淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0308201514442200
中文論文名稱 漣漪波長對潤濕性的影響
英文論文名稱 Effect of wavelength on wettability of the ripple structures
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 103
學期 2
出版年 104
研究生中文姓名 陳柏年
研究生英文姓名 Po-Nien Chen
學號 603350033
學位類別 碩士
語文別 中文
口試日期 2015-07-06
論文頁數 49頁
口試委員 指導教授-林清彬
委員-蔡有仁
委員-劉承揚
中文關鍵字 次微米漣漪結構  接觸角  共平面 
英文關鍵字 sub-micron ripple structure  contact angle  coplanar 
學科別分類 學科別應用科學機械工程
中文摘要 本研究使用應力拉伸法,先將聚二甲基矽氧烷熱塑性彈性體薄膜夾持固定分別給予10%至80%的拉伸應變後,濺鍍6A鈦鍍層後再給予應力回復,該薄膜表面會產生挫曲並自我組裝形成348nm至553nm特徵波長的漣漪結構,並討論漣漪特徵波長對潤濕性的影響。實驗結果表明漣漪結構的特徵波長會隨著薄膜的拉伸應變增加而減少,並且在應力回復時漣漪差排會隨著漣漪的出現而產生。從共軛焦顯微結構圖中可以發現在次微米波長漣漪結構上的去離子水滴接觸角模型為Wenzel’s model,但是由於漣漪結構表面上的6A鈦鍍層並非完整薄膜而是以不規則長條狀的孤島型態分佈,故在親水/疏水共平面產生的動態氣墊潤濕效應與次微米波長的漣漪結構作用下,俱鈦鍍層漣漪結構的去離子水滴接觸角將隨特徵波長下降而上升。利用翻印製程所製出無鈦鍍層之特徵波長348nm至553nm的漣漪結構,由於其振幅與波長的比例皆小於0.44,故潤濕狀態無法從Wenzel’s model轉換至CB model,因此該次波長的漣漪結構是無法大幅增加去離子水滴的接觸角。
英文摘要 The polydimethylsiloxane thermoplastic elastomer film was clamped and applied 10% to 80% tensile strain, and then we fixed the tensile strain and coated a 6A titanium layer on the surface of the film. After releasing the stretched film, spontaneous formation of ripple structure with 348nm to 553nm characteristic wavelength was obtained. Our experimental results showed that the characteristic wavelength of ripple structure reduced with an increase in tensile strain. Simultaneously, the ripple dislocation appeared as the ripple structure was formed. The confocal microscope micrograph of the deionized water droplets in the submicron ripple structure showed the patterns of the Wenzel’s model. However, because uniformly distribution of the isolated, long-irregular 6A titanium layer on the surface of submicron ripple structure resulted in the coplanar dynamic air cushion wetting effect, the contact angle between the DI water and the submicron ripple structure coated with titanium layer increased with a decrease in characteristic wavelength. By replicating process, a 348nm to 553nm characteristic wavelength ripple structure without titanium layer was obtained. Due to the ratios of amplitude and wavelength of the replicated ripple structures below 0.44, a transition to the CB model was not produced. Therefore, the submicron ripple structure was not effect an increase in the contact of the DI water droplet. The effect of the characteristic wavelength on the wettability of the submicron ripple structure was also studied.
