淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0308201009065400
中文論文名稱 像素差異法於傾斜面之目標物距離量測與定位
英文論文名稱 Localization of Objects on an Oblique Plane via Pixel Variation of CCD Images
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 秦克威
研究生英文姓名 Ke-Wei Chin
電子信箱 keweichin@gmail.com
學號 696470250
學位類別 碩士
語文別 中文
口試日期 2010-07-20
論文頁數 80頁
口試委員 指導教授-許陳鑑
委員-許陳鑑
委員-王偉彥
委員-盧明智
委員-王銀添
委員-李佩君
中文關鍵字 距離量測  影像式量測  PTZ 攝影機  定位  量測系統 
英文關鍵字 Distance measurement  image-based measurement  PTZ camera  localization  measuring systems 
學科別分類 學科別應用科學電機及電子
中文摘要 本文首先提出一種影像式量測方法,用以量測傾斜面上目標物之距離及傾斜角度,作法上係使用一台PTZ(Pan/Tilt/Zoom) Camera作為攝影機具,利用其變焦功能模擬出不同攝影距離所產生影像畫面,再藉由目標物於影像畫面中像素值的差異,實現對於傾斜面上目標物體之距離與角度量測,並進一步完成目標物體之二維平面定位。最後,本文再以實際的量測定位實驗及記錄,證實此整合式系統的準確性及實用性。
英文摘要 This thesis presents an image-based system for measuring target objects on an oblique surface based on pixel variation of CCD images. By using the zooming function of a PTZ camera, we can simulate two images at two different photographing distances. By using the different pixel counts of the target object in the CCD image frame, two-dimensional localization of the target object on the oblique plane can be accomplished. To validate the effectiveness and viability of the proposed method, practical experiments are conducted in the thesis. Experiment results demonstrate that the proposed measuring system has a satisfactory accuracy in self-localization for mobile robots.
論文目次 目錄
中文摘要.....................I
英文摘要.....................II
目錄.........................III
圖目錄.......................V
表目錄.......................VII
第一章 緒論................1
1.1 研究背景及動機......1
1.2 研究目的與方法......3
1.3 論文架構............5
第二章 像素差異法之距離量測......7
2.1 像素差異法距離量測原理..........8
2.2 任意參考點選擇與計算............12
第三章 像素差異法之傾斜面量測........15
3.1 傾斜角度量測.......................15
3.2 傾斜面距離量測.....................18
3.3 傾斜面上任意兩點距離量測...........19

第四章 基於像素差異法傾斜面量測之二維平面定位.......21
4.1 二維平面定位之定義................................21
4.2 二維平面定位之水平寬度量測........................23
4.3 二維平面定位之垂直寬度量測........................26
第五章 整合式像素差異法影像式定位....................30
5.1 數位變焦相機之等效 公式推導........................31
5.1.1 雷射輔助之系統配置...............................32
5.1.2 傾斜式像素差異法之參數 ..........................35
5.2 整合傾斜式像素差異法之影像式定.....................36
第六章 量測結果......................................39
第七章 結論與未來研究方向............................67
7.1 結論...............................................67
7.2 未來研究方向.......................................68
參考文獻...............................................70

圖目錄
圖2.1 像素差異法距離量測之 位移示意圖..........8
圖2.2 像素差異法距離量測之 位移示意圖..........9
圖2.3 描繪於不同攝影距離下距離與像素值變化的關係示意圖..10
圖2.4 目標物任意兩參考點於影像中計算之示意圖............14
圖3.1 像素差異法之傾斜面量測 位移示意圖.................16
圖3.2 像素差異法之傾斜面量測系統示意圖..................17
圖4.1 像素差異法傾斜量測之二維平面立體示意圖............23
