§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0308201622321300
DOI 10.6846/TKU.2016.00110
論文名稱(中文) 研發沉浸式薄膜過濾系統以去除海水中之結垢物質
論文名稱(英文) Design of submerged membrane filtration systems for removing the foulants from seawater
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 蔡雅倫
研究生(英文) Ya-Lun Cai
學號 604400043
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2016-07-05
論文頁數 120頁
口試委員 指導教授 - 黃國楨
委員 - 莊清榮
委員 - 鄭東文
委員 - 童國倫
關鍵字(中) 沉浸式微過濾
海水淡化前處理
活性碳
吸附
關鍵字(英) desalination pretreatment
coagulation
dynamic microfiltration
submerged microfiltration
powdered activated carbon
第三語言關鍵字
學科別分類
中文摘要
本研究以沉浸式過濾系統進行海水淡化前處理。比較不同程序對於濾速與出水品質的提升。使用0.45μm之PVDF膜與活性碳動態膜對模擬海水進行過濾,並探討加入凝聚程序對於整個系統的過濾性質與水質影響。其中活性碳動態膜的生成方法,是預過濾多孔性粉末狀活性碳(PAC),使其於0.45μm PVDF膜面上形成一定量之活性碳濾餅層,此層濾餅層即稱之為動態膜。希望藉由活性碳動態膜複合式之系統,可將海水中之有機物質及無機微粒去除,以降低逆滲透程序之薄膜結垢的發生。
實驗結果顯示,用0.45μm PVDF膜過濾模擬海水,過濾初期因粒子於膜面上累積使濾速下降快速,於過濾結束後80kPa之濾速較40kPa高30%,比較使用活性碳動態膜與0.45μm PVDF膜之膜阻力可發現,於80 kPa操作下,預過濾10分鐘生成之活性碳動態膜之阻力較0.45μm PVDF膜高133%,相較於預過濾5分鐘高13%,但厚度卻增加了50%,故選用10分鐘做為動態膜預過濾時間。本研究使用5 mg/L幾丁聚醣作為凝聚劑,並以0.45μm PVDF膜過濾,其濾速會隨透膜壓差增加而提升,於過濾時間結束時,透膜壓差80kPa與60kPa相較於40kPa時濾速可提升24%與16%。因添加凝聚劑後使模擬海水中之物質粒徑分布增加,形成結構較鬆散之濾餅層,使濾餅所造成的阻力下降,因此無論使用0.45μm PVDF膜或活性碳動態膜皆可使濾速提升。最後綜合比較出水品質(COD、DOC、濁度、腐植酸濃度)與濾速之提升可知結合使用凝聚程序結合活性碳動態膜之複合系統可使上述移除率達最大,且有效使濾速提升。相較於將活性碳懸浮於海水中,使用動態膜可大幅減少活性碳用量。而使用沉浸式過濾系統生成動態膜之時間僅為掃流系統所需時間的8%,可大幅減少動態膜預過濾時間。
英文摘要
Hybrid submergedmicrofiltration systemsforpretreatment ofseawater desalinationwere studied. The permeate flux and water quality among different operations, such as 0.45μm hydrophilic membranes, dynamic membrane formed bypowder activated carbon (PAC), dynamic membrane coupled with coagulation operationwere measured and compared.The PAC dynamic membranes, constructed bypre-coatingPAC on the primarymembrane,were used forabsordingorganic material andinorganic fine particles in seawater to prevent the membrane fouling in following Reverse Osmosis(RO) units.
Artificial seawater was filtered using0.45μm PVDFmembrane, the filtration flux increased30% asthe transmembrane pressure increased from 40 to 80kPa. However,the flux decayed more quickly under higher pressures.The membrane resistance of the PAC dynamic membrane was133%higherthan that of 0.45μm PVDF membraneunder 80 kPa.ThePACthicknessincreased 50% with twice coating time. However the resistanceonly increased 13%. It was attributed to the large PAC particle size and loose packing structure of dynamic membrane.
