淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0308201117340200
中文論文名稱 渠道型式對直接接觸式薄膜蒸餾效能影響之研究
英文論文名稱 Effect of channel design on the performance of direct contact membrane distillation
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 簡文洋
研究生英文姓名 Wen-Yang Chien
學號 698400396
學位類別 碩士
語文別 中文
口試日期 2011-07-12
論文頁數 107頁
口試委員 指導教授-鄭東文
委員-李篤中
委員-童國倫
委員-莊清榮
委員-黃國楨
中文關鍵字 薄膜蒸餾  流動型態  極化現象  渠道 
英文關鍵字 Direct Contact Membrane Distillation  Flow pattern  Polarization phenomena  Channel 
學科別分類
中文摘要 本研究為利用疏水性聚四氟乙烯薄膜(PTFE)來進行直接接觸式薄膜蒸餾,主要研究目標將改良模組進料側渠道型式對於直接接觸式薄膜蒸餾效能之影響。實驗將以兩種不同渠道型式(Concaves、Convexs)下改變進料溫度、進料流量、膜組傾斜角、曝氣來探討其對於滲透通量之提昇。並利用估算理論薄膜蒸餾海水滲透通量與實驗值作一比較,與計算流體力學(CFD)來模擬流體於進料側通道內之速度分佈與膜面上之剪應力。
實驗結果可以發現,提高進料溫度能明顯的增加滲透通量,但極化現象也最嚴重。而增加進料流量與曝氣則可以減輕極化現象,但對於滲透通量的提昇較有限。改變膜組傾斜角則是由於不穩定自然對流關係使滲透通量提昇,其中又以傾斜角45o時之滲透通量為最高。凹槽模組(Concaves)則是造成進料流體產生亂流流動,使得滲透通量大幅度的提高;而凸出模組(Convexs)增加了對膜面造成之剪應力,也就有效的減緩了膜面上之極化現象而使滲透通量提昇。
藉由Dusty-Gas model並假設海水相當為3.4%之NaCl溶液所估算出薄膜蒸餾海水之理論滲透通量,其理論計算的結果與實驗趨勢非常符合。結果顯示出溫度極化係數介於0.5~0.65之間;濃度極化係數隨著溫度差或進料流速減少而有明顯的增加,故濃度極化現象為影響滲透通量的主要影響因素。由計算流體力學(CFD)模擬出凹槽模組會使通道內之流體形成擾流進而提昇滲透通量,而凸出模組則大幅的提昇膜面之剪應力,也減緩了膜面上的極化現象。
英文摘要 The effects of flow patterns on the permeate flux in a modified direct contact membrane distillation (DCMD) module, in that there were some concaves or convexes cross the flow direction, was studied in this work. The operating parameters included temperature difference, feed flow rate, module inclination angle, gas flow rate. The DCMD experiment was conducted in a flat sheet module with using 0.2 µm pore size polytetrafluoroethylene (PTFE) membrane. The flow patterns was Simulated by computational fluid dynamics(CFD) software.
The experimental results show that increasing the temperature difference will increase the permeate flux, but also heighten the polarization phenomena. Increasing the feed flow rate and the gas flow rate can reduced the polarization phenomena. As the membrane of inclination was changed from the horizontal (flow below membrane), the permeate flux increased, and reached a maximum at about 45°, and the enhancement in flux is significant in the two-phase flow system.
The results of modified DCMD show that the concaves in the feed channel can cause turbulence to feed stream and enhance flux significantly. And the convexes in the feed channel will increase the shear stress on the membrane, thus, effectively reduce the polarization phenomena and increase the permeate flux.
The distillate fluxes of DCMD were well predicted by adopting the Knudsen-molecular diffusion in series based on Dusty-Gas model for in desalination of seawater in which the seawater was assumed to be equivalent to 3.4wt% of NaCl solution. The theoretical calculations showed that the temperature polarization coefficients were in the range of 0.5 to 0.65 that was reasonable for DCMD operation; and the concentration polarization coefficients increased significantly as the temperature difference increased or the flow rate decreased. The simulated of CFD results shows that the modified modules with concaves can cause turbulence to feed stream, and the convexes in the feed channel will increase the shear stress on the membrane surface, and thus effectively reduce the polarization phenomena.
