§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0307201310201600
DOI 10.6846/TKU.2013.00089
論文名稱(中文) 碳化鎢基板上成長鑽石薄膜之研究
論文名稱(英文) The study for diamond film growth on tungsten carbide substrate
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 物理學系碩士班
系所名稱(英文) Department of Physics
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 2
出版年 102
研究生(中文) 葉千瑞
研究生(英文) Cian-Ruei Ye
學號 600210024
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2013-06-27
論文頁數 124頁
口試委員 指導教授 - 林諭男(inanlin@mail.tku.edu.tw)
委員 - 黃柏仁(huangbohrran@yahoo.com.tw)
委員 - 宋大崙(tlsung@mail.lhu.edu.tw)
關鍵字(中) 鑽石薄膜
碳化鎢
铣刀
關鍵字(英) Diamond film
Tungsten carbide
第三語言關鍵字
學科別分類
中文摘要
由於鑽石具有許多無與倫比的物理及化學特性,因此有極高的應用潛力。但是傳統人工鑽石膜粗糙的刻面(facet)表面是應用上最大的問題之一。為了克服表面粗糙度的問題,近幾年來合成奈米晶鑽石(nano-diamond)成為相當熱門的研究主題,這是因為奈米晶鑽石不但可以大輻降低表面粗糙度,而且在許多方面具備了比微米晶鑽石更卓越的特性,因此在各種領域的應用上具有很大的潛力。
因此本論文中利用IPLAS系統微波電漿輔助化學汽相沉積法沉積鑽石薄膜於不同前處理碳化鎢铣,以其能得到較佳前處理條件使鑽石薄膜鍍於碳化鎢铣刀有較佳之附著力讓碳化鎢铣刀的工作壽命延長。
實驗故分成三大部分,第一部分為碳化鎢铣刀利用不同前處理方式後沉積鑽石薄膜,再利用掃描式電子顯微鏡(SEM)、拉曼光譜(Raman),評估碳化鎢铣刀在不同的前處理下鑽石薄膜分別最佳沉積條件。考慮有無孕核以及孕核時間長短和前處理步驟的順序對於鑽石薄膜在碳化鎢铣刀上的影響,P45-EP20s為碳化鎢铣刀系列的最佳條件。
第二部分則是利用氮化物作為緩衝層,並為使鑽石薄膜沉積在緩衝層上其附著力和沉積速率等能更加提升,我們對緩衝層上進行不同前處理種類。而實驗中所使用的氮化物緩衝層為氮化鈦以及氮化鉻,考慮長時間酸洗會導致铣刀本身剛性降低以及緩衝層變薄使其抑制鈷擴散的能力降低,以及鑽石薄膜能均勻且完整連續的包覆铣刀,且無脫膜、分層等問題,P45-EP20s為氮化物緩衝層系列的最佳條件。
最後的部分為將各系列最佳前處理條件之铣刀鍍上一微米厚的鑽石薄膜進行切削測試,測試铣刀的工作壽命是否延長以及鑽石薄膜的附著力與耐磨耗度的優劣。碳化鎢铣刀C20-P45-EP20s以及氮化鉻緩衝層铣刀P45-EP20s在低走速高磨耗的測試下依然有不錯表現,僅刃部有輕微脫膜現象甚至只有鑽石薄膜隨刃角鈍化。另外由於氮化物緩衝層的品質不夠好導致鑽石薄膜在切削測試中比現不如預期,也因此可以顯出濺鍍氮化物於碳化铣刀的前處理其重要性。
英文摘要
Diamond and related materials grown have enormous potential application due to their marvelous combination of physical and chemical properties. However, large roughness of microcrystalline diamond films makes them inapplication in some specific applications.Recently, nanocrystalline diamond films with naturally smooth surface have been synthesized, which has more advantages and  potential applications than microcrystalline diamond films.
In brief, we develop a reliable pretreat processing procedure for depositing uniform, smooth surface and good adhesion nanocrystalline diamond films on tungsten carbide drills.
