淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0308202013293900
中文論文名稱 功能性孔洞材料在氣體分離之應用
英文論文名稱 Functional Porous Materials for Gas Separations
校院名稱 淡江大學
系所名稱(中) 化學學系碩士班
系所名稱(英) Department of Chemistry
學年度 108
學期 2
出版年 109
研究生中文姓名 王耀廷
研究生英文姓名 Yao-Ting Wang
學號 607160206
學位類別 碩士
語文別 中文
口試日期 2020-07-01
論文頁數 79頁
口試委員 指導教授-陳登豪
委員-陳曜鴻
委員-柯碧蓮
中文關鍵字 孔洞材料  金屬有機骨架  氣體吸附  氣體分離  變壓式氣體吸附 
英文關鍵字 porous materials  metal-organic framework  gas adsorption  gas separation  pressure swing adsorption 
學科別分類 學科別自然科學化學
中文摘要 分離技術在化學、石化、和製藥業中對於純化產物有著不可或缺的地位,大量生產時的成本和其純化步驟息息相關,例如:溶劑萃取、蒸餾、吸附、和再結晶…等方法。而含羰基的多孔材料是少數被證明可有效捕捉二氧化碳的材料之一,所以,我們從修飾羰官能基之多孔材料(多孔分子晶體PMCs和金屬有機骨架(MOFs)著手,延伸至分離二氧化碳/氮氣之應用。
而變壓吸附(PSA)技術是一種廣泛使用的氣體分離技術,常用於研究羰官能基之多孔材料的氣體分離性能,根據分子特性和吸附劑材料與混合氣體之親和力,藉由改變壓力來純化混合氣體,我們利用PNCs做一系列氣體分離之實驗,確定在這些孔洞材料上富有極性的羰官能基,可以展現出色的分子分離性質,基於此概念,我們合成並充分的鑑定一系列的新功能金屬有機骨架.
英文摘要 Separation technology plays a significant role in the production of pure compounds in the chemical, petrochemical and pharmaceutical industries. A large amount of the production costs is associated with purification steps such as solvent extraction, distillation, adsorption, and crystallization processes. Porous materials containing carbonyl groups have been proved to be among a few systems that can efficiently capture CO2. Herein, we propose to study novel carbonyl-functionalized porous materials (porous molecular crystals (PMCs) and metal-organic frameworks (MOFs)) for CO2 capture, CO2/N2 separation, and hydrocarbon separations.
Pressure swing adsorption (PSA) technique is used to investigate the gas separation properties of carbonyl-functionalized porous materials. PSA is a widely used process for the purification of a gas mixture under pressure swing according to the molecular characteristics and affinity to the adsorbent material. The polar carbonyl groups of these porous materials can provide a unique platform for host-guest interactions, which lead to superior molecular separation performance. Based on this concept, a series of new functional MOFs based on bis(1,2,3-triazole)-p-benzoquinone and 2,5-difluoro-3,6-dihydroxyterephthalic acid is synthesized and fully characterized.
