          下載電子全文 （限經由淡江IP使用）
 系統識別號 U0002-0307201414423100 中文論文名稱 牛型圖設計的探討 英文論文名稱 A study of bull-design 校院名稱 淡江大學 系所名稱(中) 數學學系博士班 系所名稱(英) Department of Mathematics 學年度 102 學期 2 出版年 103 研究生中文姓名 羅淑玟 研究生英文姓名 Shu-Wen Lo 學號 895190022 學位類別 博士 語文別 英文 口試日期 2014-06-08 論文頁數 84頁 口試委員 指導教授-高金美委員-傅恆霖委員-林強委員-黃文中委員-黃明輝委員-潘志實委員-周兆智 中文關鍵字 分割  牛型圖設計  裝填  交集  Doyen-Wilson定理 英文關鍵字 Decomposition  bull-design  Packing,Intersection  Doyen-Wilson theorem 學科別分類 中文摘要 完全圖Kn是一個具有n個點且其任兩點恰有一條邊相連的圖。一個圖G的分割是圖G的子圖所成的集合H = {H1,H2,…,Hk}使得E(Hi)∩E(Hj) = Ø (i ≠ j)且E(H1)∪E(H2)∪ … ∪E(Hk) = E(G)。若對於i = 1, 2, …, k，Hi均同構於H, 則稱G有一個H-分割或G可分割成圖H。假設H是一個圖，一個完全圖Kn的H-設計，記作(Kn,H)-設計，是一個序對(X,B)，其中X是Kn的點集合，B是Kn中與H同構的子圖所成的集合，而且Kn中任一條邊均會出現在B集中的唯一一個子圖裡。所以一個(Kn,H)-設計存在也就是Kn有一個H-分割。 一個牛型圖是指由一個三角形及在其中兩頂點各加上一條懸掛邊所成的圖。(Kn,B)-設計為一個牛型圖設計也就是Kn有一個B-分割, 其中B是一個牛型圖，亦即完全圖Kn可分割成牛型圖。 在第二章中，我們證明一個完全圖Kn分割成牛型圖的充分且必要條件為n ≡ 0, 1 (mod 5)。 在第三章中，討論完全圖Kn的最大裝填問題而得當n ≡ 2 or 4 (mod 5)時，最大裝填對應之遺留為一個邊所成的集合；當n ≡ 3 (mod 5)時，最大裝填對應之遺留為5種型態的三個邊所成的集合。由此，經適當的重排，我們獲得一個完全重邊圖λKn的牛型圖設計存在的充分且必要條件為λ≡ 0 (mod 5)或λ≢0 (mod 5)時n ≡ 0, 1 (mod 5)。 在第四章中，我們獲得在Kn中的兩個牛型圖設計其交集中相異的牛型圖個數集為Id(n)= {0, 1, 2,…, [n/5]}, 其中n >5，而Id(5)= {0}。若考慮其交集中相異的三角形的個數集則為IT(m) = {0, 1, 2,…, n(n−1)/10}。 最後，我們探討Doyen-Wilson問題，獲得完全圖Kn的牛型圖設計可嵌入完全圖Km的牛型圖設計之充分且必要條件為m ≥ 3n/2 + 1 或 m = n。 英文摘要 A complete graph Kn is a simple graph of order n whose vertices are pairwise adjacent. A decomposition of graph G is a collection H = {H1, H2, …, Hk} of subgraphs of G, such that E(Hi)∩E(Hj) = Ø (i ≠ j) and E(H1)∪E(H2)∪…∪E(Hk) = E(G). Furthermore, G has an H-decomposition or G can be decomposed into H, if Hi is isomorphic to H (1 ≤ i ≤ k). Let H be a graph, an H-design of a complete graph Kn, denoted by (Kn, H), is a pair (X, B), where X is the vertex set of the complete graph Kn and B is a collection of subgraphs of Kn, called blocks, such that each block is isomorphic to H, and any edge of Kn is contained in exactly one subgraph of Kn. Therefore, a (Kn, H)-design exists means Kn has an H-decomposition. A bull is a graph B which is obtained by attaching two edges to two vertices of a triangle. A (Kn, B)-design is called a bull-design of order n . In Chapter 2, we show that the necessary and sufficient condition of a bull-design of order n exist precisely when n ≡ 0, 1 (mod 5). In Chapter 3, we consider the maximum packing of bull-design of order n. We obtain that the leave of maximum packing is a set of one edge if n ≡ 2 or 4 (mod 5) and a set of three edges if n ≡ 3 (mod 5). By the above results, we obtain that the necessary and sufficient conditions for the existence of bull-designs of a complete multi-partite graph λKn are the follows: λ ≡ 0 (mod 5) or λ≢0 (mod 5) and n ≡ 0, 1 (mod 5). In Chapter 4, we obtain that the spectrum