淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-0307201313502600
中文論文名稱 電混凝處理含螯合劑銅之工業廢水機制研究
英文論文名稱 Mechanism study for the treatment of wastewater with Chelated Copper by Electrochemical Coagulation
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 101
學期 2
出版年 102
研究生中文姓名 洪宇澈
研究生英文姓名 Yu-Che Hung
學號 600480155
學位類別 碩士
語文別 中文
口試日期 2013-06-11
論文頁數 107頁
口試委員 指導教授-陳俊成
委員-申永順
委員-李奇旺
中文關鍵字 電化學混凝  化學混凝  螯合劑  Cu-EDTA  電鍍工業 
英文關鍵字 Electrochemical Coagulation  Chemical Coagulation  Chelating agents  Plating wastewater 
學科別分類 學科別應用科學環境工程
中文摘要 在電鍍、印刷電路板、金屬表面加工處理等工業中,擁有嚴重的重金屬及有機化合物等污染。製程作業中常使用螯合劑(EDTA)來當作金屬螯合劑,可提高整體的製程效率。由於此類廢此類廢水含有螯合劑,且與金屬離子有很強的螯合性,投入廢水中易形成金屬錯合物,導致以一般傳統化學混凝法無法有效的處理重金屬廢水。
本研究主要針對Cu-EDTA廢水進行試驗,並比較化學混凝法與電化學混凝法的重金屬處理可行性,在電化學混凝法處理中比較使用不同電解質氯化鈉、亞硫酸鈉;不同犧牲陽極鐵板、鋁板;不同操作電壓6V、12V;不同螯合濃度比例的銅離子去除效率差異。最後針對銅離子的去除機制進行探討,並判斷去除機制可能為以下五點:
1.極板本身或NaCl電解質產生氧化劑並破壞螯合劑結構,使銅離子攜出遊離於水溶液中。
2.銅離子的去除效率會受到[Cu2+]離子濃度增加及Cu/EDTA螯合比例增加而降低。
3.螯合劑與金屬間螯合常數關係,導致三價鐵離子與二價銅離子發生螯合取代機制。
4.藉由犧牲陽極所釋出的金屬離子形成混凝劑,與污染物達沉澱或共沉澱反應機制。
5.陰極極板及Fe2+的還原能力,將部分金屬離子還原於陰極極板或溶液表面中。
英文摘要 Plating wastewater containing metal ions with chelating agents to form chelated heavy metal complexes causes ineffectiveness in its treatment by conventional chemical coagulation. This study compares the treatment of wastewater with Cu-EDTA by chemical sedimentation, chemical coagulation and electrochemical coagulation. The mechanisms of the treatment of wastewater with Cu-EDTA by electrochemical coagulation are also studied. In the electrochemical coagulation comparison, different electrolytes, anode materials, operating voltage and chelating metal ratio are tester and compared. This study concludes the following findings:
1.The organic chelating agent EDTA is destructed by oxidation from both anode oxidation and NaCl electrolyte derived oxidants; hence the chelated copper ions are released into the wastewater solution for further coagulation and removal.
2.The removal efficiency of the EDTA chelated Cu2+ is decreased with the increased Cu2+ concentration and EDTA/Cu ratio.
3.Since the chelating constant between the EDTA and Fe is larger than that of EDTA and Cu, it is believed that some Cu2+ are replaced by Fe3+ to chelated with the EDTA in the electrochemical coagulation process.
4.Precipitation and/or co-precipitation occurred is one of the Cu removal mechanisms where the coagulant produced by electrolysis of metal anode absorbs the Cu2+ released from the chelating Cu-EDTA complexes and precipitated.
5.The reduction of Cu2+ on the cathode or by the Fe2+ also contribute to the Cu2+ removal.