論文目次 誌謝 I
中文摘要 II
英文摘要 III
目錄 IV
圖目錄 VII
表目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 薄膜分離程序 2
1.3 薄膜蒸餾 5
1.4 研究之目標 7
第二章 文獻回顧 11
2.1 薄膜蒸餾相關研究 11
2.2 薄膜蒸餾法之種類 14
2.2.1 直接接觸式薄膜蒸餾 14
2.2.2 空氣間隙式薄膜蒸餾 14
2.2.3 空氣掃掠式薄膜蒸餾 15
2.2.4 真空式薄膜蒸餾 15
2.3 薄膜之性質 15
2.4 影響滲透通量的因素 16
2.5 模組及操作程序的改良 18
2.5.1 氣液兩相流動 19
2.5.2 模組傾斜角度 22
2.5.3 減少結垢問題 22
2.5.4 改良模組設計 23
第三章 理論計算 29
3.1 直接接觸式薄膜蒸餾理論分析之假設 29
3.2 質量傳送 30
3.3 熱量傳送 34
3.4 間隔網(spacer)之作用 36
3.5 極化現象之影響 37
3.5.1 溫度極化 37
3.5.2 濃度極化 38
3.6 熱質傳經驗方程式 41
3.7 計算流體力學(CFD)之模擬 42
第四章 實驗裝置與方法 49
4.1 實驗裝置 49
4.2 實驗設備 50
4.3 實驗藥品與薄膜材料 51
4.3.1 實驗藥品 51
4.3.2 海水前處理 51
4.3.3 薄膜材料 51
4.4 實驗步驟 51
4.5 操作條件 52
4.6 流量計校正與雷諾數計算 53
4.7 分析方法 54
4.7.1 鹽類含量之分析方法與條件 54
4.7.2 鹽類阻隔率之計算 54
第五章 結果與討論 63
5.1 原型模組之滲透通量 63
5.1.1 進料流速與溫度對滲透通量之影響 63
5.1.2 改變模組傾斜角度對滲透通量之影響 64
5.1.3 傾斜模組下曝氣對滲透通量之影響 65
5.2 凹槽模組(Concaves)之滲透通量 67
5.2.1 進料流量對滲透通量之影響 67
5.2.2 改變模組傾斜角度對滲透通量之影響 67
5.2.3 傾斜模組下曝氣對滲透通量之影響 68
5.2.4 不同凹槽位置對滲透通量之影響 68
5.3 凸出模組(Convexs)之滲透通量 70
5.3.1 進料流量對滲透通量之影響 70
5.3.2 改變模組傾斜角度對滲透通量之影響 71
5.3.3 傾斜模組下曝氣對滲透通量之影響 71
5.4 阻隔鹽類之效能 73
5.5 理論計算 74
5.5.1 原始模組滲透通量之估算 74
5.5.2 凸出模組(Convexs)滲透通量之估算 75
5.5.3 DCMD系統中溫度極化之現象 76
5.5.4 DCMD系統中濃度極化之現象 76
5.6 計算流體力學模擬結果 78
第六章 結論 96
符號說明 98
參考文獻 102
附錄A.. 107



圖目錄
圖1.1 薄膜分離程序之分類 8
圖1.2 提高濾速之方法 9
圖1.3 薄膜蒸餾物流流動示意圖 10
圖2.1 薄膜蒸餾膜組之型式 26
圖2.2 逆洗程序示意圖 27
圖2.3 流體亂流產生器 28
圖3.1 DCMD系統熱質傳示意圖 44
圖3.2 DCMD質傳阻力示意圖 45
圖3.3 Multipore size model之電路阻力類比示意圖 45
圖3.4 DCMD熱傳阻力示意圖 46
圖3.5 Spacer之形式 47
圖3.6 Space於通道內之示意圖 47
圖3.7 大氣壓下NaCl溶液的密度變化圖 48
圖4.1 DCMD 模組示意圖 55
圖4.2 DCMD 模組設計示意圖(進料側) 56
圖4.3 DCMD 模組設計示意圖(冷卻水側) 57
圖4.4 模組渠道設計示意圖 58
圖4.5 直接接觸薄膜蒸餾實驗裝置圖 59
圖4.6 進料流體流量計校正曲線 60
圖4.7 冷卻水流體流量計校正曲線 60
圖4.8 進料流體流量與Reynold number之關係圖 61
圖4.9 冷卻水流體流量與Reynold number之關係圖 61
圖5.1 不同溫度差下改變進料流量之滲透通量 79
圖5.2 不同模組傾斜角之滲透通量 79
圖5.3 於不同傾斜角下通入氣體之滲透通量 80
圖5.4 於不同進料流量下凹槽模組對於滲透通量之影響 80
