淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-0308201617394200
中文論文名稱 潛溶劑與光致變色染料對三醋酸纖維素薄膜之質傳及光學研究
英文論文名稱 Study on mass transportation and optical of cosolvent and photochromic dye of tri-cellulose acetate film
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 104
學期 2
出版年 105
研究生中文姓名 吳裔儒
研究生英文姓名 Yi-Ru Wu
學號 604350305
學位類別 碩士
語文別 中文
口試日期 2016-07-09
論文頁數 68頁
口試委員 指導教授-林清彬
委員-張天立
委員-劉承揚
中文關鍵字 三醋酸纖維素  丁酮  乙醇  潛溶劑  光致變色 
英文關鍵字 TAC(tri-cellulose acetate)  methyl ethyl ketone  ethanol  Cosolvent  Photochromic 
學科別分類 學科別應用科學機械工程
中文摘要 本研究首先探討不同濃度(1:6,1:7,1:8,1:9及1:10)的丁酮/乙醇潛溶劑及該潛溶劑含有飽和溶解度的光致變色染料在工作溫度40℃~60℃下對三醋酸纖維素薄膜質傳與光學的影響,實驗結果不同濃度的丁酮/乙醇潛溶劑及該潛溶劑含有飽和溶解度的光致變色質傳入TAC膜是屬於一種含有Case I與Case II的不正常擴散行為,TAC薄膜會先發生過飽和吸收現象,再進行解析淬取而後達到平衡,其中TAC膜過飽和吸收丁酮/乙醇潛溶劑的(Case I, Case II)活化能分別為(2.38-4.02 kcal/mole)與(0.76-1.40 kcal/mole),飽和光致變色染料潛溶劑的(Case I, Case II)活化能分別為(3.11-4.15 kcal/mole)與(0.40-1.57 kcal/mole)。TAC膜過飽和吸收丁酮/乙醇潛溶劑與飽和光致變色染料潛溶劑前的反應熱∆H分別為(0.739-1.398 kcal/mole)與(0.308-0.551 kcal/mole),經由光譜分析知道TAC膜吸收較多飽和光致變色染料會降低可見光的穿透率及增加變色的速率。
英文摘要 The present study has been investigated the influences of concentrations (1:6 ,1:7, 1:8, 1:9, 1:10) of methyl ethyl ketone/ethanol cosolvent and containing with the photochromic dye in saturation solubility on mass transport behavior and optical property of cellulose triacetate film. The experimental results show that the mass transport behavior at 40-60℃ will be firstly occurred a supersaturation absorption phenomenon and then carried out desorption to reach equilibrium. The supersaturation absorption phenomenon belongs to an anomalous diffusion i.e. contains Case I and Case II diffusion which the activation energy in different concentration of cosolvent is 2.38-4.02 kcal/mole (Case I) and 0.76-1.40 kcal/mole (Case II), respectively. The activation energy of cosolvent with saturated photochromatic dye in different concentration is 3.11-4.15 kcal/mole (Case I) and 0.40-1.57 kcal/mole (Case II), respectively. The reaction heat of the TAC film absorbed saturated ketone/ethanol cosolvent and cosolvent with saturated photochromatic dye in supersaturation absorption stage are 0.739-1.398 kcal/mole and 0.308-0.551 kcal/mole, respectively. Through spectrum analysis, the visible transmittance was decreased and chromatic response velocity was increased with increasing the photochromatic dye absorption.