of bull-design of order n intersecting in pairwise disjoint blocks is 0, 1, 2,…, [n/5], when n＞5 and n ≡ 0, 1 (mod 5), and the spectrum of bull-design of order 5 intersecting in pairwise disjoint blocks is 0. We also show that the spectrum of triangle intersection numbers of two bull-design of order n is 0, 1, 2,…, n(n−1)/10, for n ≡ 0, 1 (mod 5). In Chapter 5, we obtain that a bull-design of order n can be embedded in a bull-design of order m if and only if m ≥ 3n/2 + 1 or m = n. This produces a generalization of the Doyen–Wilson theorem for bull-designs. 論文目次 Contents 1 Introduction p.1 2 Bull-Design p.8 2.1 Existence p.8 2.2 Construction of bull-designs p.9 3 Maximum packing of Kn with bulls p.21 3.1 Introduction p.21 3.2 Construction of a maximum packing of Kn with bulls p.23 3.3 Bull-decompositions of λKn p.34 4 Intersection Problem of Bull-designs p.36 4.1 Intersection number of pairwise disjoint blocks p.36 4.2 Triangle intersection problem p.47 5 The Doyen-Wilson Theorem for Bull-Designs p.56 5.1 Notation and preliminary results p.56 5.2 The Doyen-Wilson Theorem for Bull-Designs p.65 5.3 Embed a bull-design of order n in a bull-design of order m p.77 6 Conclusion and Open Questions p.80 References p.82   List of Figures 1.1 graph G p.1 1.2 a complete graph K4 p.2 1.3 a complete tripartite graph K2,3,2 p.2 1.4 a bull (a, b, c; d, e) p.3 2.1 a decomposition of K5 into two bulls p.8 2.2 a decomposition of K6 into three bulls p.8 2.3 2k ≡ 0, 2 (mod 6) p.10 2.4 2k ≡ 4 (mod 6) p.11 3.1 a bull decomposition of K7K2 p.22 3.2 the leave corresponding a maximum packing of K8 with bulls is a collection of three edges p.23 3.3 three triangles and two matchings with three edges p.35 4.1 bull-designs of order 5 p.37 4.2 bull-designs of order 6 p.37 4.3 p.43 4.4 T(A1) ∩ T(A2) = {(1, 2, 3)} p.47 5.1 K^c_2 Ｖ K_3 = K_{2,3} ∪ K_3 p.57 5.2 graph of |i − j|u p.57 5.3 K^c_5 Ｖ K_5 can be decomposed into bulls p.78 6.1 a bow tie (a, b; c; d, e) p.80 List of Tables 3.1 an idempotent commutative quasigroup of order 3 p.30 3.2 an idempotent commutative quasigroup of order 7 p.33 3.3 leaves of maximum packing with bulls p.34 4.1 an idempotent commutative quasigroup of order 3 p.45 參考文獻  J. C. Bermond and J. Schonheim, G-decomposition of Kn, where G has four vertices or less, Discrete Math., 19 (1977), 113-120.  E. J. Billington, E. S. Yazici and C. C. Lindner, The triangle intersection problem for K4 − e designs, Utilitas Mathematica, 73 (2007), 3-21.  D. E. Bryant and C. A. Rodger, The Doyen–Wilson theorem extended to 5-cycles, J. Combin. Theory Ser. A, 68 (1994), 218–225.  D. E. Bryant and C.A. Rodger, On the Doyen–Wilson theorem for m-cycle systems, J. Combin. Des., 2 (1994), 253–271.  