淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-0309201309214700
中文論文名稱 基於手部運動之人形機器人平衡控制
英文論文名稱 Balancing Control of Humanoid Robots Based on Hand Movement
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 101
學期 2
出版年 102
研究生中文姓名 陳立峰
研究生英文姓名 Li-Feng Chen
學號 600460041
學位類別 碩士
語文別 中文
口試日期 2013-07-16
論文頁數 81頁
口試委員 指導教授-翁慶昌
共同指導教授-李世安
委員-陶金旺
委員-鄭吉泰
中文關鍵字 人形機器人  模糊控制器  SOPC  ZMP  逆運動學 
英文關鍵字 Humanoid robot  Fuzzy controller  SOPC  ZMP(Zero Moment Point)  Inverse Kinematic 
學科別分類 學科別應用科學電機及電子
中文摘要 本論文實現一個利用雙手運動來補償人形機器人重心移動的平衡控制方法。本論文透過一台小型人形機器人之腳底加裝壓力感測器來量測重心,再加上本論文所提出之雙手運動補償方法來讓人形機器人可以實現雙腳及單腳支撐下的自主平衡,並完成如抬腳或踢球等需要平衡能力的動作。在機器人的動作軌跡部分,本論文運用工業用核心電腦計算出機器人雙足末端點位置後傳給FPGA (Field-Programmable Gate Array),再透過FPGA內部之模組運算相對於末端點的關節馬達角度以控制人形機器人的姿態。在平衡的部分,本論文以機器人的重心位置來判斷機器人的平衡狀態,而後根據所提出的模糊控制器來修正機器人的雙手轉動以完成平衡動作。由實驗結果得知,本論文所提出之系統可以有效的修正機器人姿態,以增加平衡穩定性。
英文摘要 A humanoid robot balance control method based on both of the hand movement is proposed in this thesis. A humanoid robot with 23 degree of freedom and 8 force sensors is designed as the platform. The proposed balance method determines the movement of the hands to compensate the movement of the robot’s center of gravity. The robot is able to execute the lifting leg or kicking ball motion in the one leg support situation. An IPC is applied to calculate the trajectory of the foot of the humanoid robot. The result of the trajectory of the foot is sent to FPGA (Field-Programmable Gate Array) board for calculate the relate angle of the motor based on inverse kinematic. The proposed system measures the center of gravity of the humanoid robot by the force sensors. The proposed fuzzy controller calculates the hand movement to balance the robot by the center of the gravity of the robot. The practical experiments with different situations are presented to illustrate the efficiency of the proposed method.
論文目次 目錄
中文摘要……………………………………………………………I
英文摘要…………………………………………………………...II
目錄 ................................................................................................................. III
圖目錄 ........................................................................................................... VII
表目錄 ........................................................................................................... XII
第一章 緒論 ..................................................................................................... 1
1.1 研究背景 ............................................................................................. 1
1.2 研究動機 ............................................................................................. 3
1.3 論文架構 ............................................................................................. 4
第二章 人形機器人系統規格介紹 ................................................................. 5
2.1 前言 ..................................................................................................... 5
2.2 人形機器人核心控制板規格介紹 ..................................................... 6
2.2.1 TKU Board單板電腦規格介紹 ................................................ 6
2.2.2 H3C40–V6核心板規格介紹..................................................... 7
2.3 人形機器人機構平台介紹 ................................................................. 9
2.3.1 頭部機構介紹 ......................................................................... 11
2.3.2 手部機構介紹 ......................................................................... 12
2.3.3 腰部機構介紹 ......................................................................... 13
2.3.4 腳部機構介紹 ......................................................................... 14
2.3.5 腳底機構介紹 ......................................................................... 15
2.4 人形機器人人機介陎介紹 ............................................................... 17
2.4.1 動作控制人機介陎介紹 ......................................................... 18
2.4.2 腳底壓力感測人機介陎介紹 ................................................. 20
第三章 人形機器人核心系統設計 ............................................................... 21
3.1 前言 ................................................................................................... 21
3.2 人形機器人策略系統設計 ............................................................... 22
3.2.1 影像擷取模組設計 ................................................................. 23
3.2.2 策略命令傳送模組設計 ......................................................... 24
3.2.3 腳底壓力感測人機介陎設計 ................................................. 25
3.3 人形機器人FPGA核心設計 ........................................................... 27
3.3.1 資料分析模組設計 ................................................................. 28
3.3.2 確認回應模組設計 ................................................................. 30
3.3.3 SOPC模組設計 ....................................................................... 31
3.3.4 感測器回授模組設計 ............................................................. 33
