淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-0308201705180100
中文論文名稱 超斥水聚二乙烯苯/木粉薄片的製造與應用
英文論文名稱 Manufacturing and Application of Superhydrophobic Polydivinylbenzene/Wood(p) Sheets
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 105
學期 2
出版年 106
研究生中文姓名 林韋宏
研究生英文姓名 Wei-Hung Lin
學號 605350015
學位類別 碩士
語文別 中文
口試日期 2017-07-13
論文頁數 87頁
口試委員 指導教授-林清彬
委員-廖文毅
委員-劉昭華
中文關鍵字 聚二乙烯苯  超斥水  接觸角  滑動角  可靠度  水氣分離 
英文關鍵字 Polydivinylbenzene  Superhydrophobic  Contact angle  Sliding angle  Durability  Liquid/Gas separation 
學科別分類 學科別應用科學機械工程
中文摘要 超斥水合成物及其超斥水的應用已被大量研究及使用,但基於許多超斥水合成物含有氟或將超斥水合成物塗佈於各種基材表面時,該超斥水合成物塗層由於被磨擦或沖刷,會失去超斥水的特性,基於超斥水合成物塗層的無毒與可靠度,本研究將含有高壓容器容積比例為70%之二乙烯苯單體、乙酸乙酯溶劑及偶氮二異丁腈起始劑之A混合溶液,進行高壓溶劑熱法已成功製備無毒且具有超斥水之聚二乙烯苯(PDVB)合成物,壓製成PDVB超斥水薄片時,其靜態接觸角與滑動角分別約為163°及1°。將已去木質素的木粉與含有高壓容器容積比例為70%之A混合溶液,經高壓溶劑熱法已成功製備具有超斥水之木粉,將超斥水木粉壓製成片後製成靜態接觸角與滑動角分別約為148°與2°的超斥水木粉薄片。為了增加超斥水合成物塗層的可靠度及其應用,使用環氧樹脂將該超斥水木粉薄片黏接於S25C碳鋼與6061鋁合金形成具有超斥水的複合工件。實驗結果顯示超斥水木粉薄片/環氧樹脂/S25C鐵片複合工件經過耐酸(1M之鹽酸水溶液)鹼(pH13.9之氫氧化鈉)試驗後,該複合工件的靜態接觸角與滑動角約為153°與2°以下。使用6kPa固定負荷的菜瓜布磨擦該複合工件後,該複合工件的靜態接觸角與滑動角約為146°與2°以下。使用含有1wt%細砂(平均粒徑約為300um)之純水沖刷超斥水木粉薄片(內壁)/環氧樹脂/6061鋁管複合工件後,超斥水木粉薄片之靜態接觸角與滑動角略降分別約為140°與18°。另外,將開孔超斥水木粉薄片用螺栓鎖定於兩個中空壓克力管的法蘭後,成功設計一款可有效及快速分離液體中含有氣體之水氣分離模組。
英文摘要 The superhydrophobic material and superhydrophobic application has been widely applied and extensively studied. Some superhydrophobic materials have toxic compounds such as fluoride or these are prone to lose the superhydrophobicity when they are being abraded or eroded. In the present study has successfully made a superhydrophobic coating with non-toxic and long-lasting durability. Firstly, we prepared a non-toxic polydivinylbenzene (PDVB) plates under high pressure solvothermal method with solution A – i.e., mixed solutions of divinylbenzene monomer, ethyl acetate solvent and azobisisobutyronitrile initiator in 70% volume ratio of high pressure vessel. The experimental results showed that the PDVB plate is approximately 163° contact angle and the sliding angle (SA) is about 1°. Additionally, the present experiment using delignined wood powder with similar parameters as above to form a superhydrophbic wood powder plate and produced CA and SA approximately 148° and 2°. In order to improve the durability and application, the superhydrophobic wood powder plate was adhered to S25C carbon steel and 6061 aluminum alloy pipe with epoxy resin to form a superhydrophobic composite workpieces. The experimental results show that the CA and SA is 153° and 2°,respectively during the test of the alkali (pH 13.9 sodium hydroxide)and the acid (1M aqueous solution of HCl) treatment. Additional, the 6kPa fixed load of melon cloth was exerted on the composite workpieces with CA and SA is 146° and 2°. Liquid erosion is using water containing 1wt% fine sand (the average particle size is 300μm) with numbers of CA 140° and SA 18°. In addition, we successfully designed a module that can effectively and quickly separate the gas from the liquid. It is prepared by fixed the openings superhydrophobic wood powder plate between the two flanges of acrylic tube with bolt.