第三語言摘要
論文目次
摘要	I
Abstract	II
致謝	III
目錄	IV
圖目錄	VII
表目錄	X
第一章 研究動機	1
第二章 序論	4
2.1 鑽石薄膜的特性與應用	4
2.1.1 鑽石及鑽石薄膜的特性	4
2.1.2 鑽石薄膜之應用	6
2.1.3 微米微晶及超奈米微晶鑽石薄膜	7
2.2 微米微晶及超奈米微晶鑽石薄膜之合成方法與理論	8
2.2.1鑽石薄膜相關合成方法	8
2.2.2 鑽石薄膜成核相關理論	12
第三章 研究方法及實驗步驟	37
3.1 微波電漿CVD 鍍鑽石薄膜結構及原理	37
3.2 鑽石薄膜實驗方法	38
3.2.1懸浮液之製備及孕核:(超音波震盪法(UM)-鑽石/鈦懸浮液)	38
3.2.2 鍍膜流程	38
3.3 薄膜之特性分析	40
3.3.1 掃描式電子顯微鏡	40
3.3.2 拉曼光譜分析(Raman Spectrum)	41
第四章 碳化鎢铣刀沉積鑽石薄膜研究	48
4.1 實驗步驟	49
4.1.1 前處理	49
4.1.2 MPECVD 鍍膜	50
4.2 碳化鎢铣刀樣品分析	52
4.2.1 掃描式電子顯微鏡結構分析	52
4.2.2 拉曼光譜分析	54
4.3 結果	55
第五章 氮化物緩衝層铣刀沉積鑽石薄膜研究	65
5.1 實驗步驟	66
5.1.1 前處理	66
5.1.2 MPECVD 鍍膜	67
5.2 鍍有氮化鈦緩衝層之碳化鎢铣刀樣品分析	68
5.2.1 掃描式電子顯微鏡結構分析	68
5.2.2 拉曼光譜分析	70
5.3 鍍有氮化鉻緩衝層之碳化鎢铣刀樣品分析	71
5.3.1 掃描式電子顯微鏡結構分析	71
5.3.2 拉曼光譜分析	72
5.4 結果	73
第六章 鑽石鍍膜铣刀切削測試	93
6.1 鑽石薄膜沉積速率測試	93
6.1.1 碳化鎢铣刀	93
6.1.2 氮化鈦緩衝層之碳化鎢铣刀	94
6.1.3 氮化鉻緩衝層之碳化鎢铣刀	95
6.2 鑽石鍍膜铣刀切削測試	95
6.2.1 掃描式電子顯微鏡結構分析	96
6.2.2 拉曼光譜分析	97
6.2.3 光放射光譜分析	98
6.2.4 光學顯微鏡結構分析	98
6.2.5 切削測試基板分析	99
6.2.6 掃描式電子顯微鏡結構分析	100
6.2.7 拉曼光譜分析	101
6.3 結果	102
第七章 結果討論與未來展望	114
參考文獻	116

圖目錄
圖1-1 不同氫氣含量對鑽石薄膜顆粒大小及表面形貌之影響	3
圖1-2 不同氫氣含量鑽石薄膜拉曼光譜	3
圖2-1 鑽石的結晶構造	20
圖2-2 石墨的結晶構造	20
圖2-3 鑽石的熱傳導係數	21
圖2-4 微米微晶至超奈米微晶鑽石薄膜表面型態	24
圖2-5 以HRTEM分析超奈米微晶鑽石晶粒及晶界	25
圖2-6 超奈米微晶鑽石晶粒間距及繞射圖	26
圖2-7 不同波長的超奈米微晶鑽石薄膜拉曼光譜	26
圖2-8 C-H-O三相圖	27
圖2-9 微波電漿CVD設備圖	27
圖2-10 熱燈絲法設備圖	28
圖2-11 微波電漿放電系統設備圖	28
圖2-12 高週波電漿放電系統設備圖	29
圖2-13 電子迴旋共振設備圖	29
圖2-14 鑽石之椅狀堆積構造	30
圖2-15 石墨及鑽石的活化能相對圖	30
圖2-16 薄膜與基材之早期成核方式	31
圖2-17 與基材不反應者之孕核、成長機制	31
圖2-18 與基材形成碳化物之孕核、成長機制	32
圖2-19 偏壓輔助孕核法的反應機制	33
圖2-20 偏壓輔助成核示意圖	34
圖2-21 超音波振盪法	35
圖2-22 偏壓輔助孕核法超音波振盪法	36
圖3-1 IPLAS CRYNNUS I MPECVD系統	43
圖3-2 IPLAS系統示意圖	44
圖3-3 碳化鎢铣刀鍍鑽石薄膜特殊長條型溝槽基板載台	45
圖3-4 掃描式電子微顯微鏡(SEM)	46
圖3-5 拉曼系統	47
圖3-6 拉曼系統示意圖	47
圖4-1 碳化鎢铣刀實驗流程圖	56
圖4-2 已前處理未鍍膜之碳化鎢铣刀	58
圖4-3 鑽石鍍膜於已酸洗之碳化鎢铣刀之頂部	59
圖4-4 鑽石鍍膜於已酸洗之碳化鎢铣刀之頂部	60
圖4-5 鑽石鍍膜於已酸洗之碳化鎢铣刀之頂部	61
