淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0308202011134800
中文論文名稱 零場邊界積分方程法求解含圓形孔洞之功能梯度材料與雙材料的SH波散射問題
英文論文名稱 SH-wave scattering problems containing circular holes in a functionally graded material and bimaterial using the null-field boundary integral equation method
校院名稱 淡江大學
系所名稱(中) 土木工程學系碩士班
系所名稱(英) Department of Civil Engineering
學年度 108
學期 2
出版年 109
研究生中文姓名 洪仕恩
研究生英文姓名 Shi-En Hong
學號 607380283
學位類別 碩士
語文別 中文
口試日期 2020-07-08
論文頁數 75頁
口試委員 指導教授-李家瑋
委員-陳正宗
委員-郭世榮
中文關鍵字 零場邊界積分方程法  功能梯度材料  SH波的散射  雙材料 
英文關鍵字 Null-field boundary integral equation method  Functionally graded material  SH-wave scattering  bimaterial 
學科別分類 學科別應用科學土木工程及建築
中文摘要 本論文使用零場邊界積分方程法求解含有多顆圓形孔洞的功能梯度材料受水平剪力波(SH-wave)的散射問題,本文考慮的功能梯度特性其剪力模數與密度都為沿水平方向的指數變化,且透過變數變換的方法,可將控制方程式轉成一般的二維Helmholtz方程式,且孔洞邊界條件原為曳引力為零但同樣透過變換成Robin型態。搭配極座標系統下的退化核函數(degenerate kernels)並假設邊界密度為傅立葉級數(Fourier series)展開,可充分發揮三角函數的正交性,因此每個沿著圓形邊界的弧長積分都可解析求得,最後透過配點法滿足邊界條件建構線性代數方程式求得未知係數。數值結果包含全場位移振幅、圓形孔洞邊界上位移振幅與動態應力集中因子(dynamic stress concentration factor),並探討不同波數k與非均勻空間變換參數β對位移振幅與動態應力集中因子的影響,此外也使用有限元素法(finite element method)做數值結果比對,其結果都一致吻合。最後本論文更將此問題延伸至含單一圓孔洞的雙介質SH波散射問題,其左半平面為均質介質,右半平面為含圓孔洞的功能梯度介質,透過疊加原理將全場拆解成輻射場與入射場,再將輻射場拆解成兩個半平面問題,最後將兩個半平面問題各自埋藏成全平面問題,並考慮其孔洞邊界條件、界面位移連續性與應力平衡等條件求解。數值結果包含界面位移振幅與圓孔洞邊界上的動態應力集中因子,並與文獻上的數值結果做比對,且在β=0時可退回全均質的情況,並也跟解析解結果比對一致吻合。
英文摘要 In this thesis, the null-field boundary integral equation method is used to solve the SH-wave scattering the problem of functionally graded material (FGM) containing multiple circular holes. For the present FGM, the shear modulus and the density are the form of exponential variation along the horizontal direction. By using the method of change variable, the governing equation can be transformed into a general two-dimensional Helmholtz equation. The traction free (Neumann) boundary condition is transformed into the Robin boundary condition. Adopting the degenerate kernel in terms of the polar coordinates to replace the closed-form fundamental solution and using the Fourier series to expand the boundary densities, the orthogonality of the trigonometric function can be fully utilized. Therefore, each boundary arc length integral along the circular boundary can be analytically determined. By employing the collocation method to construct a linear algebraic equation, all unknown Fourier coefficients can be straightforwardly determined. The numerical results include the full-field displacement amplitude, displacement amplitude and dynamic stress concentration factor along the boundary of the circular holes. The influences of those results versus the wave number k and nonhomogeneous parameter β are also discussed. In addition, all numerical results are compared with those results by using the finite element method and good agreements are made. Finally, this thesis is extended to the SH-wave scattering problem of bimaterial containing a circular hole. The half-plane of the left-hand side is a homogeneous material, the other half-plane of the right-hand side is a FGM with a circular hole. Both the boundary condition on a circular hole and continuous conditions on the interface are considered. The numerical results are compared with the results of the literature. When β is equal to zero, it can reduce to the case of homogeneous material. After comparing the analytical solution for β=0, the present result is consistent with the analytical solution.