論文目次 目錄

謝誌 I
中文摘要 II
英文摘要 III
目錄 IV
圖目錄 VI
第一章 緒論 1
1.1 氣體分離 1
1.1.1氣體吸附分離原理 9
1.1.2變壓吸附 (Pressure Swing Adsorption) 13
1.1.3變溫吸附 (Temperature Swing Adsorption) 15
1.2 金屬有機骨架(Metal-Organic Frameworks) 16
1.3 研究動機 19
第二章 實驗儀器與藥品 22
2.1 熱重分析儀(Thermogravimetric Analyzer): 22
2.2 粉末繞射儀 (Powder X-ray Diffractometer): 22
2.3 傅立葉紅外線光譜儀(Fourier-Transform Infrared Spectrometer): 22
2.4 單晶繞射儀(Single-Crystal X-ray Diffractometer): 23
2.5 核磁共振光譜儀(Nuclear Magnetic Resonance Spectrometer): 23
2.6 質譜儀(Mass Spectrometer): 24
2.7 氣體吸附分析儀 (Gas Sorption Analyzer) 24
2.8 變壓吸附分析儀 (Pressure Swing Adsorption Analyzer): 25
2.9 溶劑及藥品 27
第三章 氣體分離實驗 29
3.1 孔洞分子晶體 (Porous Molecular Crystals) 29
3.2 突破曲線 32
3.3 變壓吸附 37
3.4 原位X光粉末繞射(In situ X-ray Diffraction) 40
第四章 有機金屬骨架製備 44
4.1 有機配位基分子合成 44
4.2 金屬有機骨架合成 46
第五章 結果與討論 49
5.1養晶條件 49
5.1.1 yt-09 49
5.1.2 yt-10 51
5.1.3 yt-11 53
5.1.4 yt-12 55
5.1.5 yt-13 57
5.2 結構分析 59
5.2.1 yt-09 59
5.2.2 yt-10 63
5.2.3 yt-11 65
5.2.4 yt-12 66
5.2.5 yt-13 67
5.3氣體吸附實驗 69
結論 70
參考文獻 72
附錄 75

圖目錄

圖1. 乙烷與乙烯的分離[9] 2
圖2. 二氧化碳洗滌塔[13] 4
圖3. 三種常使用的沸石之結構[20] 6
圖4. ZBS-15之氮氣與甲烷吸附曲線[21] 6
圖5. 修飾胺官能基之矽膠在二氧化碳的吸附/脫附循環[4] 7
圖6. 物理吸附與化學吸附差別 10
圖7. 尺寸與形狀效應示意圖[23] 11
圖8. 氣體吸附熱力學效應示意圖[23] 12
圖9. 氣體動力學效應示意圖[23] 12
圖10. Pressure Swing Adsorption裝置運作方式 14
圖11. Temperature Swing Adsorption裝置運作方式 16
圖12. 金屬有機骨架組成示意圖 17
圖13. 六角柱狀的MOF-74晶體和[001]方向的結構[37] 19
圖14. 2,5-二氟-3,6-二羥基對苯二甲酸之結構 20
圖15. 雙(1,2,3,三唑)-對苯醌結構 21
圖16. Bruker D8 Advance 22
圖17. Bruker D8 Venture dual X-ray single crystal diffractometer 23
圖18. Bruker AC-300 FT-NMR 24
圖19. 氣體吸附分析儀 25
圖20. 變壓吸附分析儀 26
圖21. Cyclobenzoin Esters 之晶體結構[40] 30
圖22. (a)TPP分子結構 (b)其堆疊成孔洞架構之形狀[42] 31
圖23. Cyclobenzoin Esters多孔分子晶體在b軸的堆疊外觀[40] 31
圖24. Cyclobenzoin Esters CO2 297K 等溫吸附曲線 32
圖25. Cyclobenzoin Esters N2 297K 等溫吸附曲線。 33
圖26. 針對沸石(SZ-5A)在不同流速之氣體突破曲線[44] 34
圖27. 孔洞分子晶體材料(Cyclobenzoin Esters)於297K分離氮氣與二氧化碳混合氣體之突破曲線 36
圖28. Cyclobenzoin Ester在二氧化碳環境下單晶結構[40] 37
圖29. 變壓吸附循環下偵測之二氧化碳和氮氣濃度 38
圖30. Cyclobenzoin Ester和Zeolite之變壓循環實驗比較 39
圖31. 連續時間原位X光粉末繞射圖(真空) 40
圖32. 連續時間原位X光粉末繞射圖(氮氣) 41
圖33. 連續時間原位X光粉末繞射圖(二氧化碳) 42
圖34. 連續時間原位X光粉末繞射圖(乙烯) 42
圖35. 連續時間原位X光粉末繞射圖(氧氣) 43
圖36. yt-09結構 59
圖37. yt-09孔洞內包含DMF和裂解後陽離子 60
圖38. yt-09之孔徑大小 60
圖39. 產物之粉末繞射訊號與電腦計算相符 61
圖40. yt-09熱重分析 62
圖41. yt-09元素分析 62
圖42. yt-09晶體紅外線光譜 63
圖43. yt-10結構 63
圖44. yt-10移除水分子後孔徑大小 64
圖45. yt-10之粉末繞射訊號與電腦訊號相符 64
圖46. yt-11結構 65
圖47. MIL-88B在加熱去除溶劑後孔洞縮小[47] 66
圖 48.yt-12結構 66
圖 49.yt-13結構 67
圖 50.MIL-88B-tpt和MIL-88B之氮氣吸附[48] 68
圖 51.yt-09之氮氣和二氧化碳選擇性吸附圖 69
參考文獻 參考文獻
1. Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng, S. Lawes, X. Sun, Energy Storage Materials., 2016, 2, 35−62.