論文目次 目錄
圖目錄 III
表目錄 VI
第一章緒論 1
1-1 研究緣起 1
1-2 研究目的 2
第二章文獻回顧 3
2-1 電鍍業背景說明 3
2-1-1電鍍業製程 4
2-1-2電鍍業污染特性 6
2-1-3相關法規 7
2-2 混凝理論 8
2-2-1 電混凝作用機制 8
2-2-2 混凝藥劑及特性 11
2-2-3國內外電混凝相關技術研究 13
2-3 EDTA 的基本特性及相關研究 26
2-3-1 EDTA 的基本特性 26
2-3-2 EDTA 之酸鹼性 28
2-3-3 EDTA 螯合物之穩定常數及螯合特性 29
2-3-4 EDTA 之應用概況 31
第三章實驗材料與方法 33
3-1 研究架構 33
3-2 實驗設備與材料 33
3-2-1 電化學實驗設備 33
3-2-2 電化學分析設備 35
3-2-3 實驗藥品 38
3-3 實驗流程與分析方法 39
3-4 影響電混凝處理效率之主要參數 44
第四章 結果與討論 50
4-1化學混凝處理含Cu-EDTA廢水 50
4-1-1有無添加 EDTA 水樣在不同pH值下沉澱去除銅離子影響 50
4-1-2 FeCl2、FeCl3混凝劑對銅離子的去除能力比較 53
4-1-3膠羽型態及晶相分析 55
4-1-4添加不同比例混凝劑比較銅離子去除效率 58
4-2電混凝處理Cu-EDTA廢水 59
4-2-1 選用鋁板或鐵板比較 59
4-2-2電混凝處理Cu-EDTA廢水使用不同電解質比較 68
4-3探討不同比例螯合劑對電混凝效果影響 72
4-3-1電流密度與操作時間關係 73
4-3-2 初始濃度與去除效率關係 77
4-3-3螯合比例對去除效率關係 81
4-3-4 pH變化趨勢 89
4-4 銅金屬去除機制分析 92
4-5 相關研究比較 99
第五章 結論與建議 102
5-1結論 102
5-2 建議 103
參考文獻 104

圖目錄
圖2. 1典型裝飾電鍍製程 5
圖2. 2典型塑膠電鍍製程 5
圖2. 3 電場的建立 9
圖2. 4 Activity diagrams of Al(Ⅲ) according to pH 11
圖2. 5 Activity diagrams of Fe(Ⅲ) and Fe(Ⅱ) according to pH 12
圖2. 6 Cu2+ profiles in the presence of (A) sulfate and (B) chloride as function of initial pH value and operating time.initial [Cu2+]=200mg/L. 14
圖2. 7Variation of removal efficiency values with time for heavy metals: (a) C0 = 250 mg/L, i = 15 mA/cm2(b) C0 = 250 mg/L, i = 25 mA/cm2. 15
圖2. 8 Ni, Cu and Cr concentrations and pH during EC of an industrial galvanic wastewater. Initial pH was adjusted to 5.0 16
圖2. 9 Variation of phosphate removal efficiency vs. time 17
圖2. 10 interior microelectrolysis and Fenton oxidation-coagulation process 17
圖2. 11 The effect of reaction time on the removal of copper and TOC under the optimum microelectrolytic conditions.(initial pH=3.0, iron scrap dosage 40g/L) 18
圖2. 12 Effect of electrolyte (chloride) concentration on EC process performance (at 9.0mA/cm2; initial conditions: TOC0: 170 mg/L; Ni0: 270 mg/L; Zn0: 217 mg/L; pH0: 6; Cl0:1515 mg/L) (◊:1510mg Cl/L; □:1875mg Cl/L; ∆:2250 mg Cl/L; ×:2635mg Cl/L; *:3000mg Cl/L). 20
圖2.13 EDTA化學結構式 26
圖2. 14 EDTA 螯合銅金屬之結構式 27
圖2.15 EDTA螯合金屬之結構式 28
圖2.16 Different distributions of EDTA species (any concentration) with pH variation 29
圖2.17 不同重金屬與EDTA螯合之穩定常數圖 31

圖3. 1壓克力材質反應槽 33
圖3. 2 陽極:(a)鐵板(b)鋁板 陰極:(C)鈦板 34
