淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0309201210500100
中文論文名稱 三維拍翼在惡劣天氣下之性能研究
英文論文名稱 A Study of 3-D Flapping Wing Performance under Severe Weathers
校院名稱 淡江大學
系所名稱(中) 航空太空工程學系碩士班
系所名稱(英) Department of Aerospace Engineering
學年度 100
學期 2
出版年 101
研究生中文姓名 王唯璋
研究生英文姓名 Wei-Zhang Wang
學號 699430376
學位類別 碩士
語文別 英文
第二語文別 中文
口試日期 2012-07-17
論文頁數 86頁
口試委員 指導教授-宛同
委員-劉登
委員-潘大知
中文關鍵字 拍撲翼  動態網格  大雨  DPM  UDF 
英文關鍵字 Flapping Wing  Dynamic Mesh  Heavy Rain  DPM  UDF 
學科別分類 學科別應用科學航空太空
中文摘要 近年來航太科技不斷的創新發展,其中拍撲翼微飛行器是一個目前熱門的研究項目,它可以適用於民事及軍事用途,如監視,偵查及救援等任務上。拍撲微飛行器的特色是體積小、重量輕,飛行時容易受外力所影響,目前的拍撲翼研究大都只考慮到晴空天氣下飛行,忽略了惡劣天氣因素,但在極端氣候不斷肆虐的當下,研究豪大雨影響此其時也。本研究團隊長期研究天氣因素,此處利用商用軟體FLUENT之動態網格機制來模擬拍翼的飛行,大雨的模擬則採用程式內建的DPM模組(Discrete Phase Model)來計算拍撲翼在惡劣天氣下飛行的空氣動力性能。
本研究採用了兩種不同的運動行為去模擬不同拍撲翼外形的翅膀,這兩種運動行為分別是Wang氏八字形運動及Trizila 氏移動轉動運動,外形則有橢圓、平板、hawk moth、二維、三維等諸種,經過二維及三維的晴空飛行下驗證後,再進行拍撲翼大雨下飛行模擬。根據吾人研究結果,可以發現幾個重要結論:首先是同樣外形在相同的運動行為下,從二維變成三維時,升阻力之減少符合所知的三維釋放效應;其次則是不同外形會有不同的升阻力狀況;最後比較拍撲翼在大雨和晴空下的飛行數據,二維外形最大遞減率不到9%,而三維外形最大遞減率則高達近70%,大雨在真實三維情況下的影響比想像中嚴重許多。換言之,如果昆蟲生物的翅膀外形及運動是由最佳化演進而得,則此演進過程似乎不包括大雨情況。
英文摘要 In recent years, modern technology was innovated and developed continuously, and now flapping MAV is becoming a prevalent developing project. It can be applied to all military and civilian usages. In order to improve MAV flying performance, a better understanding of insect aerodynamics thus become necessary. There are many researches in flapping-wing studies, but most of these researches only consider that flapping-wing motion under calm weather, ignore some severe weather. However, during the spring and summer seasons in Taiwan, there is thunderstorms, typhoons, etc., and it usually brings heavy rain and strong wind. Therefore, we must consider harsh weather conditions such as heavy rain.
In this thesis the main objective was to investigate the flapping-wing motion under harsh weather. We use numerical method such as preprocessing tool Gambit and CFD software FLUENT as our analytical tools. This model combines with the dynamic mesh in order to implement arbitrary wing kinematics. For present study, the flapping-wing aerodynamic parameters such as lift and thrust in the unsteady flow situation could be correctly generated. Two different mechanisms (Wang’s figure eight motion and Trizila’s translational and rotational motions) are simulated, and models of different profile are further investigated to compare the shape effect. According to the results, we can find two important conclusions. First, we observe the same decreasing behavior in the lift and drag coefficients from 2D to 3D configuration, which can be easily explained and expected from the 3D reliving effect. Second, it is found that the model’s size or shape will generate rather different aerodynamic force under the same motion.