圖5.5 凹槽模組於不同傾斜角度下對於滲透通量之影響 81
圖5.6 凹槽模組於不同傾斜角度下曝氣對於滲透通量之影響 81
圖5.7 不同凹槽設計示意圖 82
圖5.8 進料側不同位置之凹槽對於滲透通量之影響 82
圖5.9 進料側凹槽於第一個1/4處對於滲透通量之影響 83
圖5.10 進料側凹槽於第二個1/4處對於滲透通量之影響 83
圖5.11 於不同進料流量下凸出模組對於滲透通量的影響 84
圖5.12 於不同凸出位置上於不同進料流量下之滲透通量 84
圖5.13 凸出模組設計示意圖 85
圖5.14 凸出模組於不同傾斜角度下對滲透通量之影響 85
圖5.15 凸出模組於不同傾斜角度下曝氣對滲透通量之影響 86
圖5.16 比較不同模組下改變傾斜角度與曝氣之影響 86
圖5.17 不同溫度差下改變進料流量之滲透液導電度與濃度 87
圖5.18 直接接觸式薄膜蒸餾理論計算流程圖 88
圖5.19 不同溫度差下改變進料流量理論與實驗滲透通量之比較圖 89
圖5.20 不同進料流量下凸出模組理論與實驗滲透通量之比較 89
圖5.21 原型模組之速度分佈(進料側) 91
圖5.22 凹槽模組之速度分佈(進料側) 92
圖5.23 凸出模組之速度分佈(進料側) 93
圖5.24 原型模組之Wall Shear Stress(進料側) 94
圖5.25 凹槽模組之Wall Shear Stress(進料側) 95
圖5.26 凸出模組之Wall Shear Stress(進料側) 95
圖A NaCl檢量線 107

表目錄
表1.1 不同操作程序之驅動力分類 8
表3.1 NaCl溶液的物性參數 46
表4.1 平板薄膜性質說明 62
表5.1 不同溫度差下改變進料流量之理論溫度極化係數 90
表5.2 不同溫度差下改變進料流量之理論濃度極化係數 90
表5.3 邊界條件 90
表5.4 不同型式之渠道內進料側與冷卻水側壓力 90
表5.5 不同型式之渠道於膜面上之剪應力 94



參考文獻 Abdel-Ghani, M. S., “Cross-flow ultrafiltration of an aqueous polymer foam solution produced by gas sparging”, Journal of Membrane Science, 171, 105-117, (2000).
Al-Obaidani, S., Curcio, E., Macedonio, F., Di Profio, G., Al-Hinai, H. and Drioli, E., “Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation”, Journal of Membrane Science, 323, 85-98, (2008).
Baird, M. H. I., Duncan, G. J., Smith, J. I. and Taylor, J., “Heat transfer in pulsed turbulent flow”, Chemical Engineering Science, 21, 197-199, (1966).
Bellara, S. R., Cui, Z. F. and Pepper, D. S., “Gas sparging to enhance permeate flux in ultrafiltration using hollow fibre membranes”, Journal of Membrane Science, 121, 175-184, (1996).
Bendiksen, K. H., “An experimental investigation of the motion of long bubbles in inclined tubes”, International Journal of Multiphase Flow, 10, 467-483, (1984).
Bird, R. B., Stewart, W. E. and Lightfoot, E. N., Transport phenomena, 2nd ed., Wiley, (2002).