論文目次 總目錄
第1章導論1
1.1前言1
1.2文獻回顧2
1.2.1三醋酸纖維素(Triacetate Cellulose;TAC)2
1.2.2透明偏光膜 3
1.2.3光致變色5
1.2.4有機溶劑在熱塑性高分子的質傳行為9
1.2.4.1質傳分類9
1.2.4.2影響溶劑質傳到高分子之因素11
1.2.4.3溶漲界面移動與質傳關係12
1.2.4.4高分子吸收溶劑含量與時間的關係13
1.2.5有機溶劑在TAC的質傳行為15
1.3研究動機16
第2章實驗設計17
2.1實驗材料17
2.2實驗設備17
2.3質傳實驗18
2.3.1試片準備18
2.3.2溶劑製備18
2.3.3質傳過程18
2.3.4劈裂面的製造與觀察 19
2.4光致變色20
第3章結果與討論21
3.1乙醇與丁酮在TAC薄膜的質傳行為21
3.2丁酮/乙醇潛溶劑在TAC膜的質傳行為24
3.3質傳劈裂面35
3.4潛溶劑與光致變色染料粉在TAC膜內的質傳行為44
3.5光致變色反應58
第4章結論63
第5章參考文獻65
圖目錄
圖1-1(a)表示了金屬銀的光柵結構,第二層與第三層分別為二氧化矽與金屬銀;(b)為梯形陣列的示意圖;(c)光柵與梯形結構的SEM圖,其中左與中間圖的金屬光柵線寬分別為w=60nm與120nm,比例尺長度為500nm;(d)單一個梯形結構,其寬度變化從40nm到120nm,總長為300nm 4
圖1-2運用於偏振分光的雙層光柵示意圖5
圖1-3螺?喃與螺1,4-氧氮六圜5
圖1-4二苯基乙烯6
圖1-5苯氧基四苯?光致變色聚合物光致變色聚合物7
圖1-6偶氮類7
圖2-1劈裂裝置示意圖20
圖3-1在40℃~60℃質傳溫度下,乙醇質傳到TAC薄膜之重量吸收量(Mt/M0)對質傳時間的關係圖21
圖3-2在質傳溫度40℃~60℃下,丁酮質傳到TAC薄膜之溶劑吸收重量比(Mt/M0)對直傳時間的關係24
圖3-3丁酮/乙醇潛溶劑在TAC膜中質傳之溶劑吸收重量比(Mt/M0)對時間的變化;潛溶劑濃度丁酮/乙醇為(a)1/6;(b)1/7;(c)1/8;(d)1/9;(e)1/10 26
圖3-4丁酮/乙醇潛溶劑對TAC薄膜的質傳行為示意圖26
圖3-5丁酮/乙醇潛溶劑在TAC膜中質傳之溶劑吸收重量比(Mt/M∞)對時間的變化之曲線配合;質傳濃度(a)1/6;(b)1/7;(c)1/8;(d)1/9;(e)1/10 30
圖3-6不同濃度丁酮/乙醇潛溶劑之質傳系統過飽和吸收量(ESC)之van't Hoff的圖 31
圖3-7不同濃度丁酮/乙醇潛溶劑之質傳系統(a)D值(b)v值之Arrhenius圖 31
圖3-8丁酮/乙醇潛溶劑在TAC膜中質傳之溶劑吸收重量比(Mt/M0)對時間的變化;質傳溫度(a)40℃;(b)45℃;(c)50℃;(d)55℃;(e)60℃ 34
圖3-9丁酮/乙醇潛溶劑(濃度比1/10)擴散進入TAC膜中並完全解析後劈裂面之共軛焦照片;質傳溫度(I)40℃;(II)45℃;(III)50℃;(IV)55℃;(V)60℃;質傳時間(a)0.0mins;(b)1.0mins;(c)2.0mins;(d)3.0mins;(e)4.0mins;(f)5.0mins;(g)7.5mins;(h)10.0mins;(i)15.0mins;(j)20.0mins 40
圖3-10乙醇擴散進入TAC膜中並完全解析後劈裂面之共軛焦照片;質傳時間(a)0.0mins;(b)1.0mins;(c)2.0mins;(d)3.0mins;(e)4.0mins;(f)5.0mins;(g)7.5mins;(h)10.0mins;(i)15.0mins;(j)20.0mins 41
圖3-11加入飽和光致變色染料之丁酮/乙醇潛溶劑在TAC膜中質傳之溶劑吸收重量比(Mt/M0)對時間的變化;丁酮/乙醇潛溶劑濃度為(a)1/6;(b)1/7;(c)1/8;(d)1/9;(e)1/10 46
