§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0308201619394900
DOI 10.6846/TKU.2016.00109
論文名稱(中文) 研發同軸溢流管以提升水旋風分離器之分級效能
論文名稱(英文) Development of concentric vortex finders for improving hydrocyclone particle classification performance
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 邱建文
研究生(英文) Chien-Wen Chiu
學號 604400092
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2016-07-05
論文頁數 121頁
口試委員 指導教授 - 黃國楨(kjhwang@mail.tku.edu.tw)
委員 - 莊清榮
委員 - 鄭東文
委員 - 童國倫
關鍵字(中) 水旋風分離器
同軸溢流管
計算流體力學
分級效率
關鍵字(英) hydrocyclone
concentric vortex finder
computer fluid dynamic
separation efficiency
第三語言關鍵字
學科別分類
中文摘要
本篇研究是以直徑10 mm水旋風分離器為例,探討並研發一直徑30 mm新型同軸溢流管水旋風分離器,提升分級效率以及增加多重分級的效果。本研究以碳酸鈣與聚甲基丙烯酸甲酯做為實驗物料,利用Fluent套裝軟體做流場內模擬及分析,模擬流體之速度分佈、壓降分佈、動能分佈以及粒子軌跡。確認模擬及實驗的偏差值,再利用套裝軟體進行新型水旋風分離器的模擬與設計。
  模擬過程中設計多種不同長度組合的溢流管,包含同軸溢流管內短外長設計、同軸溢流管內長外短設計以及同軸底流管的設計。另外更比較不同長度溢流管組合以及單雙進料口比較。
實驗結果顯示使用粒徑範圍較廣的碳酸鈣粒子越能代表模擬的可靠性;同軸溢流管使用內短外長的設計可以讓粒子透過二次渦流再次進行分離,使物料可在分離出不同粒徑範圍;在底流部分增加一實心圓柱可以使之取代空氣柱,使流體可以更加穩定沿著實心圓柱往溢流管部分流動;內長外短的同軸溢流管經過模擬後,結果顯示內管長為17.5 mm以及外管長為52.5 mm可以得到最佳的分離效果。
英文摘要
This study took a 10 mm hydrocyclone as an example. We researched and development a 30 mm hydrocyclone with concentric vortex finder. The purpose was to improve the partial separation efficiency and have the effect of multiple classification. The CaCO3 and PMMA was as our material. A numerical software, Fluent, was used for analyzing the distributions of fluid velocity, static pressure, kinetic or the particle tracks. Then use the Fluent to design a new type of hydrocyclone.
There were variety of different combinations of overflow pipe in the simulation. Such as the concentric vortex finder which includes the inside pipe is short when the outside pipe is long. The opposite is also true. On the other hand, we compared the single inlet with the double inlet on the hydrocyclone.
The simulation results showed that when the size distribution rage of material is large as CaCO3 can improve the reliability with the experimental. If the outside overflow pipe is longer than the inside overflow pipe, it could make the particle separate again with the secondary vortex. The air core could be replaced when we installed a solid cylinder in the cone of hydrocyclone. The result showed that the length of inside overflow pipe and outside overflow pipe are 17.5 mm and 52.5 mm is the best design.