論文目次 目錄 I
圖目錄 III
表目錄 V
第一章 緒論 1
1.1研究動機與目的 1
1.2文獻回顧 3
1.2.1 水平剪力波散射問題 3
1.2.2 零場邊界積分方程法 4
1.3 論文架構 6
第二章 無限域中含多顆圓孔洞之SH波散射問題 8
2.1 問題描述 8
2.2 控制方程式與邊界條件 9
2.2.1 控制方程式 9
2.2.2 邊界條件 11
2.3 零場邊界積分方程法 13
2.3.1 域內點邊界積分公式 13
2.3.2 使用極座標將退化核用於閉合型的核函數 15
2.3.3 邊界密度 17
2.4 問題求解過程 18
2.5 動態應力集中因子 24
2.6 數值結果探討 26
2.6.1 無限域的功能梯度介質中含有兩顆圓形孔洞問題 27
2.6.2 無限域的功能梯度介質中含有三顆圓形孔洞問題 31
第三章 雙材料中含圓形孔洞之問題 43
3.1 問題描述 43
3.2 控制方程式與邊界條件 44
3.2.1 控制方程式 44
3.2.2 邊界條件 45
3.3 全場位移 46
3.4 問題求解過程 48
3.4.1 功能梯度材料全平面透過邊界積分方程求解 50
3.4.2 邊界條件 52
3.4.3 均質全平面透過零場邊界積分方程求解 53
3.4.4 界面條件位移連續 54
3.4.5 界面力平衡條件 56
3.5 動態應力集中因子 58
3.6 數值結果探討 59
第四章 結論與未來展望 70
4.1 結論 70
4.2 未來展望 71
參考文獻 72

圖目錄
圖1-1 FGM示意圖 2
圖1-2論文架構圖 7
圖2-1無限域中含多顆圓形孔洞問題示意圖 8
圖2-2問題拆解示意圖 9
圖2-3局部座標系統 20
圖2-4邊界節點分佈圖(N=41) 21
圖2-5有限元素法節點與元素數目示意圖 27
圖2-6 ρx=1且ϕx=π之位移對傅立葉項數的收斂情形 28
圖2-7兩顆圓孔洞圓心的直線距離示意圖 29
圖2-8 ka=1.0時零場邊界積分方程法之全場位移振幅 34
圖2-9 ka=1.0時有限元素法 之全場位移振幅 34
圖2-10 ka=1.0時零場邊界積分方程法之圓形孔洞位移振幅分佈 35
圖2-11 ka=1.0時有限元素法 之圓形孔洞位移振幅分佈 35
圖2-12零場邊界積分方程法(ka=1)的動態應力集中因子 36
圖2-13零場邊界積分方程法與有限元素法之動態應力集中因子比較 36
圖2-14波數k對圓形孔洞邊界上ϕx=π的位移振幅影響 37
圖2-15非均勻空間變化參數β對圓形孔洞邊界上ϕx=π的位移振幅影響 37
圖2-16波數k對圓形孔洞邊界上ϕx=π/2 的動態應力集中因子影響 38
圖2-17非均勻空間變化參數β對圓形孔洞邊界上ϕx=π/2 的動態應力集中因子影響 38
圖2-18圓孔洞間距對邊界位移振幅的影響 39
圖2-19 ka=1.0時零場邊界積分方程法之等高線結果 40
圖2-20 ka=1.0時有限元素法之等高線結果 40
圖2-21 ka=1.0時零場邊界積分方程法之圓形孔洞位移振幅分佈 41
圖2-22 ka=1.0時有限元素法之圓形孔洞位移振幅分佈 41
圖2-23零場邊界積分方程法 (ka=1) 的動態應力集中因子 42
圖2-24本論文使用方法與有限元素法之動態應力集中因子比較圖 42
圖3-1均質-功能梯度材料中含單顆圓形孔洞示意圖 43
圖3-2全場問題拆解示意圖 44
圖3-3輻射場拆解示意圖 48
圖3-4均質全平面與功能梯度材料全平面 49
圖3-5 kR=2.0,h/R=1.5,x1軸範圍-5~5的界面位移 62
圖3-6 βR=0.2,h/R=1.5,x1軸範圍-5~5的界面位移 62
圖3-7 βR=0.2,kR=2.0,x1軸範圍-5~5的界面位移 63
圖3-8 kR=2.0,h/R=1.5,x1軸範圍-20~20的界面位移 63
圖3-9 βR=0.2,h/R=1.5,x1軸範圍-20~20的界面位移 64
圖3-10 βR=0.2,kR=2.0,x1軸範圍-20~20的界面位移 64
圖3-11解析解界面位移(kR=2,β=0,h/R=1.5) 65
圖3-12不同非均勻空間參數β的圓孔洞 動態應力集中因子 (kR=2.0,h/R=1.5) 66
圖3-13 h/R=1.1(solid)與h/R=5.0(dash line)在不同波數k的圓孔洞 動態應力集中因子 (βR=0) 67
圖3-14不同波數k的圓孔洞 動態應力集中因子 (βR=0.2,h/R=1.5) 68
圖3-15 不同的h/R的圓孔洞 動態應力集中因子 (βR=0.2,kR=2.0) 69

表目錄
表2-1 閉合型基本解與退化核之等高線圖 15
表2-2零場邊界積分方程法與有限元素法之比較 28

參考文獻 參考文獻
[1] Chen J.T., Shen W.C. and Wu A.C. “Null-field Integral Equations for Stress Field around Circular Holes under Antiplane Shear” Engineering Analysis with Boundary Elements, 30, 205-217, (2006).