圖4-6 鑽石鍍膜於已前處理之碳化鎢铣刀-铣刀外觀	63
圖4-7 已鍍鑽石薄膜之碳化鎢铣刀不同前處理之拉曼光譜	64
圖5-1 氮化物緩衝層铣刀實驗流程圖	74
圖5-2 已前處理未鍍膜之氮化鈦緩衝層碳化鎢铣刀	76
圖5-3 鑽石鍍膜於已前處理之氮化鈦緩衝層碳化鎢铣刀	78
圖5-4 鑽石鍍膜於已前處理之氮化鈦緩衝層碳化鎢铣刀	80
圖5-5 鑽石鍍膜於已前處理之氮化鈦緩衝層碳化鎢铣刀-铣刀外觀	82
圖5-6 已鍍鑽石薄膜之氮化鈦緩衝層碳化鎢铣刀不同前處理之拉曼光譜	83
圖5-7 已前處理未鍍膜之氮化鉻緩衝層碳化鎢铣刀	85
圖5-8 鑽石鍍膜於已前處理之氮化鉻緩衝層碳化鎢铣刀	87
圖5-9 鑽石鍍膜於已前處理之氮化鉻緩衝層碳化鎢铣刀	89
圖5-10 鑽石鍍膜於已前處理之氮化鉻緩衝層碳化鎢铣刀-铣刀外觀	91
圖5-11 已鍍鑽石薄膜之氮化鉻緩衝層碳化鎢铣刀不同前處理之拉曼光譜	92
圖6-1 不同沉積時間P45-EP20s碳化鎢铣刀截面	103
圖6-2 不同沉積時間C20-P45-EP20s碳化鎢铣刀截面	104
圖6-3 不同沉積時間P45-EP20s之氮化鈦緩衝層碳化鎢铣刀截面	105
圖6-4 不同沉積時間P45-EP20s之氮化鉻緩衝層碳化鎢铣刀截面	106
圖6-5 不同前處理條件碳化鎢铣刀-切削測試前	108
圖6-6 不同前處理條件碳化鎢铣刀之拉曼光譜-切削測試前	109
圖6-7 不同前處理條件碳化鎢铣刀之光放射光譜	109
圖6-8 光學顯微鏡觀察碳化鎢铣刀外觀	110
圖6-9切削測試後之無銅基板	111
圖6-10 不同前處理條件碳化鎢铣刀-切削測試後	112
圖6-11不同前處理條件碳化鎢铣刀之拉曼光譜-切削測試後	113

表目錄
表2-1 鑽石的各種性質	18
表2-2 鑽石的各種應用	19
表2-3 鑽石之耐熱衝擊指數比較	21
表2-4 天然鑽石、鑽石膜及類鑽石膜之性質比較	23
表2-5 微米微晶鑽石與超奈米微晶鑽石的特性比較	25
表3-1 結構的各種拉曼峰值	46
表4-1 代號示意表	56
表5-1 代號示意表	74
表6-1碳化鎢铣刀平均膜厚及沉積速率表	104
表6-2氮化物緩衝層之碳化鎢铣刀平均膜厚及沉積速率表	106
表6-3 铣刀切削參數表	110
參考文獻
[1]. J. E. Field, “The Properties of Diamonds”, (Academic, London, 1979). 
[2]. H. Liu and D. S. Dandy, “Diamond chemical vapor deposition: Nucleation and Early Growth Stages”, Noyes (1995). 
[3]. P. Kulkarni, L. M. Porter, F. A. M. Koeck, Y.-J. Tang, and R. J. Nemanich, “Electrical and photoelectrical characterization of undoped and S-doped nanocrystalline diamond films”, J. Appl. Phys. 103 084905 (2008). 
[4]. M. Shamsa, S. Ghosh, I. Calizo, V. Ralchenko, A. Popovich, and A. A. Balandin, “Thermal conductivity of nitrogenated ultrananocrystalline diamond films on silicon”, J. Appl. Phys. 103 083538 (2008). 
[5]. X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, and J. A. Carlisle, “ Low temperature growth of ultrananocrystalline diamond”, J. Appl. Phys. 96 2232 (2004). 
