§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0308201515010100
DOI 10.6846/TKU.2015.00095
論文名稱(中文) 撕裂引發漣漪結構的形成
論文名稱(英文) Fracture-induce Formation of Ripple Structure
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 103
學期 2
出版年 104
研究生(中文) 林家弘
研究生(英文) Chia-Hong Lin
學號 603350025
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2015-07-06
論文頁數 51頁
口試委員 指導教授 - 林清彬
委員 - 蔡有仁
委員 - 劉昭華
關鍵字(中) 撕裂引發結構
漣漪結構
聚苯乙烯
關鍵字(英) Fracture-induce structure
ripples structure
polystyrene
第三語言關鍵字
學科別分類
中文摘要
本研究藉由新穎的模組設計及撕裂引發漣漪結構之技術成功製作出漣漪結構,並提出撕裂引發漣漪結構形成的機制。另外,探討聚苯乙烯材質(聚苯乙烯/甲苯溶液、乳化聚合聚苯乙烯薄膜、聚苯乙烯塑膠粒熱壓成膜),聚苯乙烯膜厚(3.7 um、2.2 um、1.1 um、0.8um),不同拉伸速率(1mm/min、10 mm/min、20 mm/min)及不同拉伸應力軸角度差(45°、90°)對漣漪結構之型態及尺寸的影響。從實驗結果可知使用聚苯乙烯塑膠粒之方法可以得到大面積的漣漪結構,其漣漪波長會隨著聚苯乙烯膜厚減小而變小。以及漣漪的破裂面型態會隨著拉伸速率的增加而產生更不具規則的圖案。增加拉伸應力軸之角度差會使得漣漪條紋產生曲率上的變化。
英文摘要
The present study has been successfully made ripple structures by the fracture-induce structure technology with innovative modular design and propose the formation mechanism of ripple structure. Furthermore, we studied the effect of polystyrene material (polystyrene / toluene solution with 45 kg mol-1 polystyrene, emulsion polymerization polystyrene film with 130 kg mol-1 polystyrene, polystyrene pellets with hot pressing filming with 45 kg mol-1 polystyrene), film thickness of polystyrene (3.7 um, 2.2 um, 1.1 um, 0.8um), different tensile rate (1mm / min, 10 mm / min, 20 mm / min) and different tensile stress axis angular difference (45°, 90°)on morphology and sizes of ripple structures. From the experimental results we can get three conclusions. First, we can a large area ripples structure by polystyrene pellets with hot pressing filming. Second, ripple wavelength decreased with the film thickness of polystyrene. It will produce a more non-regular pattern of the fracture surface with increased tensile rate. Final, we can see the effect of curvature of the ripples by different angles of the tensile stress axis.
第三語言摘要
論文目次
總目錄
第1章	導論	1
1-1	前言	1
1-2	文獻回顧	2
1-2.1	漣漪的不同製程	2
1-2.1.1	光刻技術	2
1-2.1.2	奈米壓印光刻	4
1-2.1.3	電子束光刻	6
1-2.1.4	破裂引發結構	8
1-3	研究動機與論文架構	12
第2章	實驗設計	13
2-1	實驗材料與設備	13
2-1.1	實驗材料	13
2-1.2	實驗設備	13
2-2	實驗步驟	14
2-2.1	FIS剛性模組製備	14
2-2.1.1	加工金屬基板	14
2-2.1.2	旋塗熱固性環氧樹脂	15
2-2.1.3	濺鍍鈦層	15