論文目次 總目錄
第1章 導論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 蓮葉顯微結構 2
1.2.2 潤濕性表徵 3
1.2.2.1 靜態接觸角(static contact angle) 3
1.2.2.2 Wenzel’s model 4
1.2.2.3 Cassie and Baxter’s model 4
1.2.2.4 動態接觸角(dynamic contact angle) 5
1.2.3 三相接觸線的局部觀察 7
1.2.4 微/奈米漣漪的製作 8
1.2.4.1 低溫真空沉積(low-temperature vacuum deposition) 8
1.2.4.2 飛秒雷射熔蝕 10
1.2.4.3 離子轟擊 10
1.2.4.4 形狀記憶恢復及熱膨脹不匹配 11
1.2.4.5 石墨烯的漣漪 12
1.2.4.6 應力拉伸法 13
1.2.5 奈米結構之製作 14
1.2.5.1 陽極氧化鋁管輥壓製備PC奈米柱薄膜 14
1.2.5.2 微球陣列聚焦雷射光成型微奈米圖案 14
1.2.5.3 相分離製作奈米結構薄膜 15
1.3 研究範疇 17
第2章 實驗設計 18
2.1 實驗材料 18
2.2 實驗設備 18
2.3 實驗步驟 19
2.3.1 PDMS溶膠調製 19
2.3.2 旋轉塗佈成膜 19
2.3.3 PDMS薄膜拉伸 20
2.3.4 真空濺鍍鈦層 21
2.3.5 UV膠對俱鍍鈦漣漪結構之翻製 21
2.3.6 PDMS溶膠對俱漣漪結構UV膠之翻製 22
2.3.7 F13-TCS silane漣漪結構之低表能處理 22
2.4 實驗觀察 23
2.4.1 鈦鍍層厚度量測 23
2.4.2 漣漪結構型態觀察與尺寸量測 23
2.4.3 接觸角量測 23
第3章 結果與討論 25
3.1 伸長率對PDMS漣漪尺寸之影響 25
3.2 PDMS溶膠翻製漣漪結構 30
3.3 漣漪尺寸對液滴接觸角之影響 32
3.4 F13-TCS silane改質俱漣漪PDMS薄膜對液滴接觸角的影響 38
第4章 結論 41
第5章 參考文獻 42
圖目錄
圖 1 1(a)蓮花葉表面的SEM圖像;(b)圖a中單一凸起結構的放大圖像 3
圖 1 2 Young equation示意圖 6
圖 1 3 Wenzel’s model示意圖 6
圖 1 4 Cassie and Baxter’s model示意圖 6
圖 1 5前進後退角示意圖 7
圖 1 6 PDMS液滴三相接觸線邊緣的成像;圖(b)液滴前進沿著y軸;圖(c)液滴後退沿著y軸;圖(d)液滴前進沿著x軸;圖(e)液滴後退沿著x軸 8
圖 1 7 Thornton structure zone model 9
圖 1 8為在不同基板上沉積厚度分別為250nm及500 nm鈦層的SEM表面成像 10
圖 1 9藉由K+離子束轟擊來形成波紋圖案並藉由AFM成像,在Eion=1200eV,αion=5°,以及不同離子通量(a) 3.36×1017cm-2;(b) 2.24×1018cm-2(c) 1.34×1019cm-2進行 11
圖 1 10顯示預拉伸PS SMP加熱至(a) 60℃(b) 100℃(c)120℃基板表面形貌改變藉由表面輪廓儀(surface profiler)成像 12
圖 1 11為石墨烯條狀陣列製作過程示意圖 13
圖 1 12為單層微球陣列製作過程示意圖 15
圖 2 1啞鈴型基板示意圖 20
圖 2 2PDMS薄膜於拉伸治俱上裝配完成圖 21
圖 3 1PDMS漣漪形成機制示意圖 26
圖 3 2薄膜收縮後的漣漪波長與拉伸應變之關係 26
圖 3 3不同伸長率(a) 10%(b)20%(c)30%(d)40%(e)50%(f)60%(g)70%(h)80%之鍍鈦PDMS薄膜共軛焦顯微鏡分析圖表 27
圖 3 4伸長率與漣漪波長之關係 28
圖3 5(a)鍍鈦層厚度15nm,伸長率10%(b)裂縫尺寸圖(c)鍍鈦層厚度6Å,伸長率10%(d)漣漪差排顯微結構圖(e)漣漪差排立體圖 30
圖 3 6厚度與裂縫臨界應力之關係 30
圖 3 7(a)俱漣漪之鍍鈦PDMS薄膜(b) UV膠翻製之薄膜(c) PDMS翻製之薄膜(d)(e)(f)分別為圖abc之立體圖 32
圖 3 8伸長率(a)0%(b)10%(c)20%(d)30%(e)40%(f)50%(g)60%(h)70%(i)80%所製作之俱漣漪鍍鈦PDMS薄膜的液滴接觸角 33
圖 3 9漣漪波長與液滴接觸角之關係 34
圖 3 10液滴潤濕進入漣漪 34
圖 3 11鍍鈦層厚度為(a) 6Å(b)18Å(c) 30Å(d) 60Å(e) 90Å伸長率10%鍍鈦PDMS薄膜之孤島差異圖 35
圖 3 12伸長率10%之鍍鈦PDMS薄膜的鍍鈦層厚度與液滴接觸角之關係 35
圖 3 13共平面漣漪潤濕模型示意圖 36
圖 3 14漣漪上共平面潤濕共軛焦顯微結構圖 36
圖 3 15伸長率(a)0%(b)10%(c)20%(d)30%(e)40%(f)50%(g)60%(h)70%(i)80%經PDMS翻製之薄膜的液滴接觸角 38
圖 3 16翻膜前後之漣漪波長與接觸角關係圖 38
圖 3 17伸長率(a)0%(b)10%(c)20%(d)30%(e)40%(f)50%(g)60%(h)70%(i)80%翻製過後PDMS經F13-TCS silane吸附之薄膜的液滴接觸角 39
參考文獻 [1]Autumn, K., and Peattie, A. M., “Mechanisms of adhesion in geckos.”Integrative and Comparative Biology, 42(6) (2002) pp.1081-1090.
