
[10]	K. Takei; R. H. Matsumoto “An Experimental Study of Passive UHF RFID System with Longer Communication Range,“ in Proc. Asia-Pacific Microwave Conference, 2007.pp.1-4.
[11]	D. Wageningen ; T. Staring “The Qi wireless power standard” in 14th International Power Electronics and Motion Control Conference, pp.S15-32, June2010
[12]	Aaron, Smith “Antenna solution for wireless power transfer-near field communication enabled communication device” U.S. Patent Application Application 14/657,338
[13]	W.-S., Lee ; D.-Z. Kim ; J.-W. Yu “Multi-functional high-isolation dual antenna for controllable wireless charging and NFC communication” Electronics letters,vol.50, no.13, pp.912-913, 2014.
[14]	H. Minseok ; J-M. Kim ; H. Sohn “Dual-mode wireless power transfer module for smartphone application” Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2015 IEEE International symposium on IEEE , 2015
[15]	M-A. Chung ; Y-L. Chien ; L. Cho ; P-H. Hsu ; C.-F. Yang “A dual-mode antenna for wireless charging and Near Field Communication” Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2015 IEEE International Symposium on. IEEE, 2015
[16]	G. Wang ; W. Liu ; M. Sivaprakasam ; M.S. Humayun ; J.D. Weiland “Power supply topologies for biphasic stimulation in inductively powered Implants” IEEE International Symposium on Circuits and Systems, pp.2743-2746 ,IEEE, 2015
[17]	E. Maulana ; Z. Abidin ; W. Djuriatno “Wireless Power Transfer Characterization Based on Inductive Coupling Method” Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS), IEEE, 2018
[18]	A. P. Sample ; D. J. Yeager ; P. S. Powledge ; A. V. Mamishev ; J. R. Smith “Design of an RFID-Based Battery-Free Programmable Sensing Platform” IEEE Transactions on Instrumentation and Measurement ,IEEE ,2008  
[19]	[online] Available:http://www.friendsofcrc.ca/Projects/SHARP/sharp.html
[20]	A. Kurs, "Wireless Power Transfer via Strongly Coupled Magnetic Resonances", Science, vol. 317, no. 5834, pp. 83-86, July 2007
[21]	Z. Zhang “Research on Resonant Magnetic Coupling Wireless Power Transmission with Intensifier” 2017 4th International Conference on Information Science and Control Engineering (ICISCE),IEEE , 2018
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信