Cabassud, C ,Wirth, D , “Membrane distillation for water desalination: How to choose an appropriate membrane”, Desalination, 157 , 307–314 (2003).
Cabassud, C., Laborie, S. and Lainé, J. M., “How slug flow can improve ultrafiltration flux in organic hollow fibres”, Journal of Membrane Science, 128, 93-101, (1997).
Cath, T. Y., Adams, V. D. and Childress, A. E., “Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement”, Journal of Membrane Science, 228, 5-16, (2004).
Cheng, T. W., H. M. Yeh and J. H. Wu, “Effects of gas slugs and inclination angle on the ultrafiltration in tubular membrane module”, Journal of Membrane Science, 158, 223-234 (1999).
Cheng, T.-W., “Influence of inclination on gas-sparged cross-flow ultrafiltration through an inorganic tubular membrane”, Journal of Membrane Science, 196, 103-110, (2002).
Cheng, T. W., Yeh, H. M. and Gau, C. T., “Resistance analyses for ultrafiltration in tubular membrane module”, Separation Science and Technology, 32, 2623, (1997).
Cheryan, M., Ultrafiltration and Microfiltration Handbook, 2nd ed., Technomic Publishing Inc., Pennsylvania, (1998).
Chong, R., Jelen, P. and Wang, W., “The effect of cleaning agents on a noncellulosic ultrafiltration membrane”, Separation Science and Technology, 20, 393-402, (1985).
Cui, Z. F. and Wright, K. I. T., “Gas-liquid two-phase cross-flow ultrafiltration of BSA and dextran solutions”, Journal of Membrane Science, 90, 183-189, (1994).
Cui, Z. F. and Wright, K. I. T., “Flux enhancements with gas sparging in downwards crossflow ultrafiltration: performance and mechanism”, Journal of Membrane Science, 117, 109-116, (1996).
Criscuoli, A., Carnevale, M. C. and Drioli, E., “Evaluation of energy requirements in membrane distillation”, Chemical Engineering and Processing: Process Intensification, 47, 1098-1105, (2008)
Essemiani, K., Ducom, G., Cabassud, C. and Liné, A., “Spherical cap bubbles in a flat sheet nanofiltration module: experiments and numerical simulation”, Chemical Engineering Science, 56, 6321-6327, (2001).
Fane, A. G., Fell, C. J. D. and Suki, A., “The effect of ph and ionic environment on the ultrafiltration of protein solutions with retentive membranes”, Journal of Membrane Science, 16, 195-210, (1983).
Findley, M. E., “Vaporization through porous membranes”, I&EC Process Design and Development, 6, 226-230, (1967).
Findley, M. E., Tanna, V. V., Rao, Y. B. and Yeh, C. L., “Mass and heat transfer relations in evaporation through porous membranes”, AIChE Journal, 15, 483-489, (1969).
Gazagnes, L., Cerneaux, S., Persin, M., Prouzet, E. and Larbot, A., “Desalination of sodium chloride solutions and seawater with hydrophobic ceramic membranes”, Desalination, 217, 260-266, (2007).
Geankoplis, C. J., Transport Process and Unit Operation, 4th ed., Pearson Education, (2003).
Ghosh, R. and Cui, Z. F., “Mass transfer in gas-sparged ultrafiltration: upward slug flow in tubular membranes”, Journal of Membrane Science, 162, 91-102, (1999).
Gryta, M., “Influence of polypropylene membrane surface porosity on the performance of membrane distillation process”, Journal of Membrane Science, 287, 67-78, (2007).
Gryta, M., “Alkaline scaling in the membrane distillation process”, Desalination, 228, 128-134, (2008a).
Gryta, M., “Fouling in direct contact membrane distillation process”, Journal of Membrane Science, 325, 383-394, (2008b).
Gryta, M., Tomaszewska, M., Grzechulska, J. and Morawski, A. W., “Membrane distillation of NaCl solution containing natural organic matter”, Journal of Membrane Science, 181, 279-287, (2001).
Gryta, M., Tomaszewska, M. and Morawski, A. W., “Membrane distillation with laminar flow”, Separation and Purification Technology, 11, 93-101, (1997).
