淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0308201514412400
中文論文名稱 金屬光柵之偏光性質與光學模擬
英文論文名稱 Polarization property and optical simulation of metal grating
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 103
學期 2
出版年 104
研究生中文姓名 余星睿
研究生英文姓名 Hsing-Jui Yu
學號 603350017
學位類別 碩士
語文別 中文
口試日期 2015-07-06
論文頁數 42頁
口試委員 指導教授-林清彬
委員-蔡有仁
委員-劉承揚
中文關鍵字 次波長金屬光柵  光學模擬  偏振光 
英文關鍵字 Sub-wavelength metallic grating  optical simulation  polarized light 
學科別分類 學科別應用科學機械工程
中文摘要 本文使用Comsol的光學軟體對次波長矩形金屬光柵與梯形金屬光柵進行光學模擬,模擬參數包含不同金屬材料(Cu、Ag、Ti、Al)、光柵週期(120、150、200、250nm)、金屬厚度(50、120、200、250nm)、碳層厚度(100、120nm)、入射角(0、15、30、45°)與氧化鋁厚度(0、15、20、25nm),藉由電場與功流率的分佈圖進行偏光性質之探討。由光學模擬結果可知,鋁在可見光波長中阻擋TE偏振光的穿透率效果最好。當增加金屬厚度時會使TM偏振光穿透率呈現紅移的趨勢。另外,在可見光波長下,矩形金屬光柵之TE偏振光穿透率是高於梯形金屬光柵約30%,然而TM偏振光穿透率則低於約20%。隨著入射角的增加至45° 時,矩形金屬光柵之消光比下降了80 %。TE與TM偏振光穿透率分別隨氧化鋁厚度增加而上升及下降。
英文摘要 The main purpose of this paper is to simulate the sub-wavelength rectangle metal grating and trapezoid metal grating by optical software of Comsol. The simulation parameters comprise different metal materials (Cu, Ag, Ti and Al), grating period (120, 150, 200 and 250nm), metal thickness (50, 120, 200 and 250 nm), carbon thickness (100 and 120 nm), aluminum oxide thickness (0, 15, 20 and 25 nm), and incident angles (0, 15, 30 and 45 degrees). However, we can study the polarization properties of them by electric field and power flow distribution. According to the optical simulate result, aluminum which in the visible wavelengths could block the best effect of TE-polarized light transmittance. If increase the thickness of the metal, TM-polarized light transmittance will appear tends of red-shifted. To compare with rectangle metal grating and trapezoid metal grating, the TE polarized visible light transmittance of rectangle metal grating is higher than trapezoid metal grating about 30% and TM polarized visible light transmittance of rectangle metal grating is lower than trapezoid metal grating about 20%, respectively. By the incident angle increase to the 45 degree, the extinction ratio of the rectangle metal grating has been reduced by 80%. When increase the aluminum oxide thickness, the TE-polarized light transmittance will increase, but TM-polarized light transmittance will decrease.