2-2.2	聚苯乙烯薄膜製作	16
2-2.2.1	聚苯乙烯甲苯溶液成膜	16
2-2.2.2	乳化聚合聚苯乙烯薄膜	17
2-2.2.3	聚苯乙烯塑膠粒熱壓成膜	17
2-2.3	撕裂產生圖案	18
2-3	實驗結果的量測方法	20
2-3.1	量測聚苯乙烯膜厚	20
2-3.2	漣漪型態觀察	21
第3章	結果與討論	23
3-1	不同聚苯乙烯薄膜材質對漣漪尺寸與型態的影響	23
3-1.1	聚苯乙烯/甲苯溶液	23
3-1.2	乳化聚合聚苯乙烯薄膜	25
3-1.3	聚苯乙烯塑膠粒熱壓成膜	26
3-2	不同膜厚對漣漪尺寸與型態的影響	30
3-3	拉伸作用力的方向與速率對漣漪尺寸與型態的影響	36
3-3.1	不同拉伸作用力軸對漣漪尺寸與型態的影響	36
3-3.2	拉伸速率對漣漪尺寸與型態的影響	40
第4章	結論	44
第5章	參考文獻	46

圖目錄
圖 1-1 利用微熱壓和蝕刻技術做出微奈米漣漪結構[21]	5
圖 1-2 UV光的零階干涉和第一階衍射光束的近場印刷,形成漣漪狀圖案的示意圖[27]	7
圖 1-3 破裂引發結構的示意圖,其中a.利用兩剛性基板熱壓聚合物薄膜b.用刀片尖端對三明治結構給予初始裂紋c.進一步推進刀片,使上下基板分離產生微奈米結構[28]	9
圖 1-4 所形成的微奈米結構是一組互補但非對稱之漣漪條紋[28]	9
圖 1-5 漣漪週期p為薄膜厚度h的函數,並針對30奈米到50毫米厚度的薄膜做量測。其中插圖()()()和()的薄膜厚度分別為50nm,100nm,6.5um和45um,相對應的週期為200nm,400nm,26um和180um[28]	10
圖 2-1 模具鋼示意圖	15
圖 2-2塗佈熱固性環氧樹脂後之剛性模塊示意圖	15
圖 2-3 鍍完鈦後之剛性模塊示意圖	16
圖 2-4三明治剛性模組熱壓後之示意圖	18
圖 2-5圖(a)撕裂引發漣漪結構之示意圖;圖(b)不同拉伸應力軸之示意圖,θ分別為45°及90°	19
圖 2-6 利用甲苯擦去部分之聚苯乙烯	21
圖 2-7 測量波峰至鈦層y1和波谷至鈦層y2之示意圖	21
圖 3-1聚苯乙烯甲苯溶液做撕裂引發結構之光學顯微圖,聚苯乙烯重量平均分子量45,000g/mol	24
圖 3-2甲苯溶劑殘留示意圖	24
圖 3-3圖(a)使用聚苯乙烯高分子懸浮乳液做漣漪結構之雷射掃描共軛焦顯微鏡影像;圖(b)為檢測到的過硫酸鉀之殘餘顆粒	26
圖 3-4圖(a)使用FIS方法的破裂面型態;圖(b)為圖(a)中B區的凸點;圖(c)使用聚苯乙烯塑膠粒熱壓成膜的破裂面型態;圖(d)為圖(c)的漣漪結構	29
圖 3-5圖(a) 初始裂紋的路徑選擇示意圖;圖(b) 因裂縫傳遞而產生漣漪之示意圖	29
圖 3-6圖(a) 聚合物分子鏈糾結示意圖;圖(b) 當受到拉伸應力時,分子鏈沿著拉伸應力形成優選方向排列之示意圖	30
圖 3-7不同聚苯乙烯膜厚的改變與漣漪的平均波長的關係圖	32
圖 3-8圖(a)(b)假設初始裂紋角度θ=45°,模厚h>h’之漣漪波長與振幅的變化;圖(c)(d)假設初始裂紋角度θ”<45°<θ’,膜厚h之漣漪波長與振幅的變化	33
圖 3-9圖(a)為拉伸速率1mm/min,熱壓溫度200℃和熱壓壓力100kgf/cm2下的破裂型態;圖(b) 為漣漪結構之雷射共軛焦顯微鏡照片	33
圖 3-10圖(a)為拉伸速率1mm/min,熱壓溫度200℃和熱壓壓力140kgf/cm2下的破裂面型態;圖(b)漣漪結構之雷射共軛焦顯微鏡照片;圖(c)為裂紋相互干涉的示意圖	34
圖 3-11圖(a)為拉伸速率1mm/min,熱壓溫度200℃和熱壓壓力180kgf/cm2下的破裂面型態;圖(b) 漣漪結構之雷射共軛焦顯微鏡照片;圖(c)為圖(a)圓圈內的放大圖	35
圖 3-12以拉伸速率為1mm/min,熱壓溫度200℃和熱壓壓力220kgf/cm2下的破裂面型態	35
圖 3-13圖(a)當角度θ=45°時,裂紋成長示意圖;圖(b)為試片邊緣處的漣漪圖案,如圖(a)(i)處;圖(c)試片中間區域的漣漪圖案,如圖(a)(ii)處;圖(d)邊緣處的漣漪結構與中間的漣漪結構相互影響的區域,如圖(a)(iii)處	38
圖 3-14圖(a)當角度θ=90°時,裂紋成長示意圖;圖(b)為漣漪結構受扭矩力影響而改變,如圖(a)(i)處;圖(c)聚苯乙烯受到扭矩力而被扯斷,如圖(a)(ii)處	39
圖 3-15圖(a)撕裂速度為1mm/min,熱壓溫度200℃熱壓壓力120kgf/cm2之破裂面型態;圖(b)為圖(a) 漣漪結構之雷射共軛焦顯微鏡照片	41
圖 3-16圖(a)撕裂速度為10mm/min,熱壓溫度200℃熱壓壓力260kgf/cm2之破裂面型態;圖(b)為圖(a) 漣漪結構之雷射共軛焦顯微鏡照片	41
圖 3-17圖(a)撕裂速度為20mm/min,熱壓溫度200℃壓力260kgf/cm2之破裂面型態;圖(b)為圖(a) (i)缺陷區的漣漪圖案;圖(c)為圖(a) (ii)比較具有漣漪處的細部影像	42
參考文獻
[1]Driggers, Ronald G., Encyclopedia of optical engineering. Vol. 2. CRC press (2003) pp2049-3050.