第三語言摘要
論文目次
中文摘要	I
英文摘要	II
目錄	IV
圖目錄	VIII
表目錄	XIII
第一章 緒論	1
1.1 前言	1
1.2 研究動機與目標	4
第二章 文獻回顧	5
2.1 水旋風分離器之發展論述	5
2.1.1 水旋風分離器之簡介	5
2.1.2 水旋風分離器之結構	6
2.1.3 水旋風分離器之規格	7
2.1.4 水旋風分離器之選擇與應用	8
2.1.5 水旋風分離器之程序設計	9
2.1.6 水旋風分離器之優缺點	10
2.2 水旋風分離器之原理	12
2.3水旋風分離器之理論	13
2.3.1平衡軌道理論(The Equilibrium Orbit Theory)	13
2.3.2滯留時間理論(The Residence-Time Theory)	15
2.3.3無因次群模型(Dimensionless model)	15
2.3.4分析流態模型(Analytical Flow model)	16
2.4固體顆粒在水旋風分離器中之受力分析	18
2.4.1顆粒沉降受力分析	18
2.4.2切應力	21
2.4.3 低濃度時顆粒之自由沉降	22
2.4.4高濃度時顆粒之自由沉降	23
2.4.5離心沉降與重力沉降之比較	24
2.5水旋風分離器之特殊現象	25
2.5.1 魚勾現象	25
2.5.2 底流效應與離心效應	27
2.5.3 短路流現象	29
2.5.4 空氣柱	30
2.6 水旋風分離器之參數	31
2.6.1 結構參數	31
2.6.2 物性參數	32
2.6.3	操作參數	33
2.7水旋風分離器之特殊幾何結構	38
2.7.1 兩相水旋風分離器	38
2.7.2 三相水旋風分離器	40
第三章 數值與模擬	44
3.1 CFD之模擬系統	44
3.2模擬軟體基本假設	44
3.3	CFD之模擬程序	45
3.3.1前處理	46
3.3.2計算求解	47
3.3.3後處理	50
3.4統御方程式	51
第四章 實驗裝置與方法	52
4.1實驗裝置	52
4.1.1 實驗設備	52
4.1.2新型水旋風分離器設計理念	54
4.2實驗方法	56
4.2.1 實驗物料	56
4.2.2實驗步驟	59
4.2.3 實驗儀器	61
第五章 結果與討論	62
5.1模擬與實驗結果之驗證	62
5.1.1操作參數之設定	62
5.1.2碳酸鈣之模擬與實驗	64
5.1.3聚甲基丙烯酸甲酯之模擬與實驗	70
5.1.4水旋風分離器之模擬結果	78
5.2新型水旋風分離器之設計	80
5.2.1網格最適化	80
5.3水旋風分離器結構比較	81
5.3.1不同結構比較	81
5.3.2單/雙進料口設計比較	96
5.3.3同軸溢流管長度設計比較	100
第六章 結論	110
符號說明	111
參考文獻	114
 
圖目錄
	頁次
第一章
Fig.1-1 Separation spectrum under different particle sizes.	3
第二章
Fig.2-1 Hydrocyclone with main flow pattern.	6
Fig.2-2 (a)Long cone cyclone(b)Long cylinder steep cone cyclone.	8
Fig.2-3 The axial velocity and LZVV orbit in hydrocyclone. (Holdich, 2002)	14
Fig.2-4 Equilibrium orbit at the LZVV with liquid drag and centrifugal forces balanced.(Holdich, 2002)	14
Fig.2-5 Spiral flow profiles inside a micro hydrocyclone.(Sen, 2012)	18
Fig.2-6 Velocity profile of three vortex types.(Puprasert等人, 2004)	22
Fig.2-7 A typical curve of partial separation efficiency.(Hwang, 2008)	25
Fig.2-8 The construction of a selectivity curve.(Hwang, 2008)	28
Fig.2-9 The actual selectivity curve by summing underflow and centrifugal effects.(Hwang, 2008)	29
Fig.2-10 Differential size distributions in feed, overflow and underflow.(Trawinski, 1977)	36
Fig.2-11 Split of feed particles between overflow and underflow.(Trawinski, 1977)	36
Fig.2-12 Geometrical features of hydrocyclone designed by Jiang.(Jiang等人, 2012)	41
Fig.2-13 Geometrical features of hydrocyclone designed by Seureau.(Seureau等人, 2012)	42
Fig.2-14 Geometrical features of hydrocyclone designed by Zhang.(Zhang等人, 2014)	43
Fig.2-15 Geometrical features of hydrocyclone designed by JKMRC.(JKMRC, 2003)	43
第三章
Fig.3-1 The procedural steps of numerical simulation.	46
Fig.3-2 Finite volume mesh hydrocyclone geometry.	47
Fig.3-3 Simulation setting process.	48
第四章
Fig.4-1 Dimensions of the hydrocyclone geometry. (unit: mm)	52
Fig.4-2 Schematic diagram of the experiment apparatus.	53
Fig. 4-3 The structure for different type of hydrocyclones with single inlet.	55
Fig. 4-4 The structure for different type of hydrocyclones with double inlet.	56
第五章
Fig.5-1 Inlet velocity in hydrocyclone varies with pressure drop.	63
Fig.5-2 The volume flow rate varies with pressure drops when the concentration of CaCO3 is 0.58 wt% and the split ratio is 0.58.	65
Fig.5-3 The particle size distribution of CaCO3 under different pressure drops.	66
Fig.5-4 Compare the partial separation efficiency between experimental and simulation when the concentration is 0.58 wt%.	68
Fig.5-5 The velocity vector of hydrocyclone under different velocity.	69
Fig.5-6 The CaCO3 particle size distribution between the experiment before and after.	70
Fig.5-8 The particle size distribution of PMMA under different pressure drops.	72
Fig.5-9 The particle size distributions of overflow pipe under different inlet velocity.	73
Fig.5-12 The total separation efficiency of PMMA under different pressure drops with different materials.	77
Fig.5-13 The velocity contours of hydrocyclones under different inlet velocity.	79