論文目次 總目錄
壹、導論 1
 1.1前言 1
 1.2文獻回顧 2
  1.2.1潤濕性質與機制 2
   1.2.1.1 Young’s Equation 2
   1.2.1.2 Wenzel Model 3
   1.2.1.3 Cassie-Baxter Model 3
   1.2.1.4滑動角 5
  1.2.2蓮花效應 6
  1.2.3木材的結構 9
  1.2.4木材之去木質素方法 10
  1.2.5超斥水合成物之製備方法 14
 1.3研究動機 17
貳、實驗步驟 18
 2.1實驗材料 18
 2.2實驗設備 19
 2.3斥水合成物的製備 21
 2.4木粉的去木質素處理 22
 2.5去木質素木粉的斥水處理 23
 2.6斥水合成物/接著劑/S25C鐵片複合工件的製作 24
 2.7 X光繞射儀 28
 2.8傅立葉轉換紅外光譜儀 28
 2.9複合工件A、B、C、D之耐酸鹼試驗 30
 2.10複合工件A、B、C、D之耐刮試驗 30
 2.11複合工件E之沖刷試驗 31
 2.12顯微結構觀察 32
 2.13接觸角量測 32
 2.14滑動角及液滴彈跳量測 33
 2.15水氣分離試驗 33
參、結果與討論 36
 3.1超斥水合成物 36
  3.1.1 超斥水合成物之聚合反應、型態與晶相分析 36
  3.1.2 超斥水合成物之FTIR分析 38
  3.1.3 超斥水薄片之靜態接觸角與滑動角 39
 3.2超斥水木粉 40
  3.2.1超斥水木粉之外觀型態與顯微結構 40
  3.2.2超斥水木粉之FTIR分析 44
  3.2.3水滴在超斥水木粉薄片之靜態接觸角、滑動角與彈跳 46
 3.3超斥水合成物/接著劑/S25C鐵片複合工件之型態與超斥水性
質 51
  3.3.1超斥水合成物/接著劑/S25C鐵片複合工件之型態 51
  3.3.2水滴在超斥水合成物/接著劑/S25C鐵片複合工件之靜態接
觸角、滑動角與水滴彈跳 55
  3.3.3超斥水合成物/接著劑/S25C鐵片複合工件的耐酸鹼性質 60
  3.3.4超斥水合成物/接著劑/S25C鐵片複合工件的耐刮性質 71
 3.4超斥水木粉/環氧樹脂/鋁管複合工件之型態與超斥水性質 77
 3.5水氣分離效果 80
肆、結論 82
伍、參考文獻 84











圖目錄
圖1.1(a)Young’s Equation;(b)Wenzel State;(c)Cassie-Baxter
   State;(d)滑動角之示意圖 4
圖1-2(a)赫蕉;(b)倪藤;(c)玉蘭;(d)歐洲山毛櫸;(e)
   蓮;(f)芋;(g)甘藍;(h)Mutisia decurrens之SEM照片 7
圖1-3蓮花表面蠟質結晶(a)低倍率;(b)高倍率之SEM照片 8
圖1-4(a)平滑葉片表面;(b)粗糙葉片表面之自我清潔示意圖 9
圖2-1高壓溶劑熱法(a)設備照片(b)設備內部之示意圖 22
圖2-2(a)斥水合成物/接著劑/S25C鐵片複合工件(b)斥水木粉/
環氧樹脂/鋁管複合工件之示意圖 27
圖2-3 FTIR示意圖 29
圖2-4耐刮試驗示意圖 30
圖2-5沖刷試驗的示意圖 31
圖2-6開孔斥水合成物薄片上視之示意圖 34
圖2-7(a)斥水薄片固定於壓克力材質法蘭零件中央之示意圖;
(b)水氣分離試驗裝置之照片 35
圖3-1 PDVB之(a)粉末照片;(b)薄片照片;(c)SEM照片;
(d)XRD圖 37
圖3-2 PDVB之FTIR圖 38
圖3-3 PDVB之(a)靜態接觸角照片;(b)滑動角照片 40
圖3-4(a)未作去木質素之木粉;(b)去木質素之木粉;(c)超斥
   水木粉粉末;(d)未作去木質素之木粉薄片;(e)去木質素
   之木粉薄片;(f)超斥水木粉薄片之照片 42
圖3-5 (a)未作去木質素之木粉;(b)去木質素之木粉;(c)超斥
   水木粉粉末;(d)未作去木質素之木粉薄片;(e)去木質素
   之木粉薄片;(f)超斥水木粉薄片之SEM照片 43
圖3-6去木質素木粉之FTIR圖 44
圖3-7超斥水木粉之FTIR圖 45
圖3-8(a)未作去木質素之木粉薄片;(b)去木質素之木粉薄片;
(c)超斥水木粉薄片之靜態接觸角照片 48
圖3-9(a)未作去木質素之木粉薄片;(b)去木質素之木粉薄片;
(c)超斥水木粉薄片之滑動角照片 49
圖3-10(a)未作去木質素之木粉薄片;(b)去木質素之木粉薄片;
(c)超斥水木粉薄片之水滴彈跳 50
圖3-11複合工件之示意圖 51
圖3-12(a)拋光後S25C鐵片;(b)超斥水木粉粉末/環氧樹脂/S25C