3.3.5 動作控制模組設計 ................................................................. 35
第四章 人形機器人運動控制 ....................................................................... 37
4.1 前言 ................................................................................................... 37
4.2 人形機器人逆運動學介紹 ............................................................... 38
4.2.1 身體水平側移姿勢 ................................................................. 39
4.2.2 身體旋轉側移姿勢 ................................................................. 41
4.2.3 縮腿與跨步姿勢 ..................................................................... 43
4.3 人形機器人單腳運動軌跡設計 ....................................................... 46
第五章 模糊系統於人形機器人單腳平衡控制 ........................................... 47
5.1 前言 ................................................................................................... 47
5.2 人形機器人ZMP演算法設計 ......................................................... 47
5.3 人形機器人旋轉側移模糊控制器設計 ........................................... 50
5.4 人形機器人輔助平衡模糊控制器設計 ........................................... 53
5.4.1 人形機器人輔助平衡模糊控制器於X軸之設計 ................ 54
5.4.2 人形機器人輔助平衡模糊控制器於Y軸之設計 ................ 57
第六章 實驗結果 ........................................................................................... 60
6.1 人機介陎觀測零力矩點實驗 ........................................................... 60
6.2 雙腳支撐相修正實驗 ....................................................................... 64
6.3 單腳支撐相修正實驗 ....................................................................... 71
第七章 結論與未來展望 ............................................................................... 76
參考文獻 ......................................................................................................... 77

圖目錄
圖 2.1、第九代人形機器人實體圖 ................................................................ 5
圖 2.2、TKU Board單板電腦(a)正陎圖與(b)反陎圖 .................................. 6
圖 2.3、H3C40–V6核心板(a)正陎圖與(b)反陎圖 ....................................... 8
圖 2.4、第九代機器人(a)模擬圖與(b)實體圖............................................. 10
圖 2.5、頭部馬達自由度配置圖 .................................................................. 11
圖 2.6、手部馬達自由度配置圖 .................................................................. 13
圖 2.7、腰部馬達自由度配置圖 .................................................................. 14
圖 2.8、腳部馬達自由度配置圖 .................................................................. 15
圖 2.9、腳底機構(a)分解模擬圖與(b)實體分解圖 .................................... 16
圖 2.10、腳底機構裝配(a)分解圖與(b)實體成品圖 .................................. 17
圖 2.11、動作控制人機介陎示意圖 ............................................................ 18
圖 2.12、動作控制人機介陎示意圖 ............................................................ 19
圖 2.13、動作控制人機介陎示意圖 ............................................................ 20
圖3.1、總系統方塊圖 ................................................................................... 22
圖3.2、策略系統方塊圖 ............................................................................... 23
圖3.3、影像處理步驟影像示意圖 ............................................................... 24
圖3.4、命令傳送流程圖 ............................................................................... 25
圖3.5、介陎流程圖 ....................................................................................... 26
圖3.6、FPGA核心系統方塊圖 .................................................................... 28
圖3.7、資料分析模組方塊圖 ....................................................................... 28
圖3.8、確認回應模組方塊圖 ....................................................................... 30
圖3.9、溝通示意圖 ....................................................................................... 30
圖3.10、SOPC模組方塊圖 .......................................................................... 31
圖3.11、感測器回授模組方塊圖 ................................................................. 33
圖3.12、動作控制模組方塊圖 ..................................................................... 35
圖3.13、動作執行流程圖 ............................................................................. 36
圖4.1、機器人雙足座標系示意圖 ............................................................... 37
圖4.2、機器人單腳運動姿勢簡易示意圖 ................................................... 38
圖4.3、Y軸、Z軸末端點與馬達角度關係圖 ........................................... 40
圖4.4、馬達與逆運動學角度關係圖(a)正轉圖與(b)反轉圖 ..................... 41
圖4.5、身體旋轉角度示意圖(a) 踝關節與(b)髖關節 ............................... 42
圖4.6、踝關節與髖關節與身體旋轉角度示意圖 ....................................... 43
圖4.7、X軸、Z軸末端點與馬達角度關係圖 ........................................... 44
圖4.8、踢球軌跡示意圖 ............................................................................... 46
圖5.1、機器人雙足座標系示意圖 ............................................................... 48
圖5.2、旋轉側移模糊控制器方塊圖 ........................................................... 50
圖5.3、旋轉側移輸入示意圖(a) errory與(b) errory' ................................... 51
圖5.4、旋轉側移示意圖 ............................................................................... 51
