淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0307201316344200
中文論文名稱 穿牆多導體之頻域微波成像
英文論文名稱 Microwave Imaging in Frequency Domain for Through-Wall Multiple Conductors
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 101
學期 2
出版年 102
研究生中文姓名 沈思齊
研究生英文姓名 Szu-Chi Shen
學號 600440019
學位類別 碩士
語文別 中文
口試日期 2013-06-13
論文頁數 52頁
口試委員 指導教授-丘建青
委員-丘建青
委員-林丁丙
委員-陳永芳
中文關鍵字 逆散射  電磁成像  粒子群聚法  穿牆成像 
英文關鍵字 Inverse problem  Through-Wall Imaging  Asynchronous Particle Swarm Optimization  Multiple scattered 
學科別分類 學科別應用科學電機及電子
中文摘要 本論文研究穿牆多導體影像問題,利用非同步粒子群聚法(Asynchronous Particle Swarm Optimization)來處理埋藏於牆壁之後的電磁成像問題。
將未知形狀的物體,埋藏在牆壁之後,從外部入射電磁波照射埋藏在牆壁之後的未知物體,並在牆壁外部量測其散射場,利用在導體表面的邊界條件及量測到的散射電場,可推導出一組非線性積分方程,將散射場積分方程式透過動差法求得散射電場相關資訊。在此使用傅立葉級數展開及描述物體的形狀,將電磁成像問題轉化為求解最佳化問題,並在演算法中使用非同步粒子群聚法重建埋藏於牆後之雙導體之形狀。藉由將量測而得的散射場和非同步粒子群聚法所計算出的散射場數值相比較,若兩個散射場之差值越小,則表示重建出來的未知物體越良好。
不論初始的猜測值如何,非同步粒子群聚法總會收斂到全域極值(Global Extreme),因此,在數值模擬顯示中,即使最初的猜測值與實際值相差甚遠,我們仍然可求得準確的數值解,成功的重建出物體形狀函數,量測的散射場即使加入高斯分佈的雜訊,依然可以得到良好的重建結果。
英文摘要 This paper presents an inverse scattering problem for the through-wall imaging problem. Two separate perfect-conducting cylinders of unknown shapes are hidden behind a homogeneous building wall and illuminated by the transverse magnetic(TM) plane wave.
After an integral formulation, a discretization using the method of moment (MoM) is applied. The through-wall imaging (TWI) problem is recast as a nonlinear optimization problem with an objective function defined by the norm of a difference between the measured and calculated scattered electric field. Thus, the shape of metallic cylinder can be obtained by minimizing the objective function.
The Asynchronous particle swarm optimization is employed to find out the global extreme solution of the object function. Numerical results demonstrate even when the initial guesses are far away from the exact shapes, and then the multiple scattered fields between two conductors are serious the good reconstruction can be obtained.
In addition, the effect of Gaussian noise on the reconstruction result is investigated and through the numerical simulation shows that we can still get good results of reconstructions.