[2]Schweikart, A., and Fery, A., “Controlled wrinkling as a novel method for the fabrication of patterned surfaces.” Microchimica Acta, 165(3-4) (2009) pp.249-263.
[3]Rechenberg, I., and El Khyari, A. R., “Der Sandskink der Sahara–Vorbild fur Reibungs-und Verschleisminderung.” (2004) pp.1-5.
[4]Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J. Song, Y., Liu, B. Jiang, L., and Zhu, D., “Super‐hydrophobic surfaces: from natural to artificial.” Advanced materials, 14(24) (2002) pp.1857-1860.
[5]Cheng, Y. T., Rodak, D. E., Wong, C. A., and Hayden, C. A., “Effects of micro-and nano-structures on the self-cleaning behaviour of lotus leaves.” Nanotechnology, 17(5) (2006) pp.1359-1362.
[6]Neinhuis, C., and Barthlott, W., “Characterization and distribution of water-repellent, self-cleaning plant surfaces.” Annals of Botany, 79(6) (1997) pp.667-677.
[7]Barthlott, W., and Neinhuis, C., “Purity of the sacred lotus, or escape from contamination in biological surfaces.” Planta, 202(1) (1997) pp.1-8.
[8]Ge, L., Sethi, S., Ci, L., Ajayan, P. M., and Dhinojwala, A., “Carbon nanotube-based synthetic gecko tapes.” Proceedings of the National Academy of Sciences, 104(26) (2007) pp.10792-10795.
[9]Lackner, J. M., Waldhauser, W., Hartmann, P., Miskovics, O., Schmied, F., Teichert, C., and Schoberl, T., “Self-assembling (nano-) wrinkling topography formation in low-temperature vacuum deposition on soft polymer surfaces.” Thin Solid Films, 520(7) (2012) pp.2833-2840.
[10]Chung, J. Y., Nolte, A. J., and Stafford, C. M., “Surface Wrinkling: A Versatile Platform for Measuring Thin‐Film Properties.” Advanced materials, 23(3) (2011) pp.349-368.
[11]Wang, Y., Yang, R., Shi, Z., Zhang, L., Shi, D., Wang, E., and Zhang, G., “Super-elastic graphene ripples for flexible strain sensors.” Acs Nano, 5(5) (2011) pp.3645-3650.
[12]Lin, P. C., and Yang, S.“Mechanically switchable wetting on wrinkled elastomers with dual-scale roughness. ” Soft Matter, 5(5) (2009)pp.1011-1018.
[13]Feng, L., Zhang, Z., Mai, Z., Ma, Y., Liu, B., Jiang, L., and Zhu, D., “A super‐hydrophobic and super‐oleophilic coating mesh film for the separation of oil and water.” Angewandte Chemie International Edition, 43(15) (2004) pp.2012-2014.
[14]Guo, Z., Liu, W., and Su, B. L., “Superhydrophobic surfaces: from natural to biomimetic to functional.” Journal of colloid and interface science, 353(2) (2011) pp.335-355.