圖5.5、旋轉側移輸出示意圖 ....................................................................... 52
圖5.6、機器人雙足座標系示意圖 ............................................................... 54
圖5.7、輔助平衡控制器(X軸)方塊圖 ........................................................ 54
圖5.8、輔助平衡控制器(X軸)輸入示意圖(a) errorx與(b) errorx' ............ 55
圖5.9、輔助平衡控制器(X軸)輸出示意圖 ................................................ 56
圖5.10、機器人X軸輔助平衡示意圖 ........................................................ 56
圖5.11、輔助平衡控制器(Y軸)方塊圖 ...................................................... 57
圖5.12、輔助平衡控制器(Y軸)輸入示意圖(a) errory與(b) errory' .......... 58
圖5.13、輔助平衡控制器(Y軸)輸出示意圖 .............................................. 58
圖5.14、機器人Y軸輔助平衡示意圖 ........................................................ 59
圖6.1、機器人站立(a)零力矩點圖(b)正視圖(c)側視圖 ............................. 61
圖6.2、機器人旋轉測移動作(a)零力矩點圖(b)正視圖(c)側視圖 ............. 62
圖6.3、機器人單腳站立(a)零力矩點圖(b)正視圖(c)側視圖 ..................... 63
圖6.4、水平置放機器人 ............................................................................... 65
圖6.5、水平置放機器人 ............................................................................... 66
圖6.6、木板順時針傾斜5度 ....................................................................... 67
圖6.7、木板順時針傾斜5度 ....................................................................... 68
圖6.8、木板逆時針傾斜5度 ....................................................................... 69
圖6.9、木板逆時針傾斜5度 ....................................................................... 70
圖6.10、機器人旋轉側移中心之連續動作圖 ............................................. 72
圖6.11、機器人輔助平衡之動作示意圖 ..................................................... 73
圖6.12、旋轉側移零力矩點改變示意圖 ..................................................... 74
圖6.13、輔助平衡零力矩點示意圖 ............................................................. 75

表目錄
表2.1、TKU Board單板電腦之系統規格 ..................................................... 7
表2.2、H3C40–V6核心板之系統規格 ......................................................... 8
表2.3、機器人馬達配置表 ........................................................................... 10
表3.1、指令封包格式表 ............................................................................... 29
表3.2、指令封包對應表 ............................................................................... 29
表3.3、感測器回授封包格式表 ................................................................... 34
表3.4、感測器編號表 ................................................................................... 34
表5.1、旋轉側移規則庫 ............................................................................... 53
表5.2、X軸輔助平衡規則庫 ....................................................................... 57
表5.3、Y軸輔助平衡規則庫 ....................................................................... 59
表6.1、誤差比較表 ....................................................................................... 71
參考文獻 [1] H. B. Lin, C. C. Liu, Y. L. Lin, C. H. Wu and C. W. Tung, “Algebraic-elimination based solution of inverse kinematics for a humanoid robot finger,” International Conference on Mechatronics and Automation, pp. 46-51, 2007.
[2] L. Jiang, D. Sun, H. Liu and Y. H. Liu, “Study on inverse kinematics and trajectory tracking control of humanoid robot finger with nonlinearly coupled joints,” International Conference on Mechatronics and Automation, pp. 3214-3219, 2007.
[3] Z. Cui, H. Pan, D. Qian, Y. Peng and Z. Han, “A novel inverse kinematics solution for a 7-DOF humanoid manipulator,” International Conference on Mechatronics and Automation, pp. 2230-2234, 2007.
[4] J. G. Ramirez-Torres, G. Toscano-Pulido, A. Ramirez-Saldivar and A. Hernandez-Ramirez, “A complete closed-form solution to the inverse kinematics problem for the P2Arm manipulator robot,” Conference on Electronics, Robotics and Automotive Mechanics, pp. 372-377, 2010.
[5] 陳顥哲,以SOPC 為基礎之人形機器人全方位行走系統的設計與實現,淡江電機工程學系碩士論文,2010。
[6] C. T. Cheng, C. C. Wong, Y. Y. Hu, L. F. Chen and I. H. Tseng, “Gait pattern generation for humanoid robot based on the amplitude adjustable oscillators,” The 43rd Intl. Symp. on Robotics, 2012.
[7] S. J. Zadeh, A. Khosravi, A. Moghimi and N. Roozmand, “A review and analysis of the trajectory gait generation for humanoid robot using inverse kinematic,” Electronics Computer Technology, pp. 358-362, 2011.
[8] M. A. Ali, H. A. Park and C.S.G. Lee, “Closed-Form inverse kinematic joint solution for humanoid robots,” Intelligent Robots and Systems, pp. 704-709, 2010.
[9] K. Yoshida, S. Kunimatsu and M. Ishitobi, “Biped walking with stretched knee based on inverse kinematics via virtual prismatic joint and l∞ preview control,” SICE Annual Conference, pp. 1870-1873, 2012.
[10] J. V. Nunez, A. Briseno, D. A. Rodriguez, J. M. Ibarra and V. M. Rodriguez, “Explicit analytic solution for inverse kinematics of Bioloid humanoid robot,” Brazilian Robotics Symposium and Latin American, pp. 33-38, 2012.