Tocombine coagulationoperations withsubmergedfiltration processes, either theuseof 0.45μm PVDFmembrane or PAC dynamic membrane, the flux was improved.The flux of seawaterwithcoagulant increased with increasing transmembranepressure.However, theflux declineddramatically at the beginning of filtration, the major resistance sources werethose organic materials fouling on themembranes.Comparing the performances of different operations, the hybrid system coupled with coagulation and PAC dynamic membrane behaved the highest efficiency of pollutant removal and highest permeate flux.The quality of permeate water, COD,DOC,turbidityand concentration of humic acid, for each operation was measured.The permeate quality met the requirement of RO feed.On the other hand,compared to directly add PAC into suspensionto adsorb organic material, the use of PAC dynamic membrane significantly reduce the cost of PAC.Beside, the submerged system only cost 8% of pre-coating time by cross-flow system.
第三語言摘要
論文目次
中文摘要	I
英文摘要	II
目 錄	IV
圖目錄	VIII
表目錄	XI
第一章	緒論	1
1-1薄膜分離程序	1
1-2海水淡化技術	4
1-3研究動機與目的	7
第二章	文獻回顧	9
2-1活性碳吸附	9
2-1-1活性碳之吸附原理	10
2-1-3活性碳之種類及操作型態	12
2-2動態膜之機制與性質	12
2-3化學混凝原理	13
2-3-1混凝之機制	13
2-3-2影響混凝之因素	17
2-4薄膜生物反應器	19
2-4-1薄膜生物反應器特性	20
2-4-2薄膜生物反應器種類	22
2-4-3 SMBR中結垢的性質	24
2-5薄膜過濾前處理	26
第三章	理論	31
3-1阻力串聯模式	31
3-2濾餅性質	32
3-3粒子力平衡方程式	33
第四章	實驗裝置與方法	39
4-1沉浸式過濾實驗裝置	39
4-2實驗材料	41
4-2-1實驗藥品	41
4-2-2實驗濾膜	44
4-3分析儀器	45
4-4實驗流程	47
4-4-1粉末狀活性碳(Powder activated carbon,PAC)懸浮液配置	47
4-4-2模擬海水配置	47
4-4-3實驗步驟	51
4-4-4出水品質之分析方法	54
第五章 結果與討論	57
5-1模擬海水沉浸式微過濾性質	57
5-1-1模擬海水之沉浸式過濾濾速	57
5-1-2濾餅性質及阻力分析	60
5-1-3出水品質分析	66
5-2結合活性碳動態膜之沉浸式過濾系統	68
5-2-1粉末狀活性碳厚度分析	68
5-2-2粉末狀活性碳之沉浸式微過濾	72
5-2-3使用活性碳動態膜於不同壓差對濾速之影響	75
5-2-4使用活性碳動態膜於不同壓差對濾餅性質之影響	77
5-2-5使用活性碳動態膜於不同壓差對出水品質之影響	79
5-3結合凝聚之沉浸式過濾系統	80
5-3-1幾丁聚醣之杯瓶試驗	80
5-3-2使用凝聚劑於模擬海水於不同壓差對濾速之影響	83
5-3-3使用凝聚劑於模擬海水於不同壓差對濾餅性質之影響	85
5-3-4使用凝聚劑於模擬海水於不同壓差對出水品質之影響	88
5-4使用凝聚程序結合PAC動態膜之沉浸式過濾系統	89
5-4-1結合凝聚與PAC動態膜於不同壓差對濾速之影響	89
5-4-2結合凝聚與PAC動態膜於不同壓差對濾餅性質之影響	92
5-4-3結合凝聚與PAC動態膜於不同壓差對出水品質之影響	94
5-5模擬海水於不同操作程序下之比較	95
5-5-1對於濾速與濾餅性質之影響	95
5-5-2不同操作程序下之出水品質	101
5-5-3活性碳動態膜長時間操作之影響	103
5-5-4與過去文獻比較	108
第六章 結論	112
符號說明	116
Greek letters	117
參考文獻	118

 
圖目錄
頁次
Fig. 1-1 Range of molecular weights and particle or droplet sizes of common materials, how they are measured, and the methods employed for their removal from fluids.  (Osmonics Inc.) (Walas, 2012).	3
Fig2-1 溶質在活性碳表面擴散吸附路徑	11
Fig2-2 Pathways for the removal of NOM by aluminium-based coagulation(Gregor,Nokes and Fenton,1997)	16
Fig.2-3 Pretreatment options for SWRO. (Monnot, 2016).	21
Fig.2-4 Kind of solid-liquid separation mode of MBR :( a ) side-stream or external MBR; (b ) submerged MBR, SMBR	23
Fig.2-5 Effect the main membrane fouling factor.	26
Fig.2-1 Forces exerted on a depositing particle in a submerged micro-filtration	35
Fig.2-2 Interaction energy of Van der Walls force and electrical double layer repulsive force under different distance.	37
Fig.4-3 The microphotograph of artificial seawater with 3600 times. (a)only add Humic acid (b)add both Humic acid and SiO2.	50
Fig.4-4 Size distribution in artificial seawater.	50
Fig.4-4 The absorbance vs. concentration of humic acid solution.	54