圖4.2 立體視角之二維平面定位示意圖......................25
圖4,3 二維平面定位之水平寬度量測示意圖..................26
圖4.4 二維平面定位之垂直寬度量測示意圖..................28
圖5.1 數位變焦相機之等效 示意圖.........................32
圖5.2 數位變焦相機 距離量測系統配置示意圖...............33
圖5.3 雷射輔助像素差異法傾斜面量測之系統架構圖..........35
圖5.4 雷射光束與數位攝影機相對位置圖....................36
圖5.5 雷射亮點之影像說明圖..............................36
圖5.6 整合傾斜式像素差異法之影像定位流程圖..............41
圖6.1 參數量測系統說明圖................................43
圖6.2 不同距離時,水平方向所拍攝之參數量測照片..........46
圖6.3 不同相同攝影距離,傾斜角度0度實際照片.............47
圖6.4 不同相同攝影距離,傾斜角度30度實際照片............47
圖6.5 不同相同攝影距離,傾斜角度0度實際照片.............48
圖6.6 相同攝影距離,傾斜角度0度實際照片.................58
圖6.7 相同攝影距離,傾斜角度30度實際照片................58
圖6.8 二維平面定位之室內實際定位圖......................63
圖6.9 二維平面定位之戶外實際定位圖......................65
圖6.10 像素差異法二維平面定位圖.........................69
圖6.11 SIFT影像辨識圖...................................69


表目錄
表6.1目標物於不同傾斜角度下的距離量測(攝影距離為50cm)...54
表6.2目標物於不同傾斜角度下的距離量測(攝影距離為100cm)..54
表6.3目標物於不同傾斜角度下的距離量測(攝影距離為150cm)..55
表6.4目標物於不同傾斜角度下的距離量測(攝影距離為200cm)..55
表6.5目標物於不同傾斜角度下的距離量測(攝影距離為250cm)..55
表6.6目標物於不同傾斜角度下的距離量測(攝影距離為300cm)..56
表6.7目標物於不同攝影距離下的角度量測(攝影距離為50cm)...57
表6.8目標物於不同攝影距離下的角度量測(攝影距離為100cm)..57
表6.9目標物於不同攝影距離下的角度量測(攝影距離為150cm)..57
表6.10目標物於不同攝影距離下的角度量測(攝影距離為200cm)..58
表6.11目標物於不同攝影距離下的角度量測(攝影距離為250cm)..58
表6.12目標物於不同攝影距離下的角度量測(攝影距離為300cm)..58
表6.13不同攝影距離下傾斜面上任意兩參考點 與 之間的距離(攝影距離為50cm).....59
表6.14不同攝影距離下傾斜面上任意兩參考點 與 之間的距離(攝影距離為100cm) ...59
表6.15不同攝影距離下傾斜面上任意兩參考點 與 之間的距離(攝影距離為150cm)....60
表6.16不同攝影距離下傾斜面上任意兩參考點 與 之間的距離(攝影距離為200cm)....60
表6.17不同攝影距離下傾斜面上任意兩參考點 與 之間的距離(攝影距離為250cm)....60
表6.18不同攝影距離下傾斜面上任意兩參考點 與 之間的距離(攝影距離為300cm)....61
表6.19目標物於不同傾斜角度下的距離量測(攝影距離為50cm).................63
表6.20目標物於不同傾斜角度下的距離量測(攝影距離為100cm)...............64
表6.21目標物於不同傾斜角度下的距離量測(攝影距離為150cm)...............64
表6.22目標物於不同攝影距離下的角度量測(攝影距50cm)...65
表6.23目標物於不同攝影距離下的角度量測(攝影距離為100cm)..65
表6.24目標物於不同攝影距離下的角度量測(攝影距離為150cm)..65
表6.25不同攝影距離下傾斜面上任意兩參考點 與 之間的距離(攝影距離為50cm)...66
表6.26不同攝影距離下傾斜面上任意兩參考點 與 之間的距離(攝影距離為100cm)...66
表6.27不同攝影距離下傾斜面上任意兩參考點 與 之間的距離(攝影距離為150cm)... 66
表6.8 目標物於傾斜面之二維平面定位數據....69
表6.9目標物於傾斜面之二維平面定位數據.....70
表6.10 目標物影像座標位置...74
參考文獻 參考文獻
[1] E. Menegatti, A. Pretto, A. Scarpa, and E. Pagello, “Omnidirectional vision scan matching for robot localization in dynamic environments,” IEEE Transactions on Robotics, vol. 22, no. 3, 2006, pp. 523-535.
[2] J.C. Fernandes and J.A.B. Neves, “Using Conical and Spherical Mirrors with Conventional Cameras for 360° Panorama Views in a Single Image,” 2006 IEEE International Conference on Mechatronics, Budapest, 3-5 July 2006, pp. 157 - 160.
[3] Bing-ru Liu, Yun Xie, Yi-min Yang, and Zhen-Zhen Qiu, “A self-localization method with monocular vision for autonomous soccer robot,” IEEE International Conference on Industrial Technology (ICIT 2005), Hong Kong, 14-17 Dec. 2005, pp. 888 - 892.