In the heavy rain simulation, the Eulerian-Lagrangian approach could simulate motions of rain drops successfully. Although the results with flapping-wing in 2D case such that the decreasing rate is only less than 9%, imply the aerodynamic degradation was not significant. But for 3D case it was found that the decreasing rate could be as high as 70% under the heavy rain situation, a much more significant aerodynamic degradation effects. It is felt that if flapping configuration and motion are evolution and optimized into its current form, then it has not include the heavy rain circumstances. All in all, when designing any MAVs, we must always consider the severe weather influence.
論文目次 Abstract: III
Contents V
List of Tables VII
List of Figures VIII
Nomenclatures XI
Chapter 1 Introduction 1
Chapter 2 Research Background 5
2-1 Literature Review 5
2-2 Flight Mechanism 7
2-2-1 Clap and Fling 8
2-2-2 Delayed stall of leading edge vortex (LEV) 8
2-3 Weather Factor 9
2-4 Heavy Rain 10
Chapter 3 Numerical Modeling 13
3-1 Governing Equations 13
3-2 Preprocessing 14
3-3 Flapping-Wing Model and Mesh System 16
3-4 Flow Solver 19
3-5 Discrete Phase Model 22
Chapter 4 Results and Discussion 27
Chapter 5 Conclusions 35
References 37
Appendix 78

List of Tables
Table 1.1 Compare fixed-wing MAV with flapping-wing MAV .............. 40
Table 3.1 The number of structured and unstructured grids ..................... 40
Table 3.2 The number of structured and unstructured grids ..................... 40
Table 3.3 The geometry parameters of model .......................................... 40
Table 4.1 Classification of the different models ....................................... 41
Table 4.2 Mean lift in different numerical simulation .............................. 41
Table 4.3 Mean lift coefficient in different numerical simulation ............ 41
Table 4.4 Mean lift coefficient in different numerical simulation ............ 41
Table 4.5 The geometry parameters of model and coefficient lift ............ 41
Table 4.6 Mean lift and drag coefficients in different numerical simulation .................................................................................................. 41
Table 4.7 Heavy rain condition ................................................................. 42
Table 4.8 Numerical results for flapping wing of lift and drag coefficients degradation percentage for heavy rate case .............................................. 42

List of Figures
Fig.1.1 Reynolds number range for flight vehicles. [1]............................ 43
Fig 2.1 Flapper flow visualization with smoke released from the leading edge wing at different time. [5] ................................................................ 43
Fig. 2.2 The wing tip path of a hummingbird viewed from the side [6] .. 44
Fig. 2.3 Schematic representation of half strokes during insect flapping [15] ............................................................................................................ 44
Fig. 2.4 Clap and fling Mechanism [6] ..................................................... 45
Fig. 2.5 Schematic 2-D representation of a LEV on a translating [16] .... 45
Fig. 2.6 Compare 2-D linear translation with 3-D flapping translation [6] ................................................................................................................... 45
Fig. 3.1 The flapping-wing move trajectory ............................................. 46
Fig. 3.2 The flapping-wing move trajectory ............................................. 46
Fig. 3.3 The solutions loop for FLUENT solve process. .......................... 47
Fig. 3.4 Grids and calculated domain ....................................................... 48
Fig. 3.5 Grids around the flapping-wing .................................................. 48
Fig. 3.6 Grids and calculated domain ....................................................... 49
Fig. 3.7 Grids around the flapping-wing .................................................. 49
Fig. 3.8 Grids and calculated domain ....................................................... 50
Fig. 3.9 Grids around the flapping-wing .................................................. 50
Fig. 3.10 (a) the flat plate model [24] (b) the hawkmoth-wing model (c) the elliptical cylinder ................................................................................ 51