圖3. 3 直流電源供應器TENMA Laboratory DC Power Supply 72-6610 34
圖3. 4 離心機 35
圖3. 5 pH/氧化還原電位偵測計 35
圖3. 6 掃描式電子顯微鏡 JEOL JSM-5610 Scanning Electron Microscope/能量散射光譜儀EDS Energy Dispersive Spectrometer 36
圖3. 7 火焰式原子吸收光譜儀 37
圖3. 8載體火焰C2H2 37
圖3. 9 光學顯微鏡 38
圖3. 10實驗規劃設計 40
圖3. 11 傳統化學混凝實驗流程圖 41
圖3. 12電化學混凝實驗流程圖 43
圖3. 13電混凝影響因子 44
圖3. 14 Activity diagrams of Al(Ⅲ) according to pH 47

圖4. 1 Effect of pH on the dissolve of metal hydroxides 51
圖4. 2化學混凝沉降情形(a)無添加螯合劑(b)有添加螯合劑 52
圖4. 3 Effect of pH on the residual Copper concentrations 52
圖4. 4下化學混凝沉降情形(a) FeCl2混凝劑(b) FeCl3混凝劑 53
圖4. 5 Effect of pH on the residual Copper concentrations 54
圖4. 6 SEM晶相圖 (a)放大倍率250倍(b)放大倍率1000倍 55
圖4. 7 SEM晶相圖(a)Cu wastewater (b)Cu-EDTA wastewater (c) Cu-EDTA wastewater by FeCl2 (d)Cu-EDTA wastewater by FeCl3 57
圖4. 8以FeCl2及FeCl3添加不同比例混凝劑比較銅離子去除效率 59
圖4. 9 Effect of Plate on the Current 60
圖4. 10 Effect of Anode metal on pH 62
圖4. 11 Effect of Plate on the residual concentrations of copper,Apply voltage 12V. 63
圖4. 12 Effect of Plate on the residual concentrations of copper,Apply voltage 12V. 64
圖4. 13光學顯微鏡膠羽型態(a)鐵系混凝膠羽(b)鋁系混凝膠羽 65
圖4. 14 images of the iron anode after electrocoagulation (A)SEM (B)EDS 66
圖4. 15 images of the aluminum anode after electrocoagulation (A)SEM (B)EDS 67
圖4. 16 Effect of electrolyte on the Current 69
圖4. 17 Effect of electrolyte on the pH 69
圖4. 18 Effect of electrolyte on the Cu removal 70
圖4. 19不同電解液的銅離子處理效率與反應速率常數k比較圖 71
圖4. 20不同Cu初始濃度與電流密度關係(6V Cu-EDTA 1:1) 74
圖4. 21不同Cu初始濃度與電流密度關係(12V Cu-EDTA 1:1) 75
圖4. 22不同螯合比例(Cu-EDTA)與電流密度關係(6V 200ppm) 76
圖4. 23不同螯合比例(Cu-EDTA)與電流密度關係(12V 200ppm) 76
圖4. 24 Cu初始濃度與去除效率之關係(6V Cu-EDTA1:0) 78
圖4. 25 Cu初始濃度與去除效率之關係(6V Cu-EDTA1:1) 78
圖4. 26 Cu初始濃度與去除效率之關係(12V Cu-EDTA1:0) 79
圖4. 27 Cu初始濃度與去除效率之關係(12V Cu-EDTA1:1) 79
圖4. 28不同初始濃度的銅離子處理效率與反應速率常數k比較圖 80
圖4. 29不同初始濃度的銅離子處理效率與反應速率常數k比較圖 81
圖4. 30 Cu-EDTA螯合比例與去除效率之關係(6V 100ppm) 83
圖4. 31 Cu-EDTA螯合比例與去除效率之關係(6V 200ppm) 83
圖4. 32 Cu-EDTA螯合比例與去除效率之關係(6V 300ppm) 84
圖4. 33 Cu-EDTA螯合比例與去除效率之關係(12V 100ppm) 84
圖4. 34 Cu-EDTA螯合比例與去除效率之關係(12V 200ppm) 85
圖4. 35 Cu-EDTA螯合比例與去除效率之關係(12V 300ppm) 85
圖4. 36不同螯合比例濃度的銅離子處理效率與反應速率常數k比較 86
圖4. 37不同螯合比例濃度的銅離子處理效率與反應速率常數k比較 87
圖4. 38 pH變化與去除效率之關係(6V 200ppm) 90
圖4. 39 pH變化與去除效率之關係(12V 200ppm) 91