[15]Lee, D., Seo, S. B., Kim, D. Y., Kim, H. M., Cho, C., Lee, J., Lim,S., Kim, J., Lee, B., and Kim, B., “Nanotextured and polytetrafluoroethylene-coated superhydrophobic surface.” Thin Solid Films, 547 (2013) pp.111-115.
[16]Kim, B., Seo, S. B., Bae, K., Kim, D. Y., Baek, C. H., and Kim, H. M., “Stable superhydrophobic si surface produced by using reactive ion etching process combined with hydrophobic coatings.” Surface and Coatings Technology, 232 (2013) pp.928-935.
[17]Liu, S. J., and Chen, W. A., “Nanofeatured anti-reflective films manufactured using hot roller imprinting and self-assembly nanosphere lithography.” Optics and Laser Technology, 48 (2013) pp.226-234.
[18]Furstner, R., Barthlott, W., Neinhuis, C., and Walzel, P., “Wetting and self-cleaning properties of artificial superhydrophobic surfaces.” Langmuir, 21(3) (2005) pp.956-961.
[19]Lin, J., Cai, Y., Wang, X., Ding, B., Yu, J., and Wang, M., “Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf.” Nanoscale, 3(3) (2011) pp.1258-1262.
[20]Feng, L., Zhang, Y., Xi, J., Zhu, Y., Wang, N., Xia, F., and Jiang, L., “Petal effect: a superhydrophobic state with high adhesive force.” Langmuir, 24(8) (2008) pp.4114-4119.
[21]Li, Y., Huang, X. J., Heo, S. H., Li, C. C., Choi, Y. K., Cai, W. P., and Cho, S. O., “Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays.” Langmuir, 23(4) (2007) pp.2169-2174.
[22]Bhushan, B., and Jung, Y. C., “Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction.” Progress in Materials Science, 56(1) (2011) pp.1-108.
[23]Adamson, A. W., and Gast, A. P., “Physical chemistry of surfaces.” (1967)
[24]Schrader, M. E., “Young-dupre revisited.” Langmuir, 11(9) (1995) pp.3585-3589.
[25]Nosonovsky, M., and Bhushan, B., “Roughness optimization for biomimetic superhydrophobic surfaces.” Microsystem Technologies, 11(7) (2005) pp.535-549.
[26]Blokhuis, E. M., Shilkrot, Y., and Widom, B., “Young's law with gravity.” Molecular Physics, 86(4) (1995) pp.891-899.
[27]Wenzel, R. N., “Resistance of solid surfaces to wetting by water.” Industrial and Engineering Chemistry, 28(8) (1936) pp.988-994.
[28]Cassie, A. B. D., and Baxter, S., “Wettability of porous surfaces.” Transactions of the Faraday Society, 40 (1944) pp.546-551.
[29]Nosonovsky, M., and Bhushan, B., “Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions.” Langmuir, 24(4) (2008) pp.1525-1533.
[30]Choi, W., Tuteja, A., Mabry, J. M., Cohen, R. E., and McKinley, G. H., “A modified Cassie–Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces.” Journal of colloid and interface science, 339(1) (2009) pp.208-216.
[31]Cassie, A. B. D., “Contact angles.” Discuss. Faraday Soc., 3 (1948) pp.11-16.
[32]陳仲民,“微/奈米雙維度結構製造與潤濕性質”淡江大學機械與機電工程學系碩士班學位論文, (2012),pp.1-69.
[33]Thornton, J. A., “High rate thick film growth.” Annual review of materials science, 7(1) (1977) pp.239-260.
[34]Thornton, J. A., “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings.” Journal of Vacuum Science and Technology, 11(4) (1974) pp.666-670.
[35]邱繼暐,“直流磁控濺鍍輔以氧離子助鍍光學薄膜於塑膠基板” 國立中央大學光電科學與工程學系碩士班學位論文,(2004) ,pp.1-52.
[36]顏志先,“氮化鈦感測場效電晶體應用於尿酸酵素之量測與積體化前端檢測電路之研究”國立雲林科技大學電子工程學系碩士班學位論文,(2004) ,pp.1-215.