Fig. 3.11 1D control volume [23] ............................................................. 52
Fig. 3.12 Heat, mass, and momentum transfer between discrete and
continuous phase [23] ............................................................................... 52
Fig. 4.1 Vorticity contour at different instants .......................................... 53
Fig. 4.2 Pressure contour at different instants .......................................... 54
Fig. 4.3 The lift profile in the first ten periods ......................................... 55
Fig. 4.4 The drag profile in the first ten periods ....................................... 55
Fig. 4.5 Pressure drag and viscous drag coefficient in a cycle ................. 56
Fig. 4.6 Lift vs. period comparing with references [8][25] ...................... 57
Fig. 4.7 Drag vs. period comparing with references [25] ......................... 57
Fig. 4.8 Vorticity contour at different instants .......................................... 58
Fig. 4.9 Pressure contour at different instants .......................................... 59
Fig. 4.10 cl vs. period comparing with references [10] ............................ 60
Fig. 4.11 cd vs. period comparing with references [10] ............................ 60
Fig. 4.12 Pressure drag and viscous drag coefficient in a cycle ............... 61
Fig. 4.13 CL vs. period comparing with references [10] .......................... 62
Fig. 4.14 CD vs. period comparing with references [10] .......................... 62
Fig. 4.15 The mesh and the computational domain .................................. 63
Fig. 4.16 The mesh around the flapping-wing .......................................... 63
Fig. 4.17 The lift coefficient for the hawkmoth-wing model ................... 64
Fig. 4.18 The drag coefficient for the hawkmoth-wing model ................. 64
Fig. 4.19 The lift coefficient for the case 6 ............................................... 65
Fig. 4.20 The drag coefficient for the case 6 ............................................ 65
Fig. 4.21 The lift coefficient for the case 7 ............................................... 66
Fig. 4.22 The drag coefficient for the case 7 ............................................ 66
Fig. 4.23 The lift coefficient profile in the ten periods ............................. 67
Fig. 4.24 The drag coefficient profile in the ten periods .......................... 67
Fig. 4.25 The lift coefficient in different heavy rain conditions ............... 68
Fig. 4.26 The drag coefficient in different heavy rain conditions ............ 68
Fig. 4.27 Pressure drag and viscous drag coefficient in a cycle ............... 69
Fig. 4.28 The lift coefficient profile in the ten periods ............................. 70
Fig. 4.29 The drag coefficient profile in the ten periods .......................... 70
Fig. 4.30 The lift coefficient in different heavy rain conditions ............... 71
Fig. 4.31 The drag coefficient in different heavy rain conditions ............ 71
Fig. 4.32 The lift coefficient profile in the ten periods ............................. 72
Fig. 4.33 The drag coefficient profile in the ten periods .......................... 72
Fig. 4.34 The lift coefficient in different heavy rain conditions ............... 73
Fig. 4.35 The drag coefficient in different heavy rain conditions ............ 73
Fig. 4.36 The lift coefficient profile in the ten periods ............................. 74
Fig. 4.37 The drag coefficient profile in the ten periods .......................... 74
Fig. 4.38 The lift coefficient in different heavy rain conditions ............... 75
Fig. 4.39 The drag coefficient in different heavy rain conditions ............ 75
Fig. 4.40 The lift coefficient profile in the ten periods ............................. 76
Fig. 4.41 The drag coefficient profile in the ten periods .......................... 76
Fig. 4.42 The lift coefficient in different heavy rain conditions ............... 77
Fig. 4.43 The drag coefficient in different heavy rain conditions ............ 77
參考文獻 [1] Mueller, J. T. and DeLaurier, J. D., “An overview of micro air vehicle aerodynamics,” Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, Vol. 195, 2001, pp. 1-9.
[2] 陳文元,張衛平,微型撲翼式仿生飛行器,上海交通大學出版社,第12-13頁,2010。
[3] Cloupeau, M., “Direct measurements of instantaneous lift in desert locust; comparison with Jensen’s experiments on detached wings,” The Journal of Experimental Biology, Vol. 180, 1979, pp. 1-15.