V. E. Castellana and M. E. Raines, Embedding extended Mendelsohn triple systems, Discrete Math., 252 (2002), 47–55.  Y. M. Chee, Steiner Triple Systems Intersecting in Pairwise Dis-joint Blocks, The Electronic J. of Combin., 11(2004), ＃R27.  C.J. Colbourn, J.H. Dinitz (Eds.), CRC Handbook of Combinatorial Designs, CRC Press Inc., Boca Raton, FL, 1996.  J. Doyen and R. M. Wilson, Embeddings of Steiner triple systems, Discrete Math., 5 (1973), 229–239.  G. L. Faro and A. Tripodi, The Doyen–Wilson theorem for kite systems, Discrete Math., 306 (2006), 2695–2701.  G. L. Faro and A. Tripodi, Embeddings of λ -fold kite systems, λ ≥ 2, Australas. J. Combin., 36 (2006), 143–150.  C. M. Fu and W. C. Huang, Kite-designs intersecting in pairwise disjoint blocks, Ars Combin., 94 (2010), 235-244.  H. L. Fu, C. C. Lindner and C.A. Rodger, The Doyen–Wilson theorem for minimum coverings with triples, J. Combin. Des., 5 (1997), 341–352.  H. L. Fu, C. C. Lindner and C.A. Rodger, Two Doyen–Wilson theorems for maximum packings with triples, Discrete Math., 178 (1998), 63–71.  H. L. Fu and C. C. Lindner, The Doyen–Wilson theorem for maximum packings of Kn with 4-cycles, Discrete Math., 183 (1998), 103–117.  H. Gao and J. H. Wang, Doyen–Wilson theorem for perfect hexagon triple systems, Discrete Math., 311 (2011), 1006–1014.  D. G. Hoffman and K.S. Kirkpatrick, Another Doyen–Wilson theorem, Ars Combin., 54 (1999), 87–96.  W. C. Huang and W. C. Yang, The Doyen–Wilson theorem for extended directed triple systems, Ars Combin., 84 (2007), 77–83.  T.P. Kirkman, On a problem in combinations, Cambridge and Dublin Math. Journal, 2 (1847 ), 191-204.  C. C. Lindner and A. Rosa, Construction of Steiner triple systems having a prescribed number of triples in common, Canad. J. Math., 27 (1975), 1166-1175.  C. C. Lindner and E. S. Yazici, The triangle intersection problem for Kite systems, Ars Combin., 75 (2005), 225-231.  C. C. Lindner and C. A. Rodger, Design theory, Boca Raton: CRC Press series on discrete mathematics and its applications, (1997).  M. E. Raines, A generalization of the Doyen–Wilson theorem for extended triple systems of all indices, Discrete Math., 202 (1999), 215–225.  D. R. Stinson, Combinatorial Designs Constructions and Analysis, Springer-Verlag, (2004).  J. H. Wang and H. Shen, Doyen–Wilson theorem for nested Steiner triple systems, J. Combin. Des., 12 (2004), 389–403.  J. H. Wang, Perfect hexagon triple systems with given subsystems, Discrete Math., 309 (2009), 2930–2933.  S. E. Zanati and C. A. Rodger, Blocking sets in G-design, Ars Combin., 35 (1993), 237-251. 論文使用權限 同意紙本無償授權給館內讀者為學術之目的重製使用，於2014-07-14公開。同意授權瀏覽/列印電子全文服務，於2014-07-14起公開。 若您有任何疑問，請與我們聯絡！圖書館： 請來電 (02)2621-5656 轉 2487 或 來信 dss@mail.tku.edu.tw 