Fig.5-1 Time courses of filtration flux during submerged microfiltration with ceramic membrane under various transmembrane pressures.	59
Fig.5-2 Time courses of filtration flux during submerged microfiltration with flat sheet membrane under various transmembrane pressures.	60
Fig.5-3 Time courses of filtration flux during submerged microfiltration under various transmembrane pressures.	60
Fig.5-4 Filtration resistances in submerged microfiltration of artificial seawater with ceramic membrane under various transmembrane pressures.	63
Fig.5-5 Filtration resistances in submerged microfiltration of artificial seawater with flat sheet membrane under various transmembrane pressures.	64
Fig.5-6 Effect of cake mass and average specific filtration resistance under various transmembrane pressure.	65
Fig.5-7 Effect of cake mass and average specific filtration resistance under various transmembrane pressure.	65
Fig.5-8 Comparison of HA concentration and turbidity of filtrate under various transmembrane pressures.	67
Fig.5-9 Comparison of COD and DOC of filtrate under various transmembrane pressures.	67
Fig.5-10 The photo of PAC dynamic membrane. (a)thickness of 0.2 cm of PAC (b)thickness of 0.5 cm of PAC	69
Fig.5-11 Analysis of coating 5 min of power activated carbon for thickness under various operating conditions.	71
Fig.5-12 Time course of filtration flux during submerged microfiltration under various transmembrane pressure.	72
Fig.5-13 Resistances in submerged microfiltration under various transmembrane pressures.	74
Fig.5-14 Time courses of filtration flux during submerged microfiltration of artificial seawater under various transmembrane pressures.	76
Fig.5-15 Filtration resistances in submerged microfiltration of artificial seawater under various transmembrane pressures (after operating 2 hrs).	78
Fig.5-17 Comparison of COD and DOC of filtrate under various transmembrane pressures.	80
Fig.5-18 Floc sizes distribution of artificial seawater under various dose of chitosan.	82
Fig.5-19 Mean floc diameter and supernatant turbidity under various dose of chitosan.	83
Fig. 5-20 Time courses of filtration flux during submerged microfiltration of artificial seawater under various transmembrane pressures.	84
Fig.5-21 Resistances of using coagulation process in submerged microfiltration under different transmembrane pressures.	85
Fig.5-22 Effect of cake mass and average specific filtration resistance under various filtration pressures under various transmembrane pressures.	86
Fig.5-23 Floc sizes distribution of artificial seawater at submerged microfiltration.	87
Fig.5-24 Comparison of HA concentration and turbidity of filtrate under various transmembrane pressures.	88
Fig.5-25 Comparison of COD and DOC of filtrate under various transmembrane pressures.	89
Fig.5-26 Time courses of filtration flux during combine with coagulation process and PAC dynamic membrane in cross-flow microfiltration under various transmembrane pressures.	91
Fig.5-27 The photo of filitration cake with coagulation process and PAC dynamic membrane in submerged microfiltration	91
Fig.5-28 Resistances of combine with coagulation process and PAC dynamic membrane in submerged microfiltration under different transmembrane pressures.	92