薄片;(c)超斥水木粉薄片/環氧樹脂/S25C鐵片;(d)PDVB
薄片/環氧樹脂/S25C鐵片;(e)超斥水木粉薄片/防鏽漆/S25C
薄片;(f)防鏽漆/S25C鐵片之照片 53
圖3-13(a)拋光後S25C鐵片;(b)超斥水木粉粉末/環氧樹脂/S25C
薄片;(c)超斥水木粉薄片/環氧樹脂/S25C鐵片;(d)PDVB
薄片/環氧 樹脂/S25C鐵片;(e)超斥水木粉薄片/防鏽漆/S25C
薄片之共軛焦剖斷面照片 54
圖3-14(a)拋光後S25C鐵片;(b)超斥水木粉粉末/環氧樹脂/S25C
薄片;(c)超斥水木粉薄片/環氧樹脂/S25C鐵片;(d)PDVB
薄片/環氧樹脂/S25C鐵片;(e)超斥水木粉薄片/防鏽漆/S25C
薄片之靜態接觸角照片 56
圖3-15(a)拋光後S25C鐵片;(b)超斥水木粉粉末/環氧樹脂/S25C
薄片;(c)超斥水木粉薄片/環氧樹脂/S25C鐵片;(d)PDVB
薄片/環氧樹脂/S25C鐵片;(e)超斥水木粉薄片/防鏽漆/S25C
薄片之滑動角照片 58
圖3-16(a)拋光後S25C鐵片;(b)超斥水木粉粉末/環氧樹脂/S25C
薄片;(c)超斥水木粉薄片/環氧樹脂/S25C鐵片;(d)PDVB
薄片/環氧樹脂/S25C鐵片;(e)超斥水木粉薄片/防鏽漆/S25C
薄片之水滴彈跳 59
圖3-17(a)拋光後S25C鐵片;(b)超斥水木粉粉末/環氧樹脂/S25C
薄片;(c)超斥水木粉薄片/環氧樹脂/S25C鐵片;(d)PDVB
薄片/環氧樹脂/S25C鐵片;(e)超斥水木粉薄片/防鏽漆/S25C
薄片;(f)防鏽漆/S25C鐵片之耐酸試驗後照片 61
圖3-18(a)拋光後S25C鐵片;(b)超斥水木粉粉末/環氧樹脂/S25C
薄片;(c)超斥水木粉薄片/環氧樹脂/S25C鐵片;(d)PDVB
    薄片/環氧樹脂/S25C鐵片;(e)超斥水木粉薄片/防鏽漆/S25C
薄片;(f)防鏽漆/S25C鐵片之耐鹼試驗後照片 63
圖3-19(a)拋光後S25C鐵片;(b)超斥水木粉粉末/環氧樹脂/S25C
薄片;(c)超斥水木粉薄片/環氧樹脂/S25C鐵片;(d)PDVB
薄片/環氧樹脂/S25C鐵片;(e)超斥水木粉薄片/防鏽漆/S25C
薄片耐酸後之靜態接觸角照片 66
圖3-20(a)拋光後S25C鐵片;(b)超斥水木粉粉末/環氧樹脂/S25C
薄片;(c)超斥水木粉薄片/環氧樹脂/S25C鐵片;(d)PDVB
薄片/環氧樹脂/S25C鐵片;(e)超斥水木粉薄片/防鏽漆/S25C
薄片耐酸後之滑動角照片 67
圖3-21(a)拋光後S25C鐵片;(b)超斥水木粉粉末/環氧樹脂/S25C
薄片;(c)超斥水木粉薄片/環氧樹脂/S25C鐵片;(d)PDVB
薄片/環氧樹脂/S25C鐵片;(e)超斥水木粉薄片/防鏽漆/S25C
薄片耐鹼後之靜態接觸角照片 69
圖3-22(a)拋光後S25C鐵片;(b)超斥水木粉粉末/環氧樹脂/S25C
薄片;(c)超斥水木粉薄片/環氧樹脂/S25C鐵片;(d)PDVB
薄片/環氧樹脂/S25C鐵片;(e)超斥水木粉薄片/防鏽漆/S25C
薄片耐鹼後之滑動角照片 70
圖3-23(a)拋光後S25C鐵片;(b)超斥水木粉粉末/環氧樹脂/S25C
薄片;(c)超斥水木粉薄片/環氧樹脂/S25C鐵片;(d)PDVB
薄片/環氧樹脂/S25C鐵片;(e)超斥水木粉薄片/防鏽漆/S25C
薄片耐刮試驗前之SEM照片 72
圖3-24(a)拋光後S25C鐵片;(b)超斥水木粉粉末/環氧樹脂/S25C
薄片;(c)超斥水木粉薄片/環氧樹脂/S25C鐵片;(d)PDVB
薄片/環氧樹脂/S25C鐵片;(e)超斥水木粉薄片/防鏽漆/S25C
薄片耐刮試驗後之SEM照片;(f)超斥水木粉薄片/防鏽漆
/S25C鐵片耐刮試驗後之共軛焦照片 73
圖3-25(a)拋光後S25C鐵片;(b)超斥水木粉粉末/環氧樹脂/S25C
薄片;(c)超斥水木粉薄片/環氧樹脂/S25C鐵片;(d)PDVB
薄片/環氧樹脂/S25C鐵片;(e)超斥水木粉薄片/防鏽漆/S25C
薄片耐刮試驗後之靜態接觸角照片 75
圖3-26(a)拋光後S25C鐵片;(b)超斥水木粉粉末/環氧樹脂/S25C
薄片;(c)超斥水木粉薄片/環氧樹脂/S25C鐵片;(d)PDVB
薄片/環氧樹脂/S25C鐵片;(e)超斥水木粉薄片/防鏽漆/S25C
薄片耐刮試驗後之滑動角照片 76
圖3-27(a)複合工件之照片;(b)複合工件剖斷面之共軛焦照片;
(c)複合工件沖刷實驗之照片;(d)複合工件沖刷後斷面之
共軛焦照片;(e)複合工件沖刷後上視圖之SEM照片 78
圖3-28複合工件沖刷後之(a)靜態接觸角照片; (b)滑動角照