[6]. Li-Ju Chen, Nyan-Hwa Tai, Chi-Young Lee, and I-Nan. Lin, “ Effects of pretreatment processes on improving the formation of ultrananocrystalline diamond”, J. Appl. Phys. 101 064308 (2007). 
[7]. K. Wu, E.G. Wang, Z.X. Cao, Z.L. Wang, X. Jiang, “ Microstructure and its effect on field electron emission of grain-size-controlled nanocrystalline diamond films”, J. Appl. Phys. 88 2967 (2000). 
[8]. Maki A. Angadi, Taku Watanabe, Arun Bodapati, Xingcheng Xiao, and Simon R. Phillpot, “Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films”, J. Appl. Phys. 99 114301 (2006). 
[9]. D.M. Gruen, “Nanocrystalline diamond films”, Annu. Rev. Mater. Sci. 29 211 (1999). 
[10]. J. A. Carlisle, O. Auciello; Electrochem. Soc. Interface (2003) (Spring).
[11]. F. Mubarok, J. M. Carrapichano, F. A. Almeida, A. J. S. Fernandes, R. F.Silva, “ Enhanced sealing performance with CVD nanocrystalline diamond films in self-mated mechanical seals”, Diamond Relat. Mater., 17 1132 (2008).
[12]. A. Lavoisier, “Elements of Chemistry”, Dover Publications (1772). 
[13]. Y. Tzeng, M. Yoshikawa, M. Murakawa and Feldman, “The Applications of Diamond Films and Related Materials”, eds, Elsevier, New York, (1991). 
[14]. P. W. Bridgman, “Synthetic diamonds”, Scient. Am., 193 42 (1955). 
[15]. W. G. Eversole, U.S. Patent No. 3, 030 188 (1962). 
[16]. J. C. Angus, H. A. Will and W. S. Stanko, “Growth of Diamond Seed Crystals by Vapor Deposition”, J. Appl. Phys., 39 2915 (1968). 
[17]. B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, “Vapor growth of diamond on diamond and other surfaces”, J. Cryst. Growth, 52 219 (1981). 
[18]. C. Y. Wang, F. L. Zhang, T. C. Kuang, C. L. Chen, “ Chemical/mechanical polishing of diamond films assisted by molten mixture of LiNO and KNO33”, Thin Solid Films, 496 698 (2006). 
[19]. Nevin N. Naguib, Jeffrey W. Elam, James Birrell, Jian Wang, David S. Grierson, Bernd Kabius, “Enhanced nucleation, smoothness and conformality of ultrananocrystalline diamond (UNCD) ultrathin films via tungsten interlayers”, Chemical Physics Letters, 430 345 (2006). 
[20]. L. T. Sun, J. L. Gong, Z. Y. Zhu, D. Z. Zhu, S. X. He, Z. X. Wang, Y. Chen, “Nanocrystalline diamond from carbon nanotubes”, Applied Physics Letters, 84 (15), 2901 (2004). 
[21]. P. W. May and Yu. A. Mankelevich, “Experiment and modeling of the deposition of ultrananocrystalline diamond films using hot filament chemical vapor deposition and Ar/CH4/H2 gas mixtures: A generalized mechanism for ultrananocrystalline diamond growth”, J. Appl. Phys. 100 024301 (2006). 
[22]. L. Kreines, G. Halperin, I. Etsion, M. Varenberg, A. Hoffman, R. Akhvlediani, “Fretting wear of thin diamond films deposited on steel substrates”, Diamond and Related Materials, 13 1731 (2004).
[23]. C.K. Lee, “Wear-corrosion behavior of ultra-thin diamond-like carbon nitride films on aluminum alloy”, Diamond and Related Materials, 17 306 (2008). 
[24]. J. Birrell, J. A. Carlisle, O. Auciello, D. M. Gruen, and J. M. Gibson, “ Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond”, Applied Physics Letters, 81 (12), 2235 (2002). 
[25]. M. Nesladek, D. Tromson, Bergonzo, P. Hubik, P. Mares, J.J. Kristofik, J. Kindl, Gruen, D., “Low-temperature magnetoresistance study of electrical transport in N- and B-doped ultrananocrystalline and nanocrystalline diamond films”, Diamond & Related Materials, 15 (4) 607 (2006). 