論文目次 總目錄
第1章 導論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 偏振分光 2
1.2.1.1 次波長金屬光柵運用於偏振分光原理 4
1.2.1.2 週期對於最佳偏振消光率設計之影響 8
1.2.1.3 金屬厚度對於最佳偏振消光率設計之影響 9
1.3 動機與目的 12
第2章 模擬設計 13
2.1 光學模擬 13
2.1.1 Autocad繪製與Comsol模擬設定 13
2.1.2 不同金屬之次波長金屬光柵 13
2.1.3 不同尺寸之次波長金屬光柵 14
2.1.4 不同金屬厚度之次波長金屬光柵 15
2.1.5 不同入射光角度之次波長金屬光柵 15
2.1.6 不同氧化鋁厚度之次波長金屬光柵 16
2.1.7 梯形金屬光柵 17
第3章 結果與討論 18
3.1 光學模擬 18
3.1.1 金屬材料對矩形金屬光柵結構之偏光性質影響 18
3.1.2 不同光柵結構尺寸對偏振光穿透率之影響 21
3.1.3 金屬厚度對穿透率之影響 29
3.1.4 不同入射角對穿透率之影響 30
3.1.5 不同氧化鋁厚度對矩形金屬光柵之偏光性質影響 32
3.1.6 梯形金屬光柵與矩形金屬光柵之比較 34
第4章 結論 38
第5章 參考文獻 40

圖目錄
圖 1-1為光柵示意圖 1
圖 1-2(a)圖表示了金屬銀的光柵結構,第二層與第三層分別為二氧化矽與金屬銀;(b)圖為梯形陣列的示意圖;(c)光柵與梯形結構的SEM圖,其中左與中間圖的金屬光柵線寬分別為w=60nm與120nm,比例尺長度為500nm;(d)單一個梯形結構,其寬度變化從40nm到120nm,總長為300nm[12] 3
圖 1-3運用於偏振分光的雙層光柵示意圖[13] 4
圖 1-4次波長金屬光柵的偏振分光示意圖[9] 6
圖 2-1矩形金屬光柵結構之模擬示意圖 14
圖 2-2不同尺寸之次波長金屬光柵 15
圖 2-3不同尺寸之矩形金屬光柵 15
圖 2-4不同入射角在Comsol中之不同的邊界條件 16
圖 2-5不同氧化鋁厚度之次波長金屬光柵 17
圖 2-6不同尺寸之梯形金屬光柵 17
圖 3-1矩形金屬光柵之模擬示意圖 19
圖 3-2在可見光波長銅、銀、鈦與鋁的光柵,不同入射光波長與TE偏振光穿透率之關係圖 20
圖 3-3矩形金屬光柵在可見光波長,入射光波長與TE偏振光穿透率之關係圖 23
圖 3-4矩形金屬光柵在可見光波長,入射光波長與TM偏振光穿透率之關係圖 23
圖 3-5矩形金屬光柵在可見光波長,入射光波長與TE偏振光穿透率之關係圖 24
圖 3-6矩形金屬光柵在可見光波長,入射光波長與TM偏振光穿透率之關係圖 25
圖 3-7入射光波長為560nm之電場分佈圖 25
圖 3-8入射光波長為560nm之功流率分佈圖 26
圖 3-9光柵表面附近之正規化後的能量強度分佈 26
圖 3-10矩形金屬光柵之局部放大功流率分佈圖 27
圖 3-11矩形光柵表面之功流率正規化後的分佈 27
圖 3-12矩形金屬光柵結構之局部放大功流率分佈圖;入射光為TM偏振光、週期120nm、鋁厚度120nm、碳厚度100nm 28
圖 3-13沿著圖11紅線之功流率正規化後的分佈 28
圖 3-14不同鋁厚度之金屬光柵,入射光波長與TE偏振光穿透率之關係圖 29
圖 3-15不同鋁厚度之金屬光柵,入射光波長與TM偏振光穿透率之關係圖 30
圖 3-16不同入射角,入射光波長與TE偏振光穿透率之關係圖 31
圖 3-17不同入射角,入射光波長與TM偏振光穿透率之關係圖 31
圖 3-18不同入射角,入射光波長與消光比之關係圖 32
圖 3-19不同氧化鋁厚度,入射光波長與TE偏振光穿透率之關係圖 33
圖 3-20不同氧化鋁厚度,入射光波長與TM偏振光穿透率之關係圖 34
圖 3-21梯形金屬光柵之模擬示意圖;P=175, DW175, UW24, AL70, C30 35
圖 3-22梯形金屬光柵在可見光波長,入射光波長與TE偏振光穿透率之關係圖 36
圖 3-23梯形金屬光柵在可見光波長,入射光波長與TM偏振光穿透率之關係圖 36
圖 3-24梯形金屬光柵與矩形金屬光柵在可見光波長,入射光波長與TE偏振光之關係圖 37
圖 3-25梯形金屬光柵與矩形金屬光柵在可見光波長,入射光波長與TM偏振光之關係圖 37

表目錄
表 1-1為金屬鋁在可見光波段中的複數折射率[15] 7
表 1-2當填充因子(f)=0.5的情況下,在可見光波段時鋁的等效折射率[9] 8
表 1-3鋁在可見光波段中的集膚深度[17] 10
表 1-4利用抗反射設計所計算出的光柵溝槽深度[18] 11
表 3-1碳在可見光波段的複數折射率[15] 19
表 3-2金屬銅、銀與鈦的複數折射率[15] 20
表 3-3矩形金屬光柵之光學模擬4組參數 22
表 3-4矩形金屬光柵之光學模擬3組參數 24
表 3-5氧化鋁之折射率[15] 32
表 3-6梯形金屬光柵之光學模擬5組參數 35

參考文獻 [1]Chung, J. Y., Youngblood, J. P., and Stafford, C. M. “Anisotropic wetting on tunable micro-wrinkled surfaces.”Soft Matter, 3(9) (2007)pp.1163-1169.