圖4. 40 SEM and EDS analysis after electrocoagulation 94
圖4. 41 image after electrocoagulation on cathode(a)Before(b)After 95
圖4. 42 SEM and EDS analysis after electrocoagulation 96
圖4. 43 image after electrocoagulation on anode 97
圖4. 44 SEM and EDS analysis after electrocoagulation 98

表目錄
表2.1 表面處理主要製品關聯產值規模 4
表2.2各國環保署所訂定最大放流水標準 7
表2.3常用的混凝劑種類及特性 12
表2. 4 COD and Cu2+ removal from Cu-EDTA wastewater by the IM–FOC process and the contributions of IM, FO and coagulation process (CP). 18
表2. 5Effect of EDTA on the chemical precipitation of Cu(II) ions by adjusting the pH to 11.0. 22
表2.6電化學混凝技術相關研究參數整理 23
表2. 7電混凝中氧化機制相關文獻整理 24
表2. 8電混凝中還原機制相關文獻整理 24
表2. 9電混凝中取代機制相關文獻整理 25
表2.10 EDTA及其納鹽於水中溶解度與溫度之關係 27
表2.11 EDTA 錯合物的穩定常數 30
表2.12不同金屬離子在不同pH 值下與 EDTA的螯合能力大小 30
表2.13 EDTA 於各行業中之應用概況 32

表3. 1合成廢水特性與性質 39
表3. 2實驗參數設計初始條件 44

表4. 1 EDS analysis of CuSO4 solution without EDTA after CC 56
表4. 2 EDS analysis after chemical coagulation 57
表4. 3以FeCl2及FeCl3添加不同比例混凝劑比較銅離子去除效率 58
表4. 4 Current and Current density 60
表4. 5 Effect of EDTA on the electro-coagulation of copper ion 63
表4. 6 Effect of EDTA on the electro-coagulation of copper ion 64
表4. 7 EDS analysis of the iron anode after electrocoagulation 66
表4. 8 EDS analysis of the aluminum anode after electrocoagulation 68
表4. 9 Current and Current density 68
表4. 10 Experimental parameters 70
表4. 11電流相關參數Cu-EDTA 1:1 6V 30min 73
表4. 12電流相關參數Cu-EDTA 1:1 6V 30min 73
表4. 13 Electro Coagulation after treatment concentration(100ppm) 88
表4. 14 Electro Coagulation after treatment concentration(200ppm) 88
表4. 15 Electro Coagulation after treatment concentration(300ppm) 89
表4. 16 EDS analysis after electrocoagulation 94
表4. 17 EDS analysis after electrocoagulation 95
表4. 18 EDS analysis after electrocoagulation 97
表4. 19文獻研究參數 99
表4. 20文獻研究參數 101
參考文獻 參考文獻
[1] 台灣表面加工處理工業同會, "http://tsfa.industry.org.tw/."
[2] 陳見財、黃雪娟、莊敏芳, "金屬表面處理業整合性污染防治技術手冊-電鍍業," 經濟部工業局, 2002.
[3] 經濟部工業局, "電鍍業減廢回收與污染防治," 1997.
[4] G. Y. S. C. Tonni Agustiono Kurniawan, Wai-Hung Lo,Sandhya Babel, "Physico–chemical treatment techniques for wastewater laden with heavy metals," Chemical Engineering Journal, vol. 118, pp. 83-98, 2006.
[5] 房士祺, "電混凝處理方法對廢水處理效率提昇之研究," 碩士學位論文,朝陽科技大學環境工程與管理系, 2004.