[26]. Yu-Fen Tzeng, Yen-Chih Lee, Chi-Young Lee, Hsin-Tien Chiu, I-Nan Lin, “Electron field emission properties on UNCD coated Si-nanowires”, Diamond and Related Materials, 17 753 (2008). 
[27]. P. T. Joseph, N. H. Tai, Chi-Young Lee, H. Niu, W. F. Pong, and I. N. Lin, “ Field emission enhancement in nitrogen-ion-implanted ultrananocrystalline diamond films”, J. Appl. Phys. 103 043720 (2008). 
[28]. T. Sharda and S. Bhattacharyya, “Advances in nanocrystalline diamond”, Encyclopedia of Nanoscience and Nanotechnology, X, I (2003). 
[29]. S. Jiao, A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, “Microstructure of ultrananocrystalline diamond films grown by microwave Ar–CH4 plasma chemical vapor deposition with or without added H2”, Journal of Applied Physics, 90, 118 (2001). 
[30]. Ferrari, Andrea Carlo / Robertson, John, “ Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 362 2477 (2004). 
[31]. M. Veres, S. Toth, and M. Koos, “Grain boundary fine structure of ultrananocrystalline diamond thin films measured by Raman scattering”,Appl. Phys. Lett. 91 031913 (2007). 
[32]. M. Veres, S. Toth, E. Perevedentseva, A.Karmenyan, M. Koos, “Raman Spectroscopy Of UNCD Grain Boundaries”,Volume . ISBN 978-1-4020-9915-1. Springer Netherlands, 2009, p. 115.
[33]. A. C. Ferrari and J. Robertson , “Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond”, Phys. Rev. B 63 121405(R) (2001). 
[34]. James Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, D. M. Gruen, and J. A. Carlisle, “ Bonding structure in nitrogen doped ultrananocrystalline diamond”, J. Appl. Phys. 93 5606 (2003). 
[35]. Peter K. Bachmann, Dieter Leers, Hans Lydtin, “Towards a general concept of diamond chemical vapour deposition”, Diamond and Related Materials, 1 1 (1991). 
[36]. G. Balestrino, M. Marinelli, E. Milani, A. Paoletti, I. Pinter, and A. Tebano, “Growth of diamond films: General correlation between film morphology and plasma emission spectra”, Appl. Phys. Lett. 62, 879 (1993). 
[37]. Y. Mitsuda, K. Tanaka, and T. Yoshida, Journal of Applied Physics, “In situ emission and mass spectroscopic measurement of chemical species responsible for diamond growth in a microwave plasma jet”, J. Appl. Phys. 67 3604 (1990). 
[38]. C. J. Chu, R. H. Hauge, J. L. Margrave, and M. P. D'Evelyn, “Growth kinetics of (100), (110), and (111) homoepitaxial diamond films”, Appl. Phys. Lett. 61 1393 (1992). 
[39]. Stephen J. Harris, “Gas-phase kinetics during diamond growth: CH4 as-growth species”, J. Appl. Phys. 65 3044 (1989). 
[40]. Chao Liu, Xingcheng Xiao, Hsien-Hau Wang, Orlando Auciello, and John A. Carlisle , “Electron paramagnetic resonance study of hydrogen-incorporated ultrananocrystalline diamond thin films”, J. Appl. Phys. 101 123924 (2007). 
[41]. M. Wiora, K. Bruhne, A. Floter, P. Gluche, T. M. Willey, S. O. Kucheyev, A. W. Van Buuren, H. J. Fecht, “Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD”, Diamond & Related Materials, 18 927 (2009). 
[42]. S. J. Ray, G. M. Hieftje, “ Microwave plasma torch — atmospheric-sampling glow discharge modulated tandem source for the sequential acquisition of molecular fragmentation and atomic mass spectra ”, Analytica Chimica Acta, 445 (1) 35 (2001). 
[43]. A. T. Sowers, B. L. Ward, S. L. Englih and R. J. Nemanich, “Field emission properties of nitrogen-doped diamond films”, J. Appl. Phys., 86 3973 (1999). 
[44]. K. H. Chen, D. M. Bhusari, J. R. Yang, S. T. Lin, T. Y. Wang, L. C. Chen,“Highly transparent nano-crystalline diamond films via substrate pretreament and methane fraction optimization”, Thin Solid Films, 332 34 (1998). 
[45]. D. A. Homer, L. A. Curtiss, and D. M. Gruen, “ A theoretical study of the energetics of insertion of dicarbon (C) and vinylidene into methane C-H bonds2”, Chemical Physics Letters, 233 243 (1995). 