[4] Weis-Fogh, T., “Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production,” J. Exp. Biol., Vol.59, 1973, pp.169–230.
[5] Ellington, C. P., van den Berg, C., Willmott, A. P., and Thomas, A. L. R., “Leading edge vortices in insect flight,” Nature, Vol. 384, 1996, pp. 626–630.
[6] Sane, S. P., “The aerodynamics of insect flight,” The Journal of Experimental Biology, Vol. 206, August, 2003, pp. 4191-4208.
[7] Dickinson, M. H., “Wing rotation and the aerodynamic basis of insect flight,” Science, Vol. 284, 1999, pp. 1954-1960.
[8] Wang, Z. J., “Two dimensional mechanism for insect hovering,” Physical Review Letters, Vol. 85, No.10, 2000, pp. 2216-2219.
[9] Sun, M. and Du, G., “Lift and power requirements of hovering flight in Drosophila virilis,” The Journal of Experimental Biology, Vol. 205, 2002, pp. 2413-2427.
[10] Trizila, P., Kang, C., Visbal, M. and Shyy, W., “A surrogate model approach in 2D versus 3D flapping wing aerodynamic analysis,” AIAA Journal, Paper 2008-5914.
[11] Trizila, P., “Aerodynamics of low Reynolds number rigid flapping wing under hover and freestream conditions,” Ph.D. Dissertation, Michigan University, 2011.
[12] Ho, S., Nassef, H., Pornsinsirirak, N., Tai, Y. C. and Ho, C. M., “Unsteady aerodynamics and flow control for flapping wing flyers,” Progress in Aerospace Sciences, Vol. 39, 2003, pp. 635-681.
[13] Shyy, W., Berg, M. and Ljungqvist, D., “Flapping and flexible wings for biological and micro air vehicles,” Process in Aerospace Sciences, Vol. 35, No. 5, 1999, pp. 455-506.
[14] Chou, C. J. and Wan, T., “Aerodynamic investigation of high-lift airfoil under the influence of heavy rain effects,” 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee, USA, January 9-12, 2012.
[15] Ansari, S. A., Knowles, K. and Zbikowski, R., “Insectlike flapping wings in the hover part 2: Effect of wing geometry,” Journal of Aircraft, Vol. 45, 2008, pp. 1976-1990.
[16] Bolsman, C. T., “Flapping wing actuation using resonant compliant mechanisms: An insect-inspired design,” Ph.D. Thesis, Delft University of Technology, 2010, pp. 22-23.
[17] Maxworthy, T., “Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’,” J. Fluid Mech., Vol. 93, 1979, pp. 47-63.
[18] Rhode, R. V., “Some effects of rainfall on flight of airplanes and on instrument indications,” NACA TN 903, April 1941.
[19] Dunham, R. E. Jr., “The potential influence of rain on airfoil performance,” Von Karman Institute for Fluid Dynamics, 1987.
[20] Ulbrich, C. W., “Natural variations in the analytical form of the raindrop size distribution,” Journal of Applied Meteorology, Vol. 22, 1983, pp. 1764-1775.
[21] Willis, P. T., “Functional fits to some observed drop size distributions and parameterization of rain,” Journal of Atmospheric Science, Vol. 41, No. 9 s, 1984, pp. 1648-1661.
[22] Markowitz, A. M., “Raindrop size distribution expression,” Journal of Applied Meteorology, Vol. 15, 1976, pp. 1029-1031.
[23] FLUENT 6.2’s User Guide.
[24] Sun, M. and Luo, G., “The effects of corrugation and wing planform on the aerodynamic force production of sweeping model insect wings,” Acta Mech Sinica, Vol.21, 2005, pp. 531-541.
[25] Huang, C. K. and Wan, T., “Numerical Simulation of Gust Wind and Heavy Rain on Aerodynamic Driven Devices,” Ph.D. Thesis, Tamkang University, 2011.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-09-03公開。
  • 同意授權瀏覽/列印電子全文服務,於2015-09-03起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信