Fig.5-29 Effect of cake mass and average specific filtration resistance  in this process under various transmembrane pressures .	93
Table.5-3 Comparison of HA concentration and turbidity of filtrate under	94
Fig.5-30 Comparison of COD and DOC of filtrate under various transmembrane pressures.	95
Fig.5-31 Time courses of filtration flux during different process in submerged microfiltration under transmembrane pressure 80kPa.	96
Fig.5-32 Pseudo steady filtration flux ime during different process in submerged microfiltration under different transmembrane pressure	98
Fig.5-33 Resistances during different process in submerged microfiltration under transmembrane pressure 80kPa.	100
Fig.5-34 Effect of cake mass and average specific filtration resistance  during different process in submerged microfiltration under transmembrane pressure 80kPa.	100
Table.5-4 Comparison of HA concentration and turbidity of filtrate under various process.	102
Fig.5-35 Comparison of COD and DOC of filtrate under various process.	102
Fig.5-37 Time course of filtration flux during submerged microfiltration.	104
Fig.5-38 The microphotograph of particle from filitration cake with 900 times.	105
Fig.5-39 The photo of filitration cake with coagulation process and PAC dynamic membrane in submerged microfiltration( after operating 27 hrs).	106
Fig.5-40 Floc sizes distribution of artificial seawater at submerged microfiltration.	106
表目錄
頁次
Table3-1 The average specific filtration resistance and permeability	32
Table 4-1 Characteristics of powdered activated carbon used in this study.( Hwang ,2014)	47
Table 4-2 Composition of artificial seawater	48
Table 4-3 Properties of artificial seawater	48
Table 4-3 The operating condition used in this study.	52
Table.5-1 Analysis of power activated carbon for thickness under various operating conditions.	69
Table.5-2 Comparison of HA concentration and turbidity of filtrate under various transmembrane pressures.	79
Table.5-3 Comparison of HA concentration and turbidity of filtrate under various transmembrane pressures.	94
Table 5-5 Resistances, cake mass and average specific filtration resistance from using coagulation process and PAC dynamic membrane in submerged microfiltration.	107
Table 5-6 Analysis of permeate quality from using coagulation process and PAC dynamic membrane in submerged microfiltration.	108
Table5-7 Comparison of the removal efficiency of DOC with recent studies.	110
Table5-8 Comparison of flux with recent studies.	110
Table5-9 Comparison of the operation condition for generate PAC dtnamic membrane with recent studies.	111
參考文獻
Gregor, J.E., Nokes, C.J., and Fenton, E. “Optimising natural organic matter removal from low turbidity waters by controlled pH adjustment of aluminium coagulation”, Water Research, 31 (12), 2949-2958(1997).
Hu, C.-Y., Lo, S.-L., Chang, C.-L., Chen, F.-L., Wu, Y.-D., and Ma, J.-L. “Treatment of highly turbid water using chitosan and aluminum salts”, Sep. Purif. Technol., 104, 322-326(2013). 
James R. Couper,W. Roy Penney,James R. Fair, PhD, “Chemical Process Equipment: Selection and Design, Third Edition”, USA, Chap.19, 677–678 (2012).