[2] 王保林, 韩杰才, 张幸红, “非均匀材料力学”, 科学出版社, 北京市,(2003).
[3] 新野正之, 平井敏雄, 渡辺龙三. “倾斜机能材料―宇宙机用超耐热材料を目指して” [J]. 日本复合材料学会志, (10):1-8, (1987).
[4] Lee W.Y., Bae Y.W., Berndt C.C., Erdogan F., Lee Y.D. and Mutasim Z. “The concept of functionally gradient materials for advanced thermal barrier coating applications: a review.” Journal of the American Ceramic Society 79, (1996).
[5] Shih, Y.T., SH-wave scattering by circular hole in a functionally graded material using the null-field boundary integral equation method, Thesis supervised by Prof. Jia-Wei Lee, Department of Civil Engineering, Tamkang University, New Taipei City, Taiwan (2019).
[6] Parameswaran V. and Shukla A. “Crack-tip stress fields for dynamic fracture in functionally gradient materials.” Mechanics of Materials, 31, 579-596, (1999).
[7] Li H., Lambros J., Cheeseman B.A. and Santare M.H., “Experimental investigation of the quasi-static fracture of functionally graded materials.” International Journal of Solids and Structures 37, 3715-3732, (2000).
[8] Popov, G.I., “Axisymmetric contact problem for an elastic inhomogeneous half-space in the presence of cohesion” Journal of Applied Mathematics and Mechanics 37, 1109-1116, (1973).
[9] Kassir M.K. “The Reissner-Sagoci problem for a non-homogeneous solid.” International Journal of Engineering Science 8, 875-885, (1970).
[10] Yang Y.Y. “Stress analysis in a joint with a functionally graded material under a thermal loading by using the Mellin transform method.” International Journal Solids and Structures 35, 1261-1287, (1998).
[11] Kassir M.K. and Chuaprasert M.F. “A rigid punch in contact with a nonhomogeneous elastic solid.” Transactions of the ASME, Journal of Applied Mechanics 42, 1019-1024, (1974).
[12] Ozturk M. and Erdogan F., “Antiplane shear crack problem in bonded materials with a graded interfacial zone.” International Journal of Engineering Science 31, 1641-1657, (1993).
[13] Trifunac M.D. “Scattering of plane SH waves by a semi-cylindrical canyon” Earthquake Engineering and Structural Dynamic, 1, 267-281, (1973).