Gray,S,Jianhua Zhanga, Jun-De Li, Mikel Duke, Zongli Xie , “Performance of asymmetric hollow fibre membranes in membrane distillation under various configurations and vacuum enhancement”, Journal of Membrane Science 362 ,517–528 (2010).
Gupta, B. B., Blanpain, P. and Jaffrin, M. Y., “Permeate flux enhancement by pressure and flow pulsations in microfiltration with mineral membranes”, Journal of Membrane Science, 70, 257-266, (1992).
Gupta, B. B., Howell, J. A., Wu, D. and Field, R. W., “A helical baffle for cross-flow microfiltration”, Journal of Membrane Science, 102, 31-42, (1995).
Hall Taylor, N., Hewitt, G. F. and Lacey, P. M. C., “The motion and frequency of large disturbance waves in annular two-phase flow of air-water mixtures”, Chemical Engineering Science, 18, 537-552, (1963).
Hsu, S. T., Cheng, K. T. and Chiou, J. S., “Seawater desalination by direct contact membrane distillation”, Desalination, 143, 279-287, (2002).
Incropera, F. P. and Dewitt, D. P., Fundamentals of heat and mass transfer, 5th ed., Wiley, (2002).
Iversen, S. B., Bhatia, V. K., Dam-Johansen, K. and Jonsson, G., “Characterization of microporous membranes for use in membrane contactors”, Journal of Membrane Science, 130, 205-217, (1997).
Kim, B. S. and Chang, H. N., “Effects of periodic backflushing on ultrafiltration Performance”, Bioseparation, 2, 9-23, (1991).
Kroner, K. H. and Nissinen, V., “Dynamic filtration of microbial suspensions using an axially rotating filter”, Journal of Membrane Science, 36, 85-100, (1988).
Lawson, K. W. and Lloyd, D. R., “Review Membrane distillation”, Journal of Membrane Science, 124, 1-25, (1997).
Lee, C. K., Chang, W. G. and Ju, Y. H., “Air slugs entrapped cross-flow filtration of bacterial suspensions”, Biotechnology Bioengineering, 41, 525-530, (1993).
Martínez-Díez, L. and Vázquez-González, M. I., “Temperature and concentration polarization in membrane distillation of aqueous salt solutions”, Journal of Membrane Science, 156, 265-273, (1999a).
Martínez-Díez, L., Florido-Díaz, F. J. and Vázquez-González, M. I., “Study of evaporation efficiency in membrane distillation”, Desalination, 126, 193-198, (1999b).
Martínez, L., M., J. and Rodríguez-Maroto, “Membrane thickness reduction effects on direct contact membrane distillation performance”, Journal of Membrane Science, 312, 143-156, (2008).
Martínez, L. and Rodríguez-Maroto, J. M., “Characterization of membrane distillation modules and analysis of mass flux enhancement by channel spacers”, Journal of Membrane Science, 274, 123-137, (2006).
Mercier-Bonin, M., Lagane, C. and Fonade, C., “Influence of a gas/liquid two-phase flow on the ultrafiltration and microfiltration performances: case of a ceramic flat sheet membrane”, Journal of Membrane Science, 180, 93-102, (2000a).
Mercier-Bonin, M., C. MAranges, C. Lafforgue and C. Fonade, “Hydrodynamics of slug flow applied to cross-flow filtration in narrow tubes”, AIChE Journal, 46, 476-488 (2000b).
Mercier, M., Fonade, C. and Lafforgue-Delorme, C., “How slug flow can enhance the ultrafiltration flux in mineral tubular membranes”, Journal of Membrane Science, 128, 103-113, (1997).
Michaels, A. S., “New separation technique for the CPI”, Chemical Engineering and Processing: Process Intensification, 64, 31-35, (1968).
Millward, H. R., Bellhouse, B. J. and Walker, G., “Screw-thread flow promoters: an experimental study of ultrafiltration and microfiltration performance”, Journal of Membrane Science, 106, 269-279, (1995).
Mulder, M., “Basic principles of membrane technology”, Trans.): Springer, (1996).
Perry, R. H., Perry's chemical engineers' handbook, 8th ed., McGraw-Hill, New York, (2008).