[4] Margrit Betke and Leonid Gurvits, “Mobile robot localization using landmarks,” IEEE Transactions on Robotics and Automation, vol. 13, No. 2, 1997, pp.251-263.
[5] J.C. Fernandes and J.A.B. Neves, “Angle Invariance for Distance Measurements Using a Single Camera,” 2006 IEEE International Symposium on Industrial Electronics, Montreal, Canada, 9-13 July 2006, pp. 676 - 680.
[6] S. Baker, S. K. Nayar, “A Theory of Single-Viewpoint Catadioptic Image Formation,”, International Journal Of Computer Vision (35(2), 175-196, (1999), Kluwer Academic Publisher, The Netherlands.
[7] Dana Cobzas, Hong Zhang and Martin Jagersand, “Image-based localization with depth-enhanced image map,” IEEE International Conference on Robotics and Automation, vol. 2, 2003, pp. 1570-1575.
[8] Cyril Cauchois, Eric Brassart, Bruno Marhic and Cyril Drocourt, “An absolute localization method using a synthetic panoramic image base,” IEEE Proceedings of the Third Workshop on Omni-directional Vision, June 2, 2002, pp. 128-135.
[9] Li-Chun Lai, Tsong-Li Lee, Hsien-Huang P. Wu and Chia-Ju Wui, “Self-Localization of Mobile Robots Based on Visual Information,” IEEE Conference on Industrial Electronics and Applications, Singapore, May 2006, pp. 1-6.
[10] C. C. Peng, A compact digital image sensing distance and angle measuring device, M.S. thesis, Optical Science Center, Nation Central Univ., Taoyuan County, Taiwan, 2001.
[11] T. Egami, S. Oe, K. Terada, and T. Kashiwagi, “Three dimensional measurement using color image and movable CCD system,” The 27th Annual Conference of the IEEE Industrial Electronic Society, Denver, USA, 29 Nov. – 02, Dec. 2001, pp.1932-1936.
[12] M. C. Lu, “Image-based height measuring system for Liquid or particles in tanks,” ROC patent of invention, No. 201536, 2004.
[13] D. Katsoulas and A. Werber, “Edge detection in range images of piled box-like objects,” Proceedings of the 7th International Conference on Pattern Recognition, Cambridge UK, vol. 2, August 23-26, 2004, pp. 80-84.
[14] Ming-Chih Lu, Wei-Yen Wang, and Chun-Yen Chu, “Image-Based Distance and Area Measuring System,” IEEE Sensors Journal, vol. 6, No. 2, Apr. 2006, pp. 495-503.
[15] T. Kanade, H. Kano, and S. Kimuram, “Development of a video-rate stereo machine,” Proceedings of IEEE International Conference on Intelligent Robots and Systems 95, Pittsburgh, PA, Aug. 5-9, 1995, pp. 95-100.
[16] Y. Tanaka, A. gofuku, I. Nagai, and A. Mohamed, “Development of a compact video-rate range finder and its application,” Proceedings of 3rd International Conference on Advanced Mechatronics, Okayama, Japan, Aug. 1998, pp. 97-102.
[17] H. Yan, “Image analysis for digital media applications,” IEEE Computer Graphics and Applications, vol. 21, no. 1, Jan. 2001, pp. 18-26.
[18] B.G. Mertzios and IS. Tsirikolias, “Applications of coordinate logic filters in image analysis and pattern recognition,” Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis, Pula, June 19-21, 2001, pp. 125-130.
[19] George C. Karras, Dimitra J. Panagou and Kostas J. Kyriakopoulos, “Target-referenced Localization of an Underwater Vehicle using a Laser-based Vision System,” OCEANS, Boston, 2006, pp. 1-6.
[20] Naruto Yonemoto, Kazuo Yamamoto, Kimio Yamada, Hidemi Yasui, Naohiro Tanaka, Claire Migliaccio, Jean-Yves Dauvignac, and Christian Pichot, “Performance of obstacle detection and collision warning system for civil helicopters,” Proceedings of the SPIE on Enhanced and Synthetic Vision 2006, vol. 6226, 2006, pp. 622608,.
[21] Hiroyuki Ukida and Sumio Takamatsu, “3D Shape Measurements Using Stereo Image Scanner with Three Color Light Sources”, Instrumentation and Measurement Technology Conference, vol.1, May 18-20 2004, pp. 639- 644.