[2]Wang, B., Shu, W., Chen, L., Lei, L., and Zhou, J.“A mixed metal dielectric sandwiched grating for polarization-selective reflection.”Infrared Physics and Technology,66 (2014)pp.39-42.
[3]Mitchell, S. A., Poulsson, A. H. C., Davidson, M. R., and Bradley, R. H. “Orientation and confinement of cells on chemically patterned polystyrene surfaces.”Colloids and Surfaces B: Biointerfaces, 46(2)(2005)pp.108-116.
[4]Seuntiens, P. J., Meesters, L. M., andIJsselsteijn, W. A. “Perceptual attributes of crosstalk in 3D images.”Displays,26(4) (2005)pp.177-183.
[5]Lin, T. C., Huang, L. C., Chou, T. R., and Chao, C. Y.“Alignment control of liquid crystal molecules using crack induced self-assembled grooves.”Soft Matter, 5(19) (2009)pp.3672-3676.
[6]Young, J. B., Graham, H. A., and Peterson, E. W. “Wire grid infrared polarizer.”Applied Optics, 4(8) (1965)pp.1023-1026.
[7]Kao, Y. C., and Hong, F. C. N. “Selective electroless plating of silver nanograting patterns with no lateral growth for the fabrication of polarizers.”Surface and Coatings Technology, 231 (2013)pp.460-464.
[8]Flossmann, F., Schwarz, U. T., Maier, M., and Dennis, M. R. “Polarization singularities from unfolding an optical vortex through a birefringentcrystal.”Physical review letters, 95(25) (2005)pp.253901.
[9]Lalanne, P., and Lemercier-Lalanne, D. “On the effective medium theory of subwavelength periodic structures.”Journal of Modern Optics, 43(10) (1996)pp.2063-2085.
[10]Bergh, R. A., Lefevre, H. C., and Shaw, H. J.“Single-mode fiber-optic polarizer.”Optics Letters, 5(11) (1980)pp.479-481.
[11]Yang, Z. Y., and Lu, Y. F.“Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions.”Optics express,15(15) (2007)pp.9510-9519
[12]Aydin, K., Ferry, V. E., Briggs, R. M., and Atwater, H. A.“Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers.”Nature communications, 2(2011)pp.517.
[13]Su, W., Zheng, G., Jiang, L., and Li, X.“Polarizing beam splitter based on a double-layer subwavelength grating.”Optik-International Journal for Light and Electron Optics, 125(15) (2014)pp.4161-4163.
[14]Schwinger, J. S., Tsai, W. Y., De Raad, L. L., and Milton, K. A.“Classical electrodynamics.”Perseus,(1998) pp.1-247.
[15]Schubert, E. F. Refractive index and extinction coefficient of materials. Refractive index and extinction coefficient of materials,(2004) pp.1-276.
[16]Hessel, A., andOliner, A. A. “A new theory of Wood’s anomalies on optical gratings.”Applied Optics, 4(10) (1965)pp.1275-1297.
[17]Azad, A. K., and Zhang, W. “Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness.”Optics letters,30(21)(2005)pp.2945-2947.
[18]李正中,“薄膜光學與鍍膜技術.”藝軒圖書, (2002)pp.133-156.
[19]Yang, Z. Y., and Lu, Y. F. “Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions. ”Optics express, 15(15) (2007)pp.9510-9519.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2017-08-05公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-08-05起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信