Fig.5-14 The particle tracks of hydrocyclones under different inlet velocity.	80
Fig.5-15 The pressure drop of different hydrocyclones under inlet velocity of 10 m/s.	83
Fig.5-16 The pressure drop of different hydrocyclones under inlet velocity of 17.4 m/s.	83
Fig.5-17 The velocity contours of different hydrocyclones under inlet velocity of 10 m/s.	85
Fig.5-18 The velocity contours of different hydrocyclones under inlet velocity of 17.4 m/s.	86
Fig.5-19 The velocity vector of different hydrocyclones under inlet velocity of 10 m/s.	87
Fig.5-20 The velocity vector enlarged view of different hydrocyclones at the overflow pipe.	88
Fig.5-21 The velocity vector of different hydrocyclones under inlet velocity of 10 m/s at the entrance of overflow pipe.	89
Fig.5-22 Typical particle trajectories of underflow in hydrocyclones with different designs under inlet velocity of 10 m/s.	90
Fig.5-23 The velocity contours of different hydrocyclones at z = 0.26 under inlet velocity of 10 m/s.	91
Fig.5-24 The velocity contours of different hydrocyclones at z = 0.26 under inlet velocity of 17.4 m/s.	92
Fig.5-25 The particle size distributions of overflow pipe under different designs of hydrocyclone.	94
Fig.5-26 Partial separation efficiency of CaCO3 with different designs of overflow pipe under inlet velocity of 10 m/s.	95
Fig.5-27 The velocity contours of different inlet designs under inlet velocity of 10 m/s.	97
Fig.5-28 The pressure drop with different inlet designs under inlet velocity of 10 m/s.	98
Fig.5-29 Partial separation efficiency of CaCO3 under different designs of inlet.	99
Fig.5-30 Typical particle trajectories of underflow in hydrocyclones with different length of overflow pipe under inlet velocity of 10 m/s.	101
Fig.5-31 The particle size distributions of overflow pipe under different lengh of vortex finders.	102
Fig.5-32 The velocity contours of different length of hydrocyclones under inlet velocity of 10 m/s.	103
Fig.5-33 The contours of Tangential velocity profiles of Type D with different length under inlet velocity of 10 m/s.	104
Fig.5-34 The contours of Turbulence Kinetic energy profiles of Type- D with different length under inlet velocity of 10 m/s.	105
Fig.5-35 Tangential velocity profiles at the cross-section of z=0.23 m under inlet velocity of 10 m/s for different length of overflow pipe.	106
Fig.5-36 Partial separation efficiency through five kinds hydrocyclones structure under inlet velocity of 10 m/s.	107
Fig.5-37 The contours of pressure magnitude profiles of Type D under different inlet velocity.	108
Fig.5-38 The contours of velocity magnitude profiles of Type D under different inlet velocity.	109


 
表目錄
	頁次
第三章
Table.3-1 The simulation standards in the Gambit 2.4.6	46
第五章
Table.5-1 Inlet velocity in hydrocyclone varies with pressure drop.	63
Table.5-2 The compare of structure for hydrocyclone.	81
Table.5-3 The pressure drops through five kinds of hydrocyclones structure under different inlet velocity.	84
Table.5-4 The pressure drops with different inlet designs under different inlet velocity.	98
Table.5-5 The length of overflow pipe through five kinds of hydrocyclones structure.	100
參考文獻
Bicalho, I.C., Mognon, J.L., Shimoyama, J., Ataíde, C.H., Duarte, C.R., “Separation of yeast from alcoholic fermentation in small hydrocyclones”, Separation and Purification Technology, 87, 62-70 (2012). 
Bicalho, I.C., Mognon, J.L., Shimoyama, J., Ataíde, C.H., Duarte, C.R., “Effects of operating variables on the yeast separation process in a hydrocyclone”, Separation Science and Technology, 48, 915-922 (2013).
Bo, Z.W., Yi, M., You-hai, J., “Simulation and experiment of flow field in axial-flow hydrocyclone”, Chemical Engineering Research Design, 89, 603-610 (2011). 
Chu, L., Chen, W., Lee, X., “Enhancement of hydrocyclone performance by controlling the inside turbulence structure”, Chemical Engineering Science, 57, 207-212 (2002).