[22] H.G. Nguyen and J.Y. Laisne, “Obstacle detection using bi-spectrum CCD camera and image processing,” Proceedings of the Intelligent Vehicles Symposium, June 29- July 1 1992, pp. 42- 50.
[23]曾笠哲, Optocal Flow-base Obstacle Avoidance for Fixed Wing UAV in Umcertain Environment ,成功大學碩士論文, 民國九六年。
[24] Hongyu Di, Qi Shang, and Sun'an Wang, “A virtual binocular vision range finding method of remote object based on single rotating angle indexing camera,” The 9th International Conference on Electronic Measurement & Instruments ( ICEMI '09), Beijing, Aug. 16-19, 2009, pp. 2-846 - 2-849.
[25] J. C. Aparicio Femandes and J. A. B. Campos Neves, “Angle Invariance for Distance Measurements Using a Single Camera,” IEEE International Symposium on Industrial Electronics, vol.1, 2006, pp. 676-680.
[26] Ming-Chih Lu, Cheng-Chuan Chen, Chun-Yen Chu and Chin-Tun Chuang, “The apparatus and method of the distance measurement,” ROC patent of invention, No. 279526, 2007.
[27] Fang-Jung Shiou and Ruey-Tsung Lee, “Opto-electronic detector for distance and slanting direction measurement of a surface,” ROC patent of invention, No. 246585, 2004.
[28] Schultz Stephen, Giuffrida Frank and Mondello Charles, GRAY Robert, “Oblique geolocation and measurement system,” US patent of invention, No. 044692, 2004.
[29] Umesh R. Dhond and J. K. Aggarwal, “Structure from stereo-a review,” IEEE Transactions on Systems, Man and Cybernetics, vol. 19, No. 6, Nov. 1989, pp. 1489-1510.
[30] Fua Pascal, “A parallel stereo algorithm that produces dense depth maps and preserves image features,” Machine Vision and Applications, Vol. 6, No. 1, Dec. 1993, pp. 35-49
[31] M. A. Sid-Ahmed and M. T. Boraie, “Dual camera calibration for 3-D machine vision metrology,” IEEE Transactions on Instrumentation and Measurement, June 1990, vol. 39, No. 3, pp. 512-516.
[32] C. Liguori, A. Pietrosanto, and A. Paolillo, “An on-line stereo vision system for dimensional measurements on rubber extrusions,” Measurement: Journal of the International Measurement Confederation, vol. 35, No. 3, Apr. 2004, pp. 221-231.
[33] Ti-Ho Wang, Ming-Chih Lu, Chen-Chien Hsu, Yin Yu Lu, and Ching-Pei Tsi, “Three Dimensional Measurement Based on Image Shift and Its Applications in Object Inspection,” WSEAS Transactions on Systems, vol. 6, No. 5, May 2007, pp. 926-933.
[34] Ti-Ho Wang, Ming-Chih Lu, Chen-Chien Hsu, Yin-Yu Lu, Cheng-Pei Tsai, “Three dimensional distance measurement based on single digital camera,” Proceedings of the 2007 WSEAS Int. Conference on Circuits, Systems, Signal and Telecommunications (CISST’07), Gold Coast, Queensland, Australia, Jan. 17-19, 2007, pp. 153-157.
[35] Cheng-Chuan Chen, Chen-Chien Hsu, Ti-Ho Wang, Chun-Wei Huang, “Three-dimensional measurement of a remote object with a single CCD camera,” The 7th WSEAS International Conference on Signal Processing, Computational Geometry& Artificial Vision, Vouliagmeni Beach, Athens, Greece, Aug. 24-26, 2007, pp. 141-146.
[36] C. Liguori, A. Pietrosanto, and A. Paolillo, “Method for correcting geometric distortion in video cameras,” IEEE Proceedings of the National Aerospace and Electronics Conference, New York, USA, Apr. 1985, pp. 1382-1388.
[37] J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, No. 10, Oct. 1992, pp. 965-980.
[38] Chen-Chien Hsu, Ming-Chih Lu, Ke-Wei Chin, “Distance measurement based on pixel variation,” ICARA 4th Autonomous Robots and Agents international conference, Wellington, New Zealand, Feb. 2009, pp. 324-329
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-08-04公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-08-04起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信