[6] M. Y. A. Mollah, P. Morkovsky, J. A. G. Gomes, M. Kesmez, J. Parga, and D. L. Cocke, "Fundamentals, present and future perspectives of electrocoagulation," Journal of Hazardous Materials, vol. 114, pp. 199-210, 2004.
[7] 楊萬發, "水及廢水處理化學," 1992.
[8] J.-Q. Jiang, N. Graham, C. Andre, G. H. Kelsall, and N. Brandon, "Laboratory study of electro-coagulation–flotation for water treatment," Water Research, vol. 36, pp. 4064-4078, 2002.
[9] C. J. Gabelich, T. I. Yun, B. M. Coffey, and I. H. M. Suffet, "Effects of aluminum sulfate and ferric chloride coagulant residuals on polyamide membrane performance," Desalination, vol. 150, pp. 15-30, 2002.
[10] 經濟部工業局, "廢水處理常用化學藥劑應用手冊," 2006.
[11] Ş. İrdemez, N. Demircioğlu, and Y. Ş. Yildiz, "The effects of pH on phosphate removal from wastewater by electrocoagulation with iron plate electrodes," Journal of Hazardous Materials, vol. 137, pp. 1231-1235, 2006.
[12] I. Heidmann and W. Calmano, "Removal of Ni, Cu and Cr from a galvanic wastewater in an electrocoagulation system with Fe- and Al-electrodes," Separation and Purification Technology, vol. 71, pp. 308-314, 2010.
[13] O. Hanay and H. Hasar, "Effect of anions on removing Cu2+, Mn2+ and Zn2+ in electrocoagulation process using aluminum electrodes," Journal of Hazardous Materials, vol. 189, pp. 572-576, 2011.
[14] R. S. Yeh, Y. Y. Wang, and C. C. Wan, "Removal of Cu-EDTA compounds via electrochemical process with coagulation," Water Research, vol. 29, pp. 597-599, 1995.
[15] B. Al Aji, Y. Yavuz, and A. S. Koparal, "Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes," Separation and Purification Technology, vol. 86, pp. 248-254, 2012.
[16] N. Adhoum, L. Monser, N. Bellakhal, and J.-E. Belgaied, "Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(VI) by electrocoagulation," Journal of Hazardous Materials, vol. 112, pp. 207-213, 2004.
[17] C. L. Lai and S. H. Lin, "Electrocoagulation of chemical mechanical polishing (CMP) wastewater from semiconductor fabrication," Chemical Engineering Journal, vol. 95, pp. 205-211, 2003.
[18] H. A. Moreno-Casillas, D. L. Cocke, J. A. G. Gomes, P. Morkovsky, J. R. Parga, and E. Peterson, "Electrocoagulation mechanism for COD removal," Separation and Purification Technology, vol. 56, pp. 204-211, 2007.
[19] C.-L. Yang and J. McGarrahan, "Electrochemical coagulation for textile effluent decolorization," Journal of Hazardous Materials, vol. 127, pp. 40-47, 2005.
[20] C.-L. Yang, "Electrochemical coagulation for oily water demulsification," Separation and Purification Technology, vol. 54, pp. 388-395, 2007.
[21] V. D. A.K. Golder, A.N. Samanta, S. Ray, "Removal of trivalent chromium by electrocoagulation," Sep. Purif. Technol, vol. 53, pp. 33-41, 2007.
[22] V. D. A.K. Golder, A.N. Samanta, S. Ray, "Removal of nickel and boron from plating rinse effluent by electrochemical and chemical techniques," Chem.Eng. Technol, vol. 1, pp. 143-148, 2008.
[23] J. G. I. K. RAJESHWAR, G. M. SWAIN, "Electrochemistry and the environment," JOURNAL OF APPLIED ELECTROCHEMISTRY, vol. 24, pp. 1077-1091, 1994.
[24] K. P. D. Rajkumar, "Electrocoagulation treatment of industrial wastewater," J. Hazard. Mater, vol. B113, pp. 123-129, 2004.