論文目次 第一章 簡介…………………………………………………1
1.1節 研究動機與相關文獻………………………………1
1.2節 本研究之貢獻………………………………………7
1.3節 各章內容簡述………………………………………7
第二章 多導體在半空間中的逆散射理論…………………9
2.1節 正散射的理論公式推導……………………………9
2.2節 數值方法……………………………………………15
2.2.1節 動差法於積分方程式的應用………………………15
2.2.2節 非同步粒子群聚最佳化法…………………………17
第三章 數值模擬結果………………………………………22
3.1節 Fourier series描述重建的形狀之數值模擬…………22
第四章 結論…………………………………………………42
參考文獻………………………………………………………43
圖 2-1 二維雙導體在穿牆的示意圖…………………………………14
圖 2-2 非同步粒子群聚法流程圖……………………………………19
圖 2-3 二維問題中,不同邊界條件示意圖…………………………21
圖 3-1(a) 例子1雙導體在穿牆的形狀函數的重建情形。加號線(+)代表實際的形狀函數,虛線(--)代表初始猜測的形狀,實線則代表最後所重建之圖形。…………………………25
圖 3-1(b) 參數相對誤差隨代數變化趨勢圖………………………26
圖 3-1(c) 例子1在不同準位的雜訊干擾下對DR值的影響………27
圖 3-1(d) 例子1雙導體在穿牆兩物體距離小於一波長形狀函數的重建情形。+號線(++)代表實際的形狀函數,虛線(--)代表初始猜測的形狀,實線代表最後所重建之圖形。…………28
圖 3-1(e) 兩物體小於一波長時參數相對誤差隨代數變化趨勢圖…29
圖 3-2(a) 例子2雙導體在穿牆的形狀函數的重建情形。加號線(++)代表實際的形狀函數,虛線(--)代表初始猜測的形狀,實線則代表最後所重建之圖形。…………………………31
圖 3-2(b) 參數相對誤差隨代數變化趨勢圖………………………32
圖 3-2(c) 例子2在不同準位的雜訊干擾下對DR值的影響………33
圖 3-2(d) 例子2雙導體在穿牆兩物體距離小於一波長形狀函數的重建情形。+號線(++)代表實際的形狀函數,虛線(--)代表初始猜測的形狀,實線代表最後所重建之圖形。………34
圖 3-2(e) 兩物體小於一波長時參數相對誤差隨代數變化趨勢圖…35
圖 3-3(a) 例子3雙導體在穿牆的形狀函數的重建情形。加號線(++)代表實際的形狀函數,虛線(--)代表初始猜測的形狀,實線則代表最後所重建之圖形。…………………………37
圖 3-3(b) 參數相對誤差隨代數變化趨勢圖………………………38
圖 3-3(c) 例子3在不同準位的雜訊干擾下對DR值的影響………39
圖 3-3(d) 例子3雙導體在穿牆兩物體距離小於一波長形狀函數的重建情形。+號線(++)代表實際的形狀函數,虛線(--)代表初始猜測的形狀,實線代表最後所重建之圖形。…………40
圖 3-3(e) 兩物體小於一波長時參數相對誤差隨代數變化趨勢圖…41
參考文獻 [1] E. Wolf, “Three-dimensional structure determination of semi-transparentobjects from holographic data,” Opt. Commun., Vol. 1, pp.153–164, Sep.-Oct. 1969.
[2] O. Mudanyalı, S. Yıldız, O. Semerci, A. Yapar and I. Akduman, “A Microwave Tomographic Approach for Nondestructive Testing of Dielectric Coated Metallic Surfaces”, IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 2, pp. 180 - 184, Apr. 2008.
[3] S. Genovesi, E. Salerno, A. Monorchio and G. Manara, “Permittivity range profile reconstruction of multilayered structures from microwave backscattering data by using particle swarm optimization,” Microwave and Optical Technology Letters, Vol. 51, No. 10, pp. 2390 - 2394, Oct. 2009.
[4] O. M. Bucci and T. Isernia, “Electromagnetic inverse scattering: Retrievable information and measurement strategies,” Radio Sci., Vol. 32, pp. 2123–2138, Nov.–Dec. 1997.
[5] A. Kirsch, “ An Introduction to the Mathematical Theory of Inverse Problems,” New York: Springer-Verlag, 1996.
[6] A. M. Denisov, “ Elements of Theory of Inverse Problems,” Utrecht, The Netherlands: VSP, 1999.
[7] A. Baussard, “Inversion of multi-frequency experimental data using an adaptive multiscale approach,” Inverse Problems, Vol. 21, pp. S15–S31, Dec. 2005.
[8] M. M. Nikolic, M. Ortner, A. Nehorai and A.e R. Djordjevic, “An Approach to Estimating Building Layouts Using Radar and Jump-Diffusion Algorithm,” IEEE Transactions on Antennas and Propagation, Vol. 57, No. 3, pp. 768-776, Mar., 2009.