[2]謝峰銘、陳俊彥、陳憶明,工研院南分院,聚焦綠色軟性顯示器技術,工業材料雜誌294期, 2011年6月5號。
[3]吳耀庭,奈米圖案化技術專題,工研院化材所,「電子構裝」及「奈米圖案化」技術專題,工業材料雜誌297期, 2011年9月5號。
[4]Fletcher, E. B., Xu, F. Y., Liu, W., Wan, F., Menezes, M., and Selinidis, K. S. U.S. “Patent Application”. 12/604 (2009) pp094.
[5]Volynskii, A. L., Bazhenov, S., Lebedeva, O. V., and Bakeev, N. F. “Mechanical buckling instability of thin coatings deposited on soft polymer substrates”. Journal of materials science. 35(3) (2000) pp547-554.
[6]Guvendiren, M., Burdick, J. A., and Yang, S. “Kinetic study of swelling-induced surface pattern formation and ordering in hydrogel films with depth-wise crosslinking gradient.” Soft Matter. 6(9) (2010)pp2044-2049.
[7]SchaEffer, E., Thurn-Albrecht, T., Russell, T. P., and Steiner, U. “Electrically induced structure formation and pattern transfer”. Nature. 403(6772) (2000) pp874-877. 
[8]Lau, C. Y., and Russel, W. B. “Fundamental limitations on ordered electrohydrodynamic patterning.” Macromolecules. 44(19),(2011)pp7746-7751. 
[9]Zhao, D., Martinez, A. D., Xi, X., Ma, X., Wu, N., and Cao, T. “Self‐Organization of Thin Polymer Films Guided by Electrostatic Charges on the Substrate.” Small.  7(16)(2011)pp 2326-2333. 
[10]Yang, F., and Song, W. “Morphological instability of elastic thin films–effect of electromechanical interaction.” Applied Physics Letters. 87(11)(2005)pp111912. 
[11]Yang, F., and Song, W. “Influence of electromechanical interaction on the morphological instability of an elastic conducting halfspace.” Physical Review B. 72(16)(2005)pp165417.  
[12]Monch, W., and Herminghaus, S. “Elastic instability of rubber films between solid bodies.” EPL (Europhysics Letters). 53(4) (2001) pp525.
[13]Ghatak, A., and Chaudhury, M. K. “Critical confinement and elastic instability in thin solid films.” The Journal of Adhesion. 83(7)(2007)pp679-704. 
[14]Yang, F., and Li, D. “Indentation-induced formation of low-dimensional Si structures in KOH solution.” Journal of Physics D: Applied Physics. 43(9)(2010)pp095403. 
[15]Li, B., Huang, S. Q., and Feng, X. Q. “Buckling and postbuckling of a compressed thin film bonded on a soft elastic layer: a three-dimensional analysis.” Archive of Applied Mechanics. 80(2)(2010)pp175-188.  