Cilliers, J.J., Harrison, S.T.L., “The application of mini-hydrocyclones in the concentration of yeast suspensions”, Chemical Engineering Journal, 65, 21-26 (1999).
Coelho, M. A. Z. and R. A. Medronho, “A Model for Performance Prediction of Hydrocyclones”, Chemical Engineering Journal, 84,7-14 (2001).
Dai, G. Q., W. M. Chen, J. M. Li and L. Y. Chu, “Experimental Study of Solid-Liquid Two Flow In a Hydrocyclone”, Chem. Eng. J., 74, 211-216(1999).
Frachon, M. and J. J. Cilliers, “A Generall Model for Hydrocyclone Partition Curves”, Chemical Engineering Journal, 73, 53-59 (1999).
Gao, S.L., D.Z. Wei, W.G. Liu, L.Q. Ma, T. Lu and R.Y. Zhang “CFD numerical simulation of flow velocity characteristics of hydrocyclone” Transactions of Nonferrous Metals Society of China, 21, 2783-2789 (2011).
Ghadirian, M., Hayes, R.E., Mmbaga, J., Afacan, A., Xu, Z., “On the simulation of hydrocyclones using CFD”, The Canadian Journal of Chemical Engineering, 91, 950-958 (2013). 
Golyk, V., S. Huber , M.G. Farghaly , G. Prolss , E. Endres , T. Neesse , M.A. Hararah   “Higher kaolin recovery with a water-injection cyclone”, Minerals Engineering, 24, 98–101 (2011).
Hwang, K.J., Hsueh, W.S., Nagase, Y., “Mechanism of particle separation in small hydrocyclone”, Drying Technology, 26, 1002-1010 (2008). 
Hwang, K.J., Lyu, S., Nagase, Y., “Particle separation efficiency in two 10-mm hydrocyclones in series”, Journal of the Taiwan Institute of Chemical Engineers, 40, 313-319 (2009). 
Hwang, K.J., Y.W. Hwang , H. Yoshida and K. Shigemori “Improvement of particle separation efficiency by installing conical top-plate in hydrocyclone”, Powder Technology, 232, 41–48 (2012).
Hwang, K.J., Y.W. Hwang and H. Yoshida, “Design of novel hydrocyclone for improving fine particle separation using computational fluid dynamics”, Chemical Engineering Science, 85, 62–68 (2013).
Kashiwaya, K., T. Noumachi, N. Hiroyoshi, M. Ito and M. Tsunekawa, “Effect of particle shape on hydrocyclone classification”, Powder Technology, 226, 147–156 (2012).
Kumar, S., T. W. Piorg. and D. Ramkrishna, “A New Method for Estimating Hindered Creaming/Settling velocity of Particles in Polydisperse Systems”, Chemical Engineering Science, 55, 1893-1904 (2000).
Liu, M., Mao, Y., Wang, J., Sun, X., Xu, C., “Effect of swirl on hydrodynamics and separation performance of a spray granulation tower with array nozzles”, Powder Technology, 227, 61-66 (2012).
Marthinussen, S.A., Y.F. Chang, B. Balakin, A.C. Hoffmann, “Removal of particles from highly viscous liquids with hydrocyclones”, Chemical Engineering Science, 108, 169-175 (2014).
Majumder, A.K., O. Yerriswamy and J. P. Barnwal, “The “Fish-Hook”Phenomenon in Centrifugal Separation of Fine Particles”, Mineral s Engineering, 16, 1005-1007 (2003).
Mori, M., S. Bernardo, A.P. Peres and R.P. Dionı´sio, “3-D computational fluid dynamics for gas and gas-particle flows in a cyclone with different inlet section angles”, Powder Technology, 162, 190–200 (2006).
Nageswararao, K., “A Critical Analysis of The Fish Hook Effect in Hydrocyclone Classifiers”, Chemical Engineering Journal, 80, 251-265 (2000).
Narasimha, M., R. Sripriya, P. K. Banerjee, “CFD modeling of hydrocyclone-prediction of cut size” Int. J. Miner. Process., 75, 53-68 (2005).
Nenu, T.R.K., Yoshida, H., “Comparison of separation performance between single and two inlets hydrocyclones”, Advanced Powder Technology, 20, 195-202 (2009).
Nowakowaki, A. F., J. C. Cullivan, R. A. Williams and T. Dyakowaki, “Application of CFD to modelling of the flow in hydrocyclones. Is this a realizable option or still a research challenge”, Min. Eng. 17, 661-669 (2004).