Jeong, S., Choi, Y.J., Nguyen, T.V., Vigneswaran, S., and Hwang, T.M., “Submerged membrane hybrid systems as pretreatment in seawater reverse osmosis (SWRO): Optimisation and fouling mechanism determination”, Journal of Membrane Science, 411-412, 173-181 (2012)
Jeong, S., Naidu, G., and Vigneswaran, S. “Submerged membrane adsorption bioreactor as a pretreatment in seawater desalination for biofouling control” , Bioresour. Technol, 141, 57-64(2013).
Jeong, S., Rice, S.A., and Vigneswaran, S. “Long-term effect on membrane fouling in a new membrane bioreactor as a pretreatment to seawater desalination” , Bioresour. Technol, 165 (C), 60-68(2014).
Jeong, S., and Vigneswaran, S., “Practical use of standard pore blocking index as an indicator of biofouling potential in seawater desalination”, Desalination, 365, 8-14 (2015)
Jeong, S., Vollprecht, R., Cho, K., Leiknes, T., Vigneswaran, S., Bae, H., and Lee, S., “Advanced organic and biological analysis of dual media filtration used as a pretreatment in a full-scale seawater desalination plant”, Desalination, 385, 83–92 (2016)
Jeong, S., Cho, K., Bae, H., Keshvardoust, P., Rice, S.A., Vigneswaran, S., Lee, S., and Leiknes T., “Effect of microbial community structure on organic removal and biofouling in membrane adsorption bioreactor used in seawater pretreatment”, Chemical Engineering Journal, 294, 30-39 (2016)
Ma, W., Y. Zhao and L. Wang, “The pretreatment with enhanced coagulation and a UF membrane for seawater desalination with reverse osmosis”, Desalination, 203, 256–259 (2007).
Md, M., Khan, T., Takizawa, S., Lewandowski, Z., Jones, W.L., Camper, A.K., Katayama, H., Kurisu, F., and Ohgaki,S. “Membrane fouling due to dynamic particle size changes in the aerated hybrid PAC–MF system”,  J. Membr. Sci, 371, 99-107(2011).
Monnot, M., Laborie, S., and Cabassud, C. “Granular activated carbon filtration plus ultrafiltration as a pretreatment to seawater desalination lines: Impact on water quality and UF fouling” , Desalination, 383, 1-11. (2016) 
Nguyen, T.V., Jeong, S., Pham, T.T.N., Kandasamy, J., and Vigneswaran, S. “Effect of granular activated carbon filter on the subsequent flocculation in seawater treatment”, Desalination, 354, 9-16(2014).
Pramanik, B.K., Roddick, F.A. , Fan, L., Jeong, S., and Vigneswaran, S., “Assessment of biological activated carbon treatment to control membrane fouling in reverse osmosis of secondary effluent for reuse in irrigation”, Desalination, 364, 90–95 (2015)
Shin, H. S., S. M. Lee, I. S. Seo, G. O. Kim, K. H. Lim and J. S. Song, “Nitrogen Compounds from Greywater.”, Water Sciences and Technology, 38, 79, (1998)
Zhao, Y.X., Gao, B.Y., Shon, H.K., Kim, J.-H., Yue, Q.Y., and Wang, Y. “Floc characteristics of titanium tetrachloride (TiCl4) compared with aluminum and iron salts in humic acid-kaolin synthetic water treatment” , Sep. Purif. Technol., 81 (3), 332-338. (2011) 
Zhang, Q., Xu, R., Xu, P., Chen, P. , He, Q., Zhong, J., and Gu, X., “Performance study of ZrO2 ceramic micro-filtration membranes used in pretreatment of DMF wastewater”, Desalination, 346, 1-8 (2014)

楊萬發譯,“水及廢水處理化學”,國立編譯館主編、茂昌圖書有限公司發行,第六章、第七章(1987)。
鄭喬維 編著,結合凝聚程序與活性碳動態膜於掃流微過濾以應用於海水淡化前處理,碩士學位論文,淡江大學化材系,台北,台灣(2015).
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信