Phattaranawik, J., Jiraratananon, R., A.G. Fane, C. Halim, “Mass flux enhancement using spacer filled channels in direct contact membrane distillation” Journal of Membrane Science, 187, 193–201,(2001).
Phattaranawik, J., Jiraratananon, R. and Fane, A. G., “Heat transport and membrane distillation coefficients in direct contact membrane distillation”, Journal of Membrane Science, 212, 177-193, (2003a).
Phattaranawik, J., Jiraratananon, R. and Fane, A. G., “Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation”, Journal of Membrane Science, 215, 75-85, (2003b).
Schofield, R. W., Membrane distillation, Doctor of PHilosophy Thesis, The University of New South Wales, (1989).
Schofield, R. W., Fane, A. G. and Fell, C. J. D., “Heat and mass transfer in membrane distillation”, Journal of Membrane Science, 33, 299-313, (1987).
Schofield, R. W., Fane, A. G., Fell, C. J. D. and Macoun, R., “Factors affecting flux in membrane distillation”, Desalination, 77, 279-294, (1990).
Sirkar K.K., Fei He, Jack Gilron, “Effects of antiscalants to mitigate membrane scaling by direct contact membrane distillation”, Journal of Membrane Science,345 , 53–58 (2009).
Smith, J. M., Van Ness, H. C. and Abbott, M. M., Introduction to chemical engineering thermodynamics, 4th ed., McGraw-Hill, (2001).
Smith, S. R. and Cui, Z. F., “Gas-slug enhanced hollow fibre ultrafiltration--an experimental study”, Journal of Membrane Science, 242, 117-128, (2004).
Smolders, K. and Franken, A. C. M., “Terminology of Membrane Distillation”, Desalination, 72, 249-262, (1989).
Srisurichan, S., Jiraratananon, R. and Fane, A. G., “Mass transfer mechanisms and transport resistances in direct contact membrane distillation process”, Journal of Membrane Science, 277, 186-194, (2006).
Stephanie Laborie,Jean-Pierre Mericq, Corinne Cabassud, “Vacuum membrane distillation of seawater reverse osmosis brines” Water research , 44 , 5260-5273 (2010).
Taha, T. and Cui, Z. F., “CFD modelling of gas-sparged ultrafiltration in tubular membranes”, Journal of Membrane Science, 210, 13-27, (2002).
Taylor, G. I., “Stability of a viscous liquid contained between two rotating cylinders”, Phil.Trans. Roy. Soc., 233, 298, (1923).
Tomaszewska, M., Gryta, M. and Morawski, A. W., “A study of separation by the direct-contact membrane distillation process”, Separations Technology, 4, 244-248, (1994).
Tun, C. M., Fane, A. G., Matheickal, J. T. and Sheikholeslami, R., “Membrane distillation crystallization of concentrated salts--flux and crystal formation”, Journal of Membrane Science, 257, 144-155, (2005).
Van der Waal, M. J. and Racz, I. G., “Mass transfer in corrugated-plate membrane modules. I. Hyperfiltration experiments”, Journal of Membrane Science, 40, 243-260, (1989).
Xuyun Wanga, Lin Zhang, Huajian Yang, Huanlin Chen, “Feasibility research of potable water production via solar-heated hollow fiber membrane distillation system” , Desalination, 247, 403–411, (2009).
Youm, K. H., Fane, A. G. and Wiley, D. E., “Effects of natural convection instability on membrane performance in dead-end and cross-flow ultrafiltration”, Journal of Membrane Science, 116, 229-241, (1996).
Yun, Y., Ma, R., Zhang, W., Fane, A. G. and Li, J., “Direct contact membrane distillation mechanism for high concentration NaCl solutions”, Desalination, 188, 251-262, (2006).
韓知融, “鹽水濃度與組成對直接接觸式薄膜蒸餾膜結垢之影響”, 淡江大學化學工程與材料工程研究所碩士論文, (2009).
陳威州, “流動型態對直接接觸式薄膜蒸餾滲透通量之影響”, 淡江大學化學工程與材料工程研究所碩士論文, (2010).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-08-08公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-08-08起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信