2. A. Evans, R. Luebke, C. Petit, J. Mater. Chem. A, 2018,6, 10570−10594.
3. M. Ding, W. Flaig, H. Jiang, M. Yaghi, Chem. Soc. Rev., 2019,48, 2783−2828.
4. J. Li, J. Kupplera, H. Zhou, Chem. Soc. Rev., 2009,38, 1477−1504.
5. C. J. King, Separation Progress, McGraw-Hill, New York, 2nd edn, 1980.
6. R.-T. Yang, Adsorbents: Fundamentals and Applications, John Wiley & Sons, Hoboken, 2003.
7. Fuel Production, Retrieved from https://www.canadianfuels.ca/The-Fuels-Industry/Fuel-Production/.
8. B.Wang, L.Xie, X. Wang, X. Liu, J. Li, J.-R. Li, Green Energy & Environment., 2018, 3, 191−228.
9. L. Li, R.-B. Lin, R. Krishna, H. Li, S. Xiang, H. Wu, J. Li, W. Zhou, Science., 2018, 362, 443−446.
10. A. Mason, M. Veenstrab, J.-R. Long, Chem. Sci., 2014, 5, 32−51.
11. Dhananjeya Kumaar, (2019), How MOFs save the climate from carbon dioxide and other greenhouse gases, Retrieved from https://novomof.com/blog/how-mofs-save-the-climate-from-carbon-dioxide-and-other-greenhouse-gases/.
12. B. L. Karger, R. L. Snyder, H. Horvath, An Introduction to Separation Science., Wiley, New York, 1973.
13. E. Whyte, M. Yon, H. Wagener, Industrial and Engineering Chemistry, Washington, D.C., 1982 14−15.
14. E.Doherty, Chem. Eng. News, 1962, 40, 17, 59–63.
15. R.-T. Yang, Gas Separation by Adsorption Progress., Butterworth, Boston, 1987.
16. Over the total life of a project stainless is often the best value option, Retrieved from https://www.ssina.com/education/training/
17. S. Jiang, T. A. Jones, T. Hasell, C. E. Blythe, D. J. Adams, A. Trewin, A.I. Cooper, Nature Communications., 2011, 2, 207.
18. R. J. Allam, R. Bredesen, E. Drioli, Carbon Dioxide Recovery Util., 2003, 3, 53–120.
19. Babcock & Wilcox, 1867, Retrieved from https://www.babcock.com
20. M. Sierka, J. Sauer, J. Phys. Chem. B, 2001, 105, 8, 1603–1613.
21. G. Couderc, T. Hertzsch, N.R. Behrnd, K. Krämer, J. Hulliger, Microporous and Mesoporous Materials., 2006, 88, 170−175.