[11] M. Vukobratovic, D. Juricic, “Contribution to the synthesis of biped gait,” IEEE Transactions on Biomedical Engineering, pp. 1-6, 1969.
[12] 陳建升,人形機器人步態偵測及穩定控制系統之研究,南台科技大學電機工程系碩士論文,2009。
[13] J. P. Ferreira, M. Crisostomo and A. P. Coimbra, “Human-like ZMP trajectory reference in sagittal plane for a biped robot,” International Conference on Advanced Robotics, pp. 1-6, 2009.
[14] K. Y. Tu and Y. H. Sun, “Static stable regions according to center of press to quantify humanoid walking stability,” IEEE International Symposium on Robotic and Sensors Environments, pp. 172-177, 2011.
[15] P. Sardain, G. Bessonnet, “Zero Moment Point—measurements from a human walker wearing robot feet as shoes,” IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, pp. 638-648, 2004.
[16] P. Sardain, G. Bessonnet, “Forces acting on a biped robot. center of pressure—Zero Moment Point,” IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, pp. 630-637, 2004.
[17] I. A. Sulistijono, O. Setiaji, I. Salfikar and N. Kubota, “Fuzzy walking and turning tap movement for humanoid soccer robot EFuRIO,” IEEE International Conference on Fuzzy Systems, pp. 1-6, 2010.
[18] B. Ugurlu and A. Kawamura, “Real-time running and jumping pattern generation for bipedal robots based on ZMP and Euler’s equations,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1100-1105, 2009.
[19] B. Ugurlu and A. Kawamura, “ZMP-Based online jumping pattern generation for a one-legged robot,” IEEE Transactions on Industrial Electronics, pp. 1701-1709, 2010.
[20] K. Van Heerden and A. Kawamura, “Towards integrated walking and jumping motion planning in complex environments: Jumping trajectory generation,” IEEE International Workshop on Advanced Motion Control, pp. 1-6, 2012.
[21] Y. J. Kim, J. Y. Lee and J. J. Lee, “A balance control strategy of a walking biped robot in an externally applied force,” International Conference on Information and Automation, pp. 572-577, 2012.
[22] K. Suwanratchatamanee, M. Matsumoto and S. Hashimoto, “Haptic sensing foot system for humanoid robot and ground recognition with one-leg balance,” IEEE Transactions on Industrial Electronics, pp. 3174-3186, 2011.
[23] K. Suwanratchatamanee, M. Matsumoto and S. Hashimoto, “Balance control of humanoid robot in object lifting task with tactile sensing system,” International Conference on Human System Interactions, pp. 431-436, 2011.
[24] C. C. Wong, C. T. Cheng, H. C. Chen, Y. Y. Hu and C. S. Yin, “Static balancing control of humanoid robot based on accelerometer,” SICE Annual Conference, pp. 2836-2840, 2008.
[25] K. C. Choi, H. J. Lee, H. J. Lee, “Fuzzy posture control for biped walking robot based on force sensor for ZMP,” SICE-ICASE International Joint Conference, pp. 1185-1189, 2006.
[26] T. S. Li, C. L. Hsu, C. Y. Hu, Y. T. Su, M. F. Lu and S. H. Liu, “SOPC based weight lifting control design for small-sized humanoid robot,” International Conference on Control Automation and Systems, pp. 789-793, 2008.
[27] Y. Zhou, M. J. Er, “Dynamic fuzzy Q-Learning control of uncertain systems with applications to humanoids,” IEEE Conference on Control Applications, pp. 459-464, 2005.
[28] T. S. Li, Y. T. Su, C. H. Kuo, C. Y. Chen, C. L. Hsu, M. F. Lu, “Stair-climbing control of humanoid robot using force and accelerometer sensors,” Annual Conference SICE, pp. 2115-2120, 2007.
[29] J. P. Ferreira, M. Crisostomo and A. P. Coimbra, “Neuro-Fuzzy ZMP control of a biped robot,” Proceedings of the 6th WSEAS International Conference on Simulation, pp. 331-337, 2006.
[30] J. P. Ferreira, M. Crisostomo and A. P. Coimbra, “SVR versus Neural-Fuzzy network controllers for the sagittal balance of a biped robot,” IEEE Transactions on Neural Networks, pp. 1885-1897, 2009.
[31] URL: http://www.robocup.org/
[32] URL: http://www.21control.com/
[33] URL: http://www.robotis.com/xe/
[34] URL: https://instruct1.cit.cornell.edu/courses/ee476/SPI/ADC0831.pdf
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2018-09-16公開。
  • 同意授權瀏覽/列印電子全文服務,於2018-09-16起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信