圖3-12飽和光致變色之不同濃度潛溶劑在TAC膜中質傳之溶劑吸收重量比(Mt/M∞)對時間的變化之曲線配合;質傳濃度(a)1/6;(b)1/7;(c)1/8;(d)1/9;(e)1/10 50
圖3-13不同濃度丁酮/乙醇潛溶劑之質傳系統過飽和吸收量(ESC)之van't Hoff的圖 51
圖3-14加入飽和光致變色染料之不同濃度丁酮/乙醇潛溶劑之質傳系統(a)D值(b)v值之Arrhenius圖51
圖3-15飽和光質變色染料之不同濃度潛溶劑在TAC膜中質傳之溶劑吸收重量比(Mt/M0)對時間的變化54
圖3-16在60℃不同濃度之飽和丁酮/乙醇潛溶劑是否加入光致變色染料質傳進入TAC的比較圖;丁酮/乙醇潛溶劑濃度(a)1/6;(b)1/7;(c)1/8;(d)1/9;(e)1/10 56
圖3-17在濃度1/6之飽和丁酮/乙醇潛溶劑在不同溫度中是否加入光致變色染料質傳進入TAC的比較圖;質傳溫度(a)40℃;(b)45℃;(c)50℃;(d)55℃;(e)60℃ 58
圖3-18不同濃度飽和光質變色TAC膜透光度變化與UV光曝光時間的關係;(a)1/3;(b)1/4;(c)1/5;(d)1/6 60
圖3-19光致變色褪色隨時間變化圖(I)0.0mins;(II)1.0mins; (III)5.0mins;(IV)1.0mins;飽和光致變色染料之不同丁酮/乙醇潛溶劑濃度(a)1/3;(b)1/4;(c)1/5;(d)1/6;(e)1/7 61
圖3-20飽和光致變色染料之丁酮/乙醇潛溶劑濃度1/3曝UV光後照鹵素燈62

表目錄
表3-1乙醇在TAC膜內的質傳之Case I擴散係數(D)、Case II質傳速率(v)、Case I活化能(ED)及Case II活化能(EV)23
表3-2丁酮/乙醇潛溶劑在TAC膜內的質傳之Case I擴散係數(D)、Case II質傳速率(v)及過飽和吸收量(ESC)28
表3-3丁酮/乙醇潛溶劑在TAC膜內的質傳之Case I活化能(ED)、Case II活化能(EV)32
表3-4不同質傳溫度下,丁酮/乙醇潛溶劑進入TAC薄膜的厚度(μm)變化與時間的關係42
表3-5飽和光致變色染料之不同濃度潛溶劑在TAC膜內的質傳之Case I擴散係數(D)、Case II質傳速率(v)及過飽和吸收量(ESC)48
表3-6飽和光致變色之不同濃度乙醇/丁酮潛溶劑的Case I活化能(ED)、Case II活化能(EV)及混和熱(delta H)52
參考文獻 第5章 參考文獻
[1] Shimamoto, S., Kohmoto, T., and Shibata, T., “ Depolymerization of cellulose and cellulose triacetate in conventional acetylation system,” (1998) pp. 194-200.
[2] Saka, S., Matsumura, H., Habu, N., Kaino, Y., Iwata, R., Asai, T. and Shimamot, S., “ Fatty acid ester of cellulose, cellulose diacetate and processes for the preparation thereof,” U.S. Patent No. 5,977,346, (1999).
[3] Young, J. B., Graham, H. A., and Peterson, E. W., “ Wire grid infrared polarizer,” Applied Optics, Vol. 4, No 8 (1965) pp. 1023-1026.
[4] Yang, Z. Y., and Lu, Y. L., “ Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions,” Optics express, Vol. 15, No. 15 (2007) pp. 9510-9519.