[25] S. Lan, F. Ju, and X. Wu, "Treatment of wastewater containing EDTA-Cu(II) using the combined process of interior microelectrolysis and Fenton oxidation–coagulation," Separation and Purification Technology, vol. 89, pp. 117-124, 2012.
[26] F. Ju and Y. Hu, "Removal of EDTA-chelated copper from aqueous solution by interior microelectrolysis," Separation and Purification Technology, vol. 78, pp. 33-41, 2011.
[27] I. Kabdaşlı, T. Arslan, T. Olmez-Hancı, I. Arslan-Alaton, and O. Tunay, "Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes," Journal of Hazardous Materials, vol. 165, pp. 838-845, 2009.
[28] F.-C. Chang, S.-L. Lo, and C.-H. Ko, "Recovery of copper and chelating agents from sludge extracting solutions," Separation and Purification Technology, vol. 53, pp. 49-56, 2007.
[29] Y. H. Feng Ju , Jianhua Cheng, "Removal of chelated Cu(II) from aqueous solution by adsorption–coprecipitation with iron hydroxides prepared from microelectrolysis process," Desalination, vol. 274, pp. 130-135, 2011.
[30] C. Kim and S.-K. Ong, "Recycling of lead-contaminated EDTA wastewater," Journal of Hazardous Materials, vol. 69, pp. 273-286, 1999.
[31] 陳祖貽, "以金屬錯合物及過氧化氫降解土壤中酚及多環芳香烴之研究," 碩士論文. 環境與安全衛生工程系. 高雄第一科技大學, 高雄市, 2006.
[32] A. A. Bukhari, "Investigation of electro-coagulation treatment process for the removal of total suspend solids and turbidity from municipal wastewater," Bioresource Technology, vol. 99, pp. 914-921, 2008.
[33] S. K. U.B. ‥O˘g‥utveren, "Electrocoagulation for oil–water emulsion treatment," J. Environ. Sci. Health, vol. A32, pp. 2507–2520, 1997.
[34] J. C. Canizares P, Martinez F, Rodrigo MA, Saez C, "The pH as a key parameter in the choice between coagulation and electrocoagulation for the treatment of wastewaters.," J Hazard Mater, vol. 163, pp. 158-64, 2007.
[35] M. K. O.T. Can, E. Demirbas, M. Bayramoglu, "Treatment of the textile wastewater by combined electrocoagulation," Chemosphere, vol. 62, pp. 181-187, 2006.
[36] A. S. K. Umran Tezcan Un, Ulker Bakir Oğutveren, "Hybrid processes for the treatment of cattle-slaughterhouse wastewater using aluminum and iron electrodes," Journal of Hazardous Materials, vol. 164, pp. 580-586, 2009.
[37] J.-C. H. H. Feng Xiao, Bao-jie Zhang, Chong-wei Cui, "Effects of low temperature on coagulation kinetics and floc surface morphology using alum," Desalination, vol. 237, pp. 201-213, 2009.
[38] A. B. Paul, "Proceedings of the 22nd WEDC Conference on Water Quality and Supply," New Delhi, India, p. p. 286, 1996.
[39] 何志軒, "以化學法與電化學法氧化裂解有機反應性染料探討," 淡江大學水資源及環境工程研究所,博士論文, 2009.
[40] L. Szpyrkowicz, F. Zilio-Grandi, S. N. Kaul, and S. Rigoni-Stern, "Electrochemical treatment of copper cyanide wastewaters using stainless steel electrodes," Water Science and Technology, vol. 38, pp. 261-268, 1998.
[41] K. L. O. C.G. Rampley, "Preliminary studies for removal of lead from surrogate and real soils using awater soluble chelator: adsorption and batch extraction," Environ. Sci. Technol, vol. 32, pp. 987-993, 1998.
[42] M. C. H. C.P. Huang, P. Miller, "Recovery of EDTA from power plant boiler chemical cleaning wastewater," J. Environ. Eng. ASCE, vol. 126, pp. 919-924, 2000.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2018-07-04公開。
  • 同意授權瀏覽/列印電子全文服務,於2018-07-04起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信