[16]Chung, J. Y., Nolte, A. J., and Stafford, C. M. Diffusion‐Controlled, “Self‐Organized Growth of Symmetric Wrinkling Patterns.” Advanced Materials. 21(13)(2009) pp1358-1362. 
[17]Tanaka, T., Sun, S. T., Hirokawa, Y., Katayama, S., Kucera, J., Hirose, Y., and Amiya, T. “Mechanical instability of gels at the phase transition.” Nature. 325(6107)(1987)pp796-798. 
[18]Chou, K. F., Han, C. C., and Lee, S. “Buffer transport in hydroxyethyl methacrylate copolymer irradiated by γ-rays.” Polymer. 42(11)(2001) pp4989-4996.
[19]Chou, K. F., Lee, S., and Harmon, J. P. “Evolution of surface morphology in 2-hydroxyethyl methacrylate copolymer exposed to γ radiation.” Macromolecules.  36(15)(2003)pp 5683-5688.
[20]Levenson, M. D., Viswanathan, N. S., and Simpson, R. “Improving resolution in photolithography with a phase-shifting mask.” Electron Devices, IEEE Transactions on, 29(12) (1982) pp1828-1836.
[21]Chou, S. Y., and Krauss, P. R. Imprint lithography with sub-10 nm feature size and high throughput. Microelectronic Engineering.  35(1) (1997)pp 237-240. 
[22]Chang, T. H. P. ” Proximity effect in electron‐beam lithography.” Journal of Vacuum Science & Technology, 12(6)(1975) pp1271-1275.
[23]Hill, K. O., Malo, B., Bilodeau, F., Johnson, D. C., and Albert, J. “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask.” Applied Physics Letters. 62(10)(1993)pp1035-1037. 
[24]Xia, Y.; Whitesides, G. M.. “Soft Lithography”. Angew. Chem. Int. Ed. Engl. 37: (1998) pp551–575.
[25]Kumar, A., and Whitesides, G. M. “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching.” Applied Physics Letters. 63(14) (1993)pp 2002-2004.
[26]Duffy, D. C., McDonald, J. C., Schueller, O. J., and Whitesides, G. M. “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane).” Analytical chemistry. 70(23)(1998)pp4974-4984.
[27]Tennant, D. M., Koch, T. L., Mulgrew, P. P., Gnall, R. P., Ostermeyer, F., and Verdiell, J. M. “Characterization of near‐field holography grating masks for optoelectronics fabricated by electron beam lithography.” Journal of Vacuum Science & Technology B. 10(6)(1992) pp2530-2535. 
[28]Pease, L. F., Deshpande, P., Wang, Y., Russel, W. B., and Chou, S. Y. “Self-formation of sub-60-nm half-pitch gratings with large areas through fracturing.” Nature nanotechnology. 2(9)(2007) pp545-548.  
[29]Lin, C. C., Yang, F., and Lee, S. “Surface wrinkling of an elastic film: effect of residual surface stress.”Langmuir. 24(23)(2008)pp13627-13631.  
[30]Liang, P. Y., Yang, F., and Lee, S. “Fracture-induced formation of semi-concentric patterns on polymeric films.” Materials Chemistry and Physics. 135(1), (2012)168-173.  
[31]Lee, Y. Y., Yang, F., Chen, C. C., and Lee, S. “Process comparison for fracture-induced formation of surface structures on polymer films.” Thin Solid Films. 550(2014) pp334-339.
[32]Zhao, Y. P. “Morphological stability of epitaxial thin elastic films by van der Waals force. “Archive of Applied Mechanics. 72(1), (2002) pp77-84.
[33]Chang, T. H. P.” Proximity effect in electron‐beam lithography.” Journal of Vacuum Science & Technology, 12(6)(1975) pp1271-1275.
[34]Melngailis, J., Mondelli, A. A., Berry III, I. L., and Mohondro, R. “A review of ion projection lithography.” Journal of Vacuum Science and Technology B. 16(3)(1998)pp927-957.
[35]蔡福人,許鉅田,伍宥霖,聚苯乙烯共二乙烯苯均一粒徑高分子珠製備與特性探討,2006年。
[36]Sehanobish, K., Baer, E., Chudnovsky, A., and Moet, A.“Crack propagation in polystyrene under fixed elongation. ”Journal of materials science, 20(6) (1985)pp.1934-1944.
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信