[5] Aydin, K., Ferry, V. E., Briggs, R. M., and Atwater, H. A., “ Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nature communications, Vol. 2 (2011) pp. 517.
[6] Su, W., Zheng, G., Jianh, L. and Li, X. “ Polarizing beam splitter based on a double-layer subwavelength grating, ” Optik-International Journal for Light and Electron Optics, Vol. 125, No.15 (2014) pp. 4161-4163.
[7] Bergh, R. A., Lefevre, H.C., and Shaw, H. J., “Single-mode fiber-optic polarizer.” Optics Letters, Vol. 5, No. 11 (1980) pp. 479-481.
[8] Bouas-Laurent, H., and Dürr, H. “Organic photochromism (IUPAC technical report),” Pure and Applied Chemistry, Vol. 73, No. 4 (2001) pp. 639-665.
[9] Baillet, G., Giusti, G., and Guglielmetti, R., “ Comparative photodegradation study between spiro [indoline—oxazine] and spiro [indoline—pyran] derivatives in solution,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 70, No. 2 (1993) pp. 157-161.
[10] Silberberg, A. “ The role of matrix mechanical stress in swelling equilibrium and transport through networks,” Macromolecules, Vol. 13, No. 3 (1980) pp. 742-748.
[11] Lian, H. Q., and Wu, X. “ Synthesis and photochromism property of three naphthacenequinone phenolic resins,” Chemical Journal of Chinese Universities-Chinese Edition, Vol. 25, No. 9 (2004) pp. 1740-1742.
[12] Haitjema, H. J., von Morgen, G. L., Tan, Y. Y., and Challa, G., “ Photoresponsive behavior of azobenzene-based (meth) acrylic (co) polymers in thin films,” Macromolecules, Vol. 27, No. 21 (1994) pp. 6201-6206.
[13] Rau, H., Durr, H., and Bouas-Laurent, H., “ Photochromism: molecules and systems,” Photochromism, Molecules and Systems (1990) pp. 165-192.
[14] Baillet, G., Giusti, G., and Guglielmetti, R. “ Study of the fatigue process and yellowing of polymeric films containing spirooxazine photochromic compound,” Bulletin of the Chemical Society of Japan, Vol. 68, No. 4 (1995) pp. 1220-1225.
[15] Silberberg, A. “ The role of matrix mechanical stress in swelling equilibrium and transport through networks,” Macromolecules, Vol. 13, No. 3 (1980) pp. 742-748.
[16] Fujita, H., Crank, J., and Park, G. S., “ Diffusion in polymers,” Crank, J (1968) pp. 75-105.
[17] Hopfenberg, H. B., Stannett, V., and Haward, R. N., “ The physics of glassy polymers,” Applied Science, London (1973) pp. 504.
[18] Crank, J., “ The mathematics of diffusion: 2d Ed,” Clarendon Press (1975).
[19] Alfrey, T., Gurnee, E. F., and Lloyd, W. G., “ Diffusion in glassy polymers,” Journal of Polymer Science Part C: Polymer Symposia, Vol. 12, No. 1. Wiley Subscription Services, Inc., A Wiley Company(1966).
[20] Hopfenberg, H. B., and Frisch, H. L., “ Transport of organic micromolecules in amorphous polymers,” Journal of Polymer Science Part B: Polymer Letters, Vol. 7, No.6 (1969) pp. 405-409.
[21] Enscore, D. J., Hopfenberg, H. B., and Stannett, V. T., “ Effect of particle size on the mechanism controlling n-hexane sorption in glassy polystyrene microspheres,” Polymer, Vol. 18, No.8 (1977) pp. 793-800.
[22] Long, F. A., and Kokes, R. J., “ Diffusion of benzene and methylene chloride vapors into polystyrene1, 2,” Journal of the American Chemical Society, Vol. 75, No. 9 (1953) pp. 2232-2237.