Pinto, A.A., Bicalho, I.C., Mognon, J.L., Duarte, C.R., Ataíde, C.H., “Separation of saccharomyces cerevisiae from alcoholic fermentation broth by two commercial hydrocyclones”, Separation and Purification Technology, 120, 69-77(2013).
Puprasert, C., G. Hebrard, L. Lopez and Y. Aurelle, “Potential of Using Hydrocyclone and Hydrocyclone Equipped with Grit Pot as A Pre-Treatment in Run-Off Water Treatment”, Chemical Engineering and Processing, 43, 67-83 (2004).
Sripriya, R., N. Suresh, S. Chandra and D. Bhattacharjee, “The effect of diameter and height of the inserted rod in a dense medium cyclone to suppress air core”, Minerals Engineering, 42, 1–8 (2013).
Svarovsky, L., “Hydrocyclone”, Holt, Rinehart and Winston Ltd, London (1984).
Svarovsky, L., “Solid-Liquid Separation”, 3rd ed., (1990).
Trawinski, H.F., ‘‘Solid/Liquid Separation Equipment Scale UP’’, Ed. D. B. Purchas, Uplands Press, England, 241-286 (1997).
Uhlherr, P. H. T., “Hindered Settling in Non-Newtonian Fluids”, an Appraisal. CHER78, 1, Dept. of Chem. Eng., Monash University, Australia (1975).
Wang, L., Wang, J., “Experimental study of the drag reduction and separation efficiency for a new hydrocyclone with a reducing pressure drop stick”, Separation and Purification Technology, 98, 7-15 (2012).
Wang, H.L., Q. Yang, W.J. Lv and L. Ma, “CFD study on separation enhancement of mini-hydrocyclone by particulate arrangement”, Separation and Purification Technology, 102, 15–25 (2013).
Yang, J., Sun, G., Gao, C., “Effect of the inlet dimensions on the maximum-efficiency cyclone height”, Separation and Purification Technology, 105, 15-23(2013).
Yang, L., J.L. Tian, Z. Yang, Y. Li, C.H. Fu, Y.H. Zhu, X.L. Pang, “Numerical analysis of non-Newtonian rheology effect on hydrocyclone flow field”, Petroleum, 1-7 (2015).
Yang, Q., Li, Z., Lv, W., Wang, H., “On the laboratory and field studies of removing fine particles suspended in wastewater using mini-hydrocyclone”, Separation and Purification Technology, 110, 93-100 (2013).
Yang, Q., Wang, H., Liu, Y., Li, Z., “Solid/liquid separation performance of hydrocyclones with different cone combinations”, Separation and Purification Technology, 74, 271-279 (2010).
Yoshida, H., T. Takashinab, K. Fukuia, T. Iwanagaa, “Effect of inlet shape and slurry temperature on the classification performance of hydro-cyclones”, Powder Technology, 140, 1–9 (2004).
Yoshida, H., Fukui, K., Pratarn, W., Tanthapanichakoon, W., “Particle separation performance by use of electrical hydro-cyclone”, Separation and Purification Technology, 50, 330-335 (2006).
Yu, A.B. and B. Wang, “Numerical study of particle–fluid flow in hydrocyclones with different body dimensions”, Minerals Engineering, 19, 1022–1033 (2006).
Yu, A.B. and B. Wang, “Numerical study of the gas–liquid–solid flow in hydrocyclones with different configuration of vortex finder”, Chemical Engineering Journal, 135, 33–42 (2008).
Yu, A.B., K.W. Chu, B. Wang and A. Vince, “Particle scale modelling of the multiphase flow in a dense medium cyclone: Effect of vortex finder outlet pressure”, Minerals Engineering, 31, 46–58, (2012).
Zhao, L., M. Jiang and B. Xu, B. Zhu “Development of a new type high-efficient inner-cone hydrocyclone”, Chemical Engineering Research and Design, 90, 2129–2134 (2012).
呂信毅,“改進複合型水旋風分離器之分離效率“,碩士學位論文,化學工程與材料工學學系研究所,(2006)。
呂維明 編著,“固液過濾技術“,高立圖書館,台北,(2004)。
朱宏武,馮進,薛敦松,”液-液分離旋流器結構選型計算”,石油礦場機械,第32卷,第五期, 30-34(2003)。
周詩評,“設計溢流管結構以提升水旋風分離器之分離效率“,碩士學位論文,化學工程與材料工學學系研究所,(2014)。
孫玉波,”淺談水力旋流器的工作原理和影響參數”,礦業快報,總第403期,1月第1期(2003)。
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信