[9] P. Mojabi and J. LoVetri, “Overview and Classification of Some Regularization Techniques for the Gauss-Newton Inversion Method Applied to Inverse Scattering Problems,” IEEE Transactions on Antennas and Propagation, Vol. 57, No. 9, pp. 2658-2665, Setp. 2009.
[10] A. Abubakar, P. M. V. D. Berg and S. Y. Semenov, “A Robust Iterative Method for Born Inversion,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 2, Feb. 2004.
[11] S. Caorsi, A. Costa and M. Pastorino, “Microwave imaging within the second-order Born approximation: stochastic optimization by a genetic algorithm,” IEEE Transactions on Antennas and Propagation, Vol. 49, No. 1, pp. 22-31, Jan. 2001.
[12] R. M. Lewis, "Physical optics inverse diffraction," IEEE Trans. Antennas Propagat., vol. 17, pp. 308-314, May 1969.
[13] N. N. Bojarski, "A survey of the physical optics inverse scattering identity," IEEE Trans. Antennas Propagat., vol. 30, pp. 980-989,Sept. 1982.
[14] T. H. Chu and N. H. Farhat, "Polarization effects in microwave diversity imaging of perfectly conducting cylinders," IEEE Trans. Antennas Propagar., vol.37, pp. 235-244, Feb. 1989.
[15] D. B. Ge, "A study of Lewis method for target-shape reconstruction," Inverse Problems, vol. 6, pp. 363-370, June 1990.
[16] D. Colton, H. Haddar and Piana," The linear sampling method in inverse electromagnetic scattering theory," Inverse Problems, vol. 19, pp. 105-137, December 2003.
[17] M. Brignone and M. Piana, " The use of constraints for solving inverse scattering problems: physical optics and the linear sampling method," Inverse Problems, vol. 21, pp. 207-222, February 2005.
[18] T. H. Chu and D. B. Lin, "Microwave diversity imaging of perfectly conducting objects in the near-field region," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 480-487, Mar. 1991.
[19] R. Solimene, F. Soldovieri, G. Prisco, and R. Pierri “Three-Dimensional Through-Wall Imaging Under Ambiguous Wall Parameters,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 5, pp. 1310-1317, May. 2009.
[20] F. Soldovieri, R. Solimene, A. Brancaccio, and R. Pierri “Localization of the Interfaces of a Slab Hidden Behind a Wall” IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 8, pp. 2471-2482, Aug. 2007.
[21] F. Soldovieri, R. Solimene, and G. Prisco ” A Multiarray Tomographic Approach for Through-Wall Imaging” IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 4, pp. 1192-1199, Apr. 2008.
[22] F. Soldovieri and R. Solimene “Through-Wall Imaging via a Linear Inverse Scattering Algorithm” IEEE Transactions on Geoscience and Remote Sensing, Vol. 4, No. 4, pp. 513-517, Oct. 2007.
[23] L. Li, W. Zhang, and F. Li “A Novel Autofocusing Approach for Real-Time Through-Wall Imaging Under Unknown Wall Characteristics” IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 1, pp. 423-431, Jan. 2010.
[24] Q. Huang, L. Qu, B. Wu, and G. Fang ” UWB Through-Wall Imaging Based on Compressive Sensing” IEEE Transactions on Geoscience and Remote Sensing,Vol. 48, No. 3, pp. 1408-1415, Mar. 2010.
[25] L. P. Song, C.Yu, and Q. H. Liu “Through-Wall Imaging (TWI) by Radar: 2-D Tomographic Results and Analyses” IEEE Transactions on Geoscience and Remote Sensing,Vol. 43, No. 12, pp. 2793-2798, Dec. 2005.
[26] R. F. Harrmgton, Field Computation by Moment Method, New York: Macmillan, 1968.