[14] Yang Z.L., Hei B.P. and Wang Y. “Scattering by circular cavity in radially inhomogeneous medium with wave velocity variation” Applied Mathematics and Mechanics Ed., 36(5), 599-608, (2015).
[15] Hei B.P, Yang Z.L. and Chen Z.G. “Scattering of shear waves by an elliptical cavity in a radially inhomogeneous isotropic medium” Earthquake Engineering and Engineering Vibration 15, 145-151, (2016).
[16] Mow C.C. and Pao Y.H. “The diffraction of elastic waves and dynamic stress concentrations” Crane and Russak, New York, (1973).
[17] Fang X.Q., Hu C. and Du S.Y. “Strain energy density of a circular cavity buried in semi-infinite functionally graded materials subjected to shear waves” Theoretical and Applied Fracture Mechanics, 46, 166-174, (2006).
[18] Fang X.Q., Hu C. and Huang W.H. “Strain energy density of a circular cavity buried in a semi-infinite slab of functionally graded materials subjected to anti-plane shear waves” International Journal of Solids and Structures, 44, 6987-6998, (2007).
[19] Martin P.A. “Scattering by a Cavity in an Exponentially Graded Half-Space” Journal of Applied Mechanics MAY, 76, / 031009-3, (2009).
[20] Martin P.A. “Scattering by defects in an exponentially graded layer and misuse of the method of images” International Journal of Solids and Structures, 48, 2164-2166, (2011).
[21] Liu Q., Zhao M. and Zhang C. “Antiplane scattering of SH waves by a circular cavity in an exponentially graded half space” International Journal of Engineering Science, 78, 61-72, (2014).
[22] Ghafarollahi A. and Shodja H.M. “Scattering of SH-waves by an elliptic cavity/crack beneath the interface between functionally graded and homogeneous half-spaces via multipole expansion method” Journal of Sound and Vibration, 435, 372-389, (2018).
[23] Chen J.T. and Wu A.C. “Null-Field Approach for the Multi-inclusion Problem Under Antiplane Shears” Journal of Applied Mechanics, 74, 469-487, (2007).
[24] Chen J.T., Hsiao C.C. and Leu S. Y. “Null-Field Integral Equation Approach for Plate Problems With Circular Boundaries” Journal of Applied Mechanics, 73, 679-693, (2006).
[25] Chen J.T. and Wu A.C. “Null-field approach for piezoelectricity problems with arbitrary circular inclusions” Engineering Analysis with Boundary Elements, 30, 971-993, (2006).
[26] Chen J.T., Chen C.T., Chen P.Y. and Chen I.L. “A semi-analytical approach for radiation and scattering problems with circular boundaries” Computer Methods in Applied Mechanics and Engineering, 196, 2751-2764, (2007).
[27] Chen J.T, Chen P.Y. and Chen C.T. “Surface motion of multiple alluvial valleys for incident plane SH-waves by using a semi-analytical approach” Soil Dynamics and Earthquake Engineering, 28, 58-72, (2008).
[28] Chen J.T., Lee J.W., Wu C.F. and Chen I. L. “SH-wave diffraction by a semi-circular hill revisited: A null-field boundary integral equation method using degenerate kernels” Soil Dynamics and Earthquake Engineering, 31, 729-736, (2011).
[29] Chen J.T., Lee J.W. and Shyu W.S. “SH-wave scattering by a semi-elliptical hill using a null-field boundary integral equation method and a hybrid method” Geophysical Journal International, 188, 177-194 (2011).
[30] Chen J.T., Lee J.W. and Tu Y.C. “Focusing phenomenon and near-trapped modes of SH waves” Earthquake Engineering and Engineering Vibration, 15, 477-486, (2016).
[31] Chen J.T., Lee Y.T. and Lin Y.J. “Interaction of water waves with vertical cylinders using null-field integral equations” Applied Ocean Research, 31, 101-110, (2009).
[32] Chen J. T., Kao S.K., Hsu Y.H. and Fan Y “Scattering problems of the SH wave by using the null-field boundary integral equation method” Journal of Earthquake Engineering, 22, 1363-2469, (2017).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2020-08-04公開。
  • 同意授權瀏覽/列印電子全文服務,於2020-08-04起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信