片 79
圖3-29(a)水氣分離主零件;(b)水氣分離試驗;(c)澄清石灰水
與二氧化碳反應前;(d)澄清石灰水與二氧化碳反應中;
(e)澄清石灰水與二氧化碳過反應之照片;(f)水氣分離原
理之示意圖 81
參考文獻 [1] W. Barthlott , C. Neinhuis , ‘‘Purity of the sacred lotus ,or escape from contamination in biological surfaces.’’ Planta, 202 (1997) 1-8
[2] Nishino T., Meguro M., Nakamae K., Matsushita M., Ueda Y., ‘‘The lowest surface free energy based on-CF3 alignment. ’’ Langmuir Vol.15 (1999) 4321–4323
[3] Robert N. Wenzel, ‘‘Resistance of solid surface to wetting by water.’’ Ind. Eng. Chem, Vol. 28, No.8 (1936) 988-994
[4] Cassie, A.B.D, Baxter S., ‘‘Wettability of porous surfaces.’’ Trans. Faraday Soc, Vol.40 (1944) 546-551
[5] Cassie, A.B.D, ‘‘Contact angles.’’ Discuss. Faraday Soc, Vol.3 (1948) 11-16
[6] Furmidge C.G., Student at phase interfaces, ‘‘The sliding of liquid drops on solid surface and a theory for spray retention.’’ J. Colloid Sci, Vol.17 (1962) 309-324
[7] Taolei Sun, Lin Feng, Xuefeng Gao, Lei Jiang, ‘‘Bioinspired surfaces with special wettability.’’ Acc. Chem. Res, Vol.38 (2005), 644-652
[8] Jean-Pierre Barette, Claude Hazard et Jérôme Mayer, ‘‘Mémotech Bois et Matériaux Associés.’’ Paris: Éditions Casteilla, Vol.22 (1996)
[9] Yu-Chang Su, ‘‘Fundermentals of sulfate pulping.’’ Journal of pulp and paper technology, Vol.9, No.1 (2005) 1-29
[10] Yoko Okahisa, Ayako Yoshida, Satoshi Miyaguchi, Hiroyuki Yano, ‘‘Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays.’’ Composites science and technology, Vol.69 (2009) 1958-1961
[11] Yuanyuan Li, Qiliang Fu, Shun Yu, Min Yan, Lars Berglund, ‘‘Optically transparent wood from a nanoporous cellulosic template : combining functional and structural performance.’’ Biomacromolecules, Vol.17 (2016), 1358-1364
[12] Wentao Gan, Likun Gao, Shaoliang Xiao, Wenbo Zhang, Xianxu Zhan, Jian Li, ‘‘Transparent magnetic wood composites based on immobilizing Fe3O4 nanoparticles into a delignified wood template.’’ J Mater Sci, Vol.52 (2017) 3321