[27] Hung-Yi Li, ”Solution of inverse blackbody radiation problem with conjugate gradient method,” IEEE Trans. Antennas Propagate., vol. 53, issue 5, pp.1840-1842, May. 2005.
[28] A. Roger, “Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem,” IEEE Trans. Antennas Propagate., vol. AP-29, pp.232-238, Mar. 1981.
[29] C. C. Chiu and Y. M. Kiang, “Electromagnetic imaging for an imperfectly conducting cylinder,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1631- 1639, Sept. 1991.
[30] A. Kirsch, R. Kress, P. Monk and A. Zinn, “Two methods for solving the inverse acoustic scattering problem,” Inverse Problems., vol. 4, pp.749-770, Aug. 1988.
[31] F. Hettlich, “Two methods for solving an inverse conductive scattering problem,” Inverse Problems., vol. 10, pp. 375-385, 1994.
[32] W. C. Chew and Y. M. Wang, “Reconstruction of two-dimensional permittivity using the distorted Born iterative method,” IEEE Trans. Med. Imag., vol. 9, pp.218-225, 1990.
[33] C. C. Chiu and Y. W. Kiang, “Microwave imaging of a Buried cylinder,” Inv. Probl., vol. 7, pp. 182-202, 1991.
[34] X. Chen, K. Huang and X.-B. Xu, “Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method:” Progress In Electromagnetic Research. PIER 53, pp. 283-298, 2005.
[35] A. Massa, D. Franceschini, G. Franceschini, M. Pastorino, M. Raffetto, and M. Donelli, “Parallel GA-Based Approach for Microwave Imaging Applications,” IEEE Transaction on Antennas and Propagation, Vol. 53, No. 10, pp. 3118 - 3127, Oct. 2005.
[36] R A. Wildman and D S. Weile, “Greedy Search And A Hybrid Local Optimization/Genetic Algorithm For Tree-Based Inverse Scattering,” Microwave and Optical Technology Letters, Vol. 50, No. 3, pp. pp. 822-825, Mar. 2008.
[37] A. Saeedfar, and K. Barkeshli, “Shape reconstruction of three-dimensional conducting curved plates using physical optics, number modeling, and genetic algorithm, ” IEEE Transaction on Antennas and Propagation, Vol. 54, No. 9, 2497-2507, Sep. 2006.
[38] A. Semnani, I.T. Rekanos, M. Kamyab, T.G. Papadopoulos, “Two-Dimensional Microwave Imaging Based on Hybrid Scatterer Representation and Differential Evolution,” IEEE Transaction on Antennas and Propagation, Vol. 58, No. 10, pp. 3289 - 3298, Oct. 2010.
[39] A. Qing, “Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems,” IEEE Transactions on Geoscience and Remote Sensing, Vol 44, Issue 1, pp. 116 – 125, Jan. 2006
[40] K. A. Michalski, “Electromagnetic Imaging of Circular-Cylindrical Conductors and Tunnels Using A Differential Evolution Algorithm,” Microwave and Optical Technology Letters, Vol. 27, No. 5, pp. 330 - 334, Dec. 2000.
[41] I. T. Rekanos, “Shape Reconstruction of a Perfectly Conducting Scatterer Using Differential Evolution and Particle Swarm Optimization,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 7, pp. 1967-1974, Jul. 2008.
[42] A. Semnani and M. Kamyab, “An Enhanced Hybrid Method for Solving Inverse Scattering Problems,” IEEE Transactions on Magentics, Vol. 45, No. 3, pp. 1534-1537, Mar. 2009.
[43] G. Franceschini, M. Donelli, R. Azaro and A. Massa, “Inversion of Phaseless Total Field Data Using a Two-Step Strategy Based on the Iterative Multiscaling Approach,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No.12, pp. 3527-3539, Dec. 2006.
[44] M. Donelli and A. Massa, ”Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers” IEEE Transactions on Microwave Theory and Techniques, Vol. 53, Issue 5, pp.1761 – 1776, May 2005.