[23] Fu, T. Z., and Durning, C. J., “ Numerical simulation of Case II transport,” AIChE Journal, Vol. 39, No. 6 (1993) pp. 1030-1044.
[24] Frisch, H. L., “ Sorption and transport in glassy polymers–a review,” Polymer Engineering & Science, Vol. 20, No. 1 (1980) pp. 2-13.
[25] Peterlin, A., “Diffusion in a glassy polymer with discontinuous swelling. II. Concentration distribution of diffusant as function of time,” Die Makromolekulare Chemie, Vol. 124, No. 1 (1969) pp. 136-142.
[26] Sarti, G. C., “ Solvent osmotic stresses and the prediction of Case II transport kinetics,” Polymer, Vol. 20, No. 7 (1979) pp. 827-832.
[27] Thomas, N. L., and Windle, A.H., “ Diffusion mechanics of the system PMMA-methanol,” Polymer, Vol. 22, No. 5 (1981) pp. 627-639.
[28] Crank, J., “ Diffusion in media with variable properties. Part III.—Diffusion coefficients which vary discontinuously with concentration,” Transactions of the Faraday Society, Vol. 47 (1951) pp. 450-461.
[29] Hopfenberg, H. B., “Permeability of plastic films and coatings, ” Plenum Press, New York (1974).
[30] Berens, A. R., and Hopfenberg, H. B., “ Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters,” Polymer, Vol. 19, No. 5 (1978) pp. 489-496.
[31] Wang, T. T., Kwei, T. K., and Frisch, H. L., “ Diffusion in glassy polymers.III,” Journal of Polymer Science Part A-2: Polymer Physics, Vol. 7, No. 12 (1969) pp. 2019-2028.
[32] Kwei, T. K., and Zupko, H. M., “ Diffusion in glassy polymers. I,” Journal of Polymer Science Part A-2: Polymer Physics, Vol. 7, No. 5 (1969) pp. 867-877.
[33] Wang, T. T., and Kwei, T. K., “ Diffusion in glassy polymers.Reexamination of vapor sorption data,” Macromolecules, Vol. 6, No. 6 (1973) pp. 919-921.
[34] Harmon, J. P., Lee, S., and Li, J. C. M., “ Methanol transport in PMMA: The effect of mechanical deformation,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 25, No. 12 (1987) pp. 3215-3229.
[35] Harmon, J. P., Lee, S., and Li, J. M. C., “ Anisotropic methanol transport in PMMA after mechanical deformation,” Polymer, Vol. 29, No. 7 (1988) pp. 1221-1226.
[36] Mamaliga, I., and Schabel, W., “ Diffusion close to glass transition temperature of dichloromethane in cellulose triacetate films,” Cellulose Chemistry and Technology, Vol. 42, No. 7-8 (2008) pp. 345-351.
[37] Crank, J., and Robinson, C., “ Interferometric studies in diffusion. II. Influence of concentration and orientation on diffusion in cellulose acetate,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 204, No. 1079.The Royal Society (1951).
[38] Murthy, T. E. G. K., and Kishore, V. S., “ Effect of casting solvent on permeability of antihypertensive drugs through ethyl cellulose films,” Journal of Scientific and Industrial research, Vol. 67, No. 2 (2008) pp. 147.
[39] Gafurov, I. R., Skirda, V. D., Maklakov, A. I., and Ryskina, I. I., “ Self-diffusion and gelation in benzyl alcohol solutions of cellulose triacetate,” Polymer Science USSR, Vol. 30, No. 7 (1988) pp. 1639-1644
[40] Lin, C. B., Lee, S.and Liu, K. S., “ Methanol‐Induced crack healing in poly(methyl methacrylate) ” J.Polymer Science and Engineering, Vol. 30, No.21(Nov 1990) pp. 1399 -1406.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2021-08-04公開。
  • 同意授權瀏覽/列印電子全文服務,於2021-08-04起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信