[13] Mingwei Zhu, Tian Li, Chelsea S. Davis, Yonggang Yao, Jiaqi Dai, Yanbin Wang, Feras AlQatari, Jeffrey W. Gilman, Liangbing Hu, ‘‘Transparent and haze wood composites for highly efficient broadband light management in solar cells.’’ Nano Energy, Vol.26 (2016) 332-339
[14] N. J. Shirtcliffe, G. McHale, M. I. Newton, G. Chabrol, C. C. Perry, ‘‘Dual-Scale roughness produces unusually water-repellent surfaces.’’ Advanced Materials, Vol.16, Issue 21 (2004) 1929-1932
[15] S. Shibuichi, T. Yamamoto, T. Onda, K, Tsujii, ‘‘Super water-and oil-repellent surfaces resulting from fractal structure.’’ Journal of Colloid and Interface Science, Vol.208, Issue.1 (1998) 287-294
[16] Jeffrey P. Youngblood and Thomas J. McCarthy, ‘‘Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma.’’ Macromolecules, Vol.32, No.20 (1999) 6800-6806
[17] R. Blossey, ‘‘Self-cleaning surfaces virtual realities.’’ Nature Materials, Vol.2, No.5 (2003) 301-306
[18] Didem Oner, Thomas J. McCarthy, ‘‘Ultrahydrophobic surfaces. Effects of topography length scales on wettability.’’ Langmuir, Vol.16, No.20 (2000) 7777-7782
[19] Hitoshi Ogihara, Jing Xie, Tetsuo Saji, ‘‘Factors determining wettability of superhydrophobic paper prepared by spraying nanoparticle suspensions.’’ Colloids and Surfaces A : Physicochem. Eng. Aspect, Vol.434 (2013) 35-41
[20] Lebo Xu, Raghuraman G. Karunakaran, Jia guo, Shu Yang, ‘‘Transparent superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles.’’ Appl. Mater. Interfaces, Vol.4 (2012) 1118-1125
[21] Raghuraman G. Karunakaran, chemg-Hsin Lu, Zanhe Zhang, Shu Yang, ‘‘Highly transparent superhydrophobicsurfaces from the coassembly of nanoparticles.’’ Langmuir, Vol.27 (2011) 4594-4602
[22] Yiqiang Wu, Shanshan Jia, Yan Qing, Sha Luo, Ming Liu, ‘‘A versatile and efficient method to fabricate durable superhydrophobic surfaces on wood, lignocellulosic fiber, glass, and metal substrates.’’ J. Mater. Chem. A, Vol.4 (2016) 14111-14121