[45] T. Huang and A. S. Mohan,” Application of particle swarm optimization for microwave imaging of lossy dielectric objects” IEEE Transaction on Antennas and Propagation, Vol. 1B, pp.852 – 855, 2005.
[46] M. Donelli, G.. Franceschini, A. Martini and A. Massa,” An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems” IEEE Transactions on Geoscience and Remote Sensing, Vol 44, Issue 2, pp.298 – 312, Feb. 2006.
[47] M. Donelli, D. Franceschini, P. Rocca and A. Massa,” Three-Dimensional Microwave Imaging Problems Solved Through an Efficient Multiscaling Particle Swarm Optimization” IEEE Transactions on Geoscience and Remote Sensing, Vol 47, No. 5, pp.1467 – 1481, May. 2009.
[48] A. K. Hamid and M. Alsunaidi, “Inverse scattering by dielectric circular cylindrical scatterers using a neural network approach,” in 1997 IEEE Int. Symp. Antennas Propagat., Montreal, QC, Canada, pp. 2278-2281, July 1997.
[49] F. C. Morabito, A. Formisano and R. Martone, “Wavelet tools for improving the accuracy of neural network solution of electromagnetic inverse problems,” IEEE Trans. Magn., vol. 34, pp. 2968-2971, May 1998.
[50] Y. Xia, G. Feng and J. Wang, “A Novel Recurrent Neural Network for Solving Nonlinear Optimization Problems With Inequality Constraints”, IEEE Transactions on Neural Network, Vol. 19, No. 8, pp. 1340 – 1353, Aug. 2008.
[51] E. Abenius and B. Strand, “Solving inverse electromagnetic problems using FDTD and gradient-based minimization,” International Journal for Numerical Methods in Engineering, Vol. 68, No.6, pp. 650-673, Nov, 2006.
[52] A. Yapar, O. Ozdemir, H. S. ahinturk and I. Akduman, “A Newton Method for the Reconstruction of Perfectly Conducting Slightly Rough Surface Profiles,” IEEE Transactions on Antennas and Propagation, Vol. 54, No. 1, pp. 275-279, Jan. 2006.
[53] M. Benedetti, M. Donelli and A. Massa, “Multicrack Detection in Two-Dimensional Structures by Means of GA-Based Strategies,” IEEE Transaction on Antennas and Propagation, Vol. 55, no. 1, pp. 205 – 215, Jan. 2007.
[54] F. Yaman and S. Simcsek, “Neural network approach to determine nonsmooth one-dimensional profiles in inverse scattering theory,” Microwave and Optical Technology Letters, Vol. 49, No.12, pp. 3158-3162, Dec. 2007.
[55] H. Yoshida, T. Tanaka and T. Takenaka, “Optimization approach with edge-preserving regularization to time domain 1D inverse scattering,” Electronics and Communications in Japan, Vol. 84, issue 10, pp.1 -8, Oct. 2001.
[56] J. D. Zaeytijd, A. Franchois and J.M. Geffrin, “A New Value Picking Regularization Strategy—Application to the 3-D Electromagnetic Inverse Scattering Problem,” IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, pp. 1133-1149, Apr. 2009.
[57] “A practical guide to splines,” New York: Spring-Verlag, 1987.
[58] A. Carlisle and G. Dozier, “An off-the-shelf PSO,” Proc. of the Workshop on Particle Swarm Optimization, Indianapolis, April 2001.
[59] T. Huang and A. S. Mohan, “A hybrid boundary condition for robust particle swarm optimization,” IEEE Antennas and Wireless Propagation Letters, vol. 4, pp. 112-117, 2005.
[60] Andrea Massa, Davide Franceschini, Gabriele Franceschini, Matteo Pastorino, Micro Raffetto, and Massimo Doneli, “Parallel GA-based approach for microwave imaging applications,” IEEE Trans. Antennas Propag., vol. 53, no.10, pp. 3118-3127, Oct. 2005.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-07-17公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-07-17起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信