[37]Luo, C. W., Tang, W. T., Wang, H. I., Liao, L. W., Lo, H. P., Wu, K. H., Lin, J-Y., Juang, J.Y., Uen, T.M., and Kobayashi, T., “Controllable subwavelength-ripple and-dot structures on Y Ba2Cu3O7 induced by ultrashort laser pulses.” Superconductor Science and Technology, 25(11) (2012) 115008(5pp).
[38]Ziberi, B., Frost, F., Hoche, T., and Rauschenbach, B., “Ripple pattern formation on silicon surfaces by low-energy ion-beam erosion: Experiment and theory.” Physical Review B, 72(23) (2005) 235310(7pp).
[39]Zhao, Y., Huang, W. M., and Fu, Y. Q., “Formation of micro/nano-scale wrinkling patterns atop shape memory polymers.” Journal of Micromechanics and Microengineering, 21(6) (2011) 067007(8pp).
[40]Yang, R., Zhang, L., Wang, Y., Shi, Z., Shi, D., Gao, H., Wang, E. and Zhang, G., “An anisotropic etching effect in the graphene basal plane.” Advanced materials, 22(36) (2010) pp.4014-4019.
[41]Jiang, H., Khang, D. Y., Song, J., Sun, Y., Huang, Y., and Rogers, J. A., “Finite deformation mechanics in buckled thin films on compliant supports.” Proceedings of the National Academy of Sciences, 104(40) (2007) pp.15607-15612.
[42]Volynskii, A. L., Bazhenov, S., Lebedeva, O. V., & Bakeev, N. F. “Mechanical buckling instability of thin coatings deposited on soft polymer substrates.” Journal of materials science, 35(3) (2000) pp.547-554.
[43]李育修,“聚二甲基矽氧烷鍍金之漣漪形成機制與型態”淡江大學機械與機電工程學系碩士班學位論文, (2005),pp.1-149.
[44]劉奎佑,“漣漪差排形成機制”淡江大學機械與機電工程學系碩士班學位論文, (2011),pp.1-42.
[45]Khang, D. Y., Rogers, J. A., and Lee, H. H., “Mechanical buckling: mechanics, metrology, and stretchable electronics.” Advanced Functional Materials, 19(10) (2007) pp.1526-1536.
[46]Guo, C., Feng, L., Zhai, J., Wang, G., Song, Y., Jiang, L., and Zhu, D., “Large‐Area Fabrication of a Nanostructure‐Induced Hydrophobic Surface from a Hydrophilic Polymer.” ChemPhysChem, 5(5) (2004) pp.750-753.
[47]Betzig, E., and Trautman, J. K., “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit.” Science, 257(5067) (1992) pp.189-195.
[48]Khan, A., Wang, Z., Sheikh, M. A., Whitehead, D. J., and Li, L., “Laser micro/nano patterning of hydrophobic surface by contact particle lens array.” Applied Surface Science, 258(2) (2011) pp.774-779.
[49]Lee, W., Zhang, X., and Briber, R. M., “A simple method for creating nanoporous block-copolymer thin films.” Polymer, 51(11) (2010) pp.2376-2382.
[50]Park, S., Kim, B., Wang, J. Y., and Russell, T. P., “Fabrication of highly ordered silicon oxide dots and stripes from block copolymer thin films.” Advanced Materials, 20(4) (2008) pp.681-685.
[51]劉永盛,“Poly (styrene-b-4-vinylpyridine) 自組裝塊式高分子薄膜應用於非揮發性記憶體的研究”國立交通大學材料科學與工
程學系碩士班學位論文,(2007) ,pp.1-57.
[52]Broek, D., 陳文華, and 張士欽.“基本工程破裂力學.”國立編譯館, (1995)pp.101-153.
[53]Carbone, G., and L. Mangialardi. , “Hydrophobic properties of a wavy rough substrate. ” The European Physical Journal E, 16(1) (2005) pp.67-76.
[54]李宏洲,“雙相共平面基材之潤濕機制”淡江大學機械與機電工程學系碩士班學位論文, (2006),pp.1-127.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2017-08-05公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-08-05起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信