[23] William S. Y. Wong, Zbigniew H. Stachurski, David R. Nisbet, Antonio Tricoli, ‘‘Ultra-durable and transparent self-cleaning surface by large-scale self-assembly of hierarchical interpenetrated polymer networks.’’ Appl. Mater. Interfaces, Vol.8 (2016) 13615-13623
[24] Weici Wu, Xiaolong Wang, Xinjie Liu, Feng Zhou, ‘‘Spray-coated fluorine-free superhydrophobic coatings with easy repairability and applicability.’’ Appl. Mater. Interfaces, Vol.1, No.8 (2009) 1656-1661
[25] Yong Li, Zhaozhu Zhang, Bo Ge, Xuehu Men, Qunji Xue, ‘‘One-pot, template-free synthesis of robust superhydrophobic polymer monolith with an adjustable hierarchical porous structure.’’ Green Chem, Vol.18 (2016) 5266-5272
[26] Yong-Lai Zhang, Jian-Nan Wang, Yan He, Bin-Bin Wei, Feng-Shou Xiao, ‘‘Solvothermal synthesis of nanoporous polymer chalk for painting superhydrophobic surfaces.’’ Langmulr, Vol.27 (2011) 12585-12590
[27] Xinchun Tian, Santosh Shaw, Kara R. Lind, Ludovico Cademartiri, ‘‘Thermal processing of silicones for green, scalable, and Healable superhydrophobic coatings’’ Adv. Mater, Vol.28 (2016) 3677-3682
[28] Colin R. Crick, Ivan P. Parkin, ‘‘Relationship between surface hydrophobicity and water bounces-a dynamic method for accessing surface hydrophobicity.’’ J. Mate. Chem. A, Vol.1 (2013) 799-804
[29] Jason Tam, Gino Palumbo, Uwe Erb, ‘‘Recent advances in superhydrophobic electrodeposits’’ Materials, Vol.9 (2016) 151
[30] Hugh Burgess, Charles Watt, ‘‘Wood-paper Co. v. fibre disintegrating Co.’’ The wood-paper patent, 90 U.S. 566 (1874)
[31] Hartler n., ‘‘Extended delignification in kraft cooking-a new concept’’Svensk papperstidning, Vol.15 (1978) 223-233
[32] Carl Ferdinand Dahl, ‘‘Process of manufacturing cellulose from wood’’ United states patent, US296935 A (1884)
[33] Masaru Nakahare, Chihiro Wakai, Yoshitaka Yoshimoto, ‘‘Dynamics of hydrophobic hydration of benzene’’ J. Phys. Chem., Vol.100, No.4 (1996) 1345-1349
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2022-08-16公開。
  • 同意授權瀏覽/列印電子全文服務,於2022-08-16起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信