22. R.-T. Yang, S. J. Doong, American Institute of Chemical Engineers., 1985, 11, 1829−1842.
23. T. Corradoa, R. Guo, Mol. Syst. Des. Eng., 2020, 5, 22−48.
24. S.-C. Foo, R.-G. Rice, American Institute of Chemical Engineers., 1975, 21, 1149−1159.
25. C. Kayser, S. Knaebel, Chem. Eng. Science., 1988, 11, 3015-3022.
26. J.-R. Li, R. J. Kupplera H.-Z. Zhou, Chem. Soc. Rev., 2009, 38, 1477−1504.
27. S. Farooq, M. M.Hassan, D. M. Ruthven, Chemical Engineering Science., 1988, 5, 1017−1031.
28. S.-R. Batten, N.-R. Champness, X.-M. Chen, J.-G. Martinez, S. Kitagawa, L. Öhrström, M. O’Keeffe, M.-P. Suh, J. Reedijk, Pure Appl. Chem., 2013, 85, 1715-1724.
29. S.-E. Henkelis, S.-M. Vornholt, D.-B. Cordes, A.-M.-Z. Slawin, P.-S. Wheatley, R.-E. Morris, Cryst. Eng. Comm., 2019, 21, 1857-1861.
30. H. Zhou, Z. Nie, J. Yin, Y. Sun, H. Zhou, D. Wang, D. Li, J. Dou, X. Zhang and T. Ma, RSC. Adv., 2015, 5, 85344-85349.
31. H. Zhao, D. Li, G. Dong, L. Duan, X. Liu, L. Wang, Langmuir., 2014, 40, 12082-12088.
32. N. Kosinov, J. Gascon, F. Kapteijn, J. M. Hensen, Journal of Membrane Science., 2016, 499, 65−79.
33. T. Loiseau, L. Lecroq, C. Volkringer, J. Marrot, G. Fe´rey, M. Haouas, F. Taulelle, S. Bourrelly, P. L. Llewellyn, M. Latroche, J. Am. Chem. Soc., 2006, 128, 10223–10230.
34. H. Abedini, A. Shariati, M. Reza, K. Nikou, Chemical Engineering Research and Design., 2020, 153, 96−106.
35. M. Ma, A. Bétard, I. Weber, N. S. Al-Hokbany, R. A. Fischer, N. Metzler-Nolte, Cryst. Growth Des., 2013, 13, 2286–2291.
36. F. Fajula, D. Plee, Stud. Surf. Sci. Catal., 1994, 85, 633–651.
37. A. Oliveira, F. Lim, H. Avelino, Chemical Physics Letters., 2018, 691, 283−290.
38. F. Wei, D. Chen, Z. Liang, S. Zhao, Y. Luo, RSC Adv., 2017, 7, 46520.
39. J. David, G. Trolliard, C. Volkringer, T. Loiseau, A. Maitre, RSC Adv, 2015, 5, 51650.
40. C. M. McHale, C. R. Stegemoller, M. I. Hashim, X. Wang, O.Š. Miljanic, Crystal Growth & Design., 2019, 19, 562−567.
41. G. V. Baron, Process Technol. Proc., 1994, 11, 201–220.
42. J. A. Ritter, A. D. Ebner, Sep. Sci. Technol., 2007, 42, 1123–1193.
43. T. Bein, S. Mintova, Stud. Surf. Sci. Catal., 2005, 157, 263–288.
44. J. Seader, M. Henley, Separation Process Principles., Wiley, New York, 1998.
45. D.-D. Duong, Adsorption Analysis: Equilibria and Kinetics., Imperial College Press, London, 1998.
46. I. Ma, A. Bétard, I. Weber, N. Hokbany, R. A. Fischer, and N. Nils,Cryst. Growth Des., 2013, 6, 2286–2291.
47. S. Hou, Y. Wu, L. Feng, W. Chen, Y. Wang, C. Morlay, F. Lia, Dalton Trans., 2018, 47, 2222−2231.
48. Y. Wei, M. Zhang, P. Liao, R. Lin, T.-Y. Li, G. Shao, J.-P. Zhang, X. M. Chen, Nature Communications., 2015, 6, 8348.

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2020-08-05公開。
  • 同意授權瀏覽/列印電子全文服務,於2020-08-05起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信