[46]. K. Subramaniana, W. P. Kanga, J. L. Davidsona, R. S. Takalkara, B. K. Choia, M. Howella and D.V. Kerns, “ Enhanced electron field emission from micropatterned pyramidal diamond tips incorporating CH/H/N plasma-deposited nanodiamond422”, Diamond and Related Materials, 15 1126 (2006). 
[47]. T. K. Ku, C.D. Yang, F.G. Tarntair, C.C. Wang, H.C. Cheng, S.H. Chen, N.J. She, I. J. Hsieh, “Enhanced electron emission from phosphorus- and boron-doped diamond-clad Si field emitter arrays”, Thin Solid Films, 290 176 (1996). 
[48]. Yongde Xia, Gavin S. Walker, David M. Grant, Mokaya, Robert , “Hydrogen storage in high surface area carbons: experimental demonstration of the effects of nitrogen doping”, Journal of the American Chemical Society, 131 16493 (2009). 
[49]. H. Yoshikawa, C. Morel, and Y. Koga, “Synthesis of nanocrystalline diamond films using microwave plasma CVD”, Diamond and Related Materials, 10 1588 (2001). 
[50]. J. Lee, R. W. Collins, R. Messier, and Y. E. Strausser, “Low temperature plasma process based on CO-rich CO/H2 mixtures for high rate diamond film deposition”, Applied Physics Letters, 70 1527 (1997). 
[51]. N. Jiang, K. Sugimoto, K. Nishimura, Y. Shintani, and A. Hiraki, “Synthesis and structural study of nano/micro diamond overlayer films”, Journal of Crystal Growth, 242 362 (2002). 
[52]. T. Sharda, M. Vmeno, T. Soga, and T. Jimbo, “CJrowth of nanocrystalline diamond films by biased enhanced microwave plasma chemical vapor deposition: A different regime of growth”, Applied Physics Letters, 77 (26) 4304 (2000). 
[53]. W. Zhu, G P. Kochanski, and S. Jin, “Low-field emission from undopednanostructured diamond”, Science, 282 1471 (1998).
[54]. A. Gohl, A. N. Alimova, T. Habennann, A. L. Mescheryakova, and G Huller,“Integral and local field emission analyses of nanodiamond coating for power applications”, J. Vac. Sci. Technol. B, 17 670 (1999). 
[55]. J. E. Green, S. A. Barnett, J. E. Sundgren, and A. Rockett, “Plasma-surface Interactions And Processing Of Materials”, 28-31(1990). 
[56]. X. Jiang, C. P. Klages, R. Zachai, M. Hartweg, and H. J. Fusser, “Epitaxial diamond thin films on (001) silicon substrate”, Appl. Phys. Lett., 62 3438 (1993). 
[57]. S. Iijima, Y. Aikawa, and K. Baba, “Early formation of chemical vapor deposition diamond films”, Applied Physics Letters, 57 (25) 2646 (1990). 
[58]. Zhidan Li, Long Wang, Tetsuya Suzuki, and Pirouz, “Orientation relationship between chemical vapor deposited diamond and graphite substrates”, Journal of Applied Physics, 73(2) 711 (1993). 
[59]. D. N. Belton, S. J. Harris, S. J. Schmieg, A. M. Wiener, and T. A. Perry, “In situ characteristic of diamond nucleation and growth”, Applied Physics Letters, 54 (5) 416 (1989). 
[60]. N. Jiang, B. W. Sun, Z. Zhang, and Z. Lin, “Nucleation and initial growth of diamond film on Si substrate”, Journal of Materials Research, 9 (10) 2695 (1994). 
[61]. W. L. Wang, K. J. Liao, L. Fang, J. Esteve, M. C. Polo, “Analysis of diamond nucleation on molybdenum by biased hot filament chemical vapor deposition”, Diamond and Related Materials, 10 383 (2001). 
[62]. S. Yugo, T. Kanai, T. Kimura, and T. Muto, “Generation of diamond nuclei by electric field in plasma chemical vapor deposition”, Applied Physics Letters, 58 (10) 1036 (1991). 
[63]. B. R. Stoner, G.-H. M. Ma, S. D. Wolter, and J. T. Glass, “ Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy”, Phys. Rev. B, 45 11067 (1991). 
[64]. J. Gerber, S. Sattel, H. Ehrhardt, J. Robertson, P. Wurzinger, and P. Pongratz, “Investigation of bias enhanced nucleation of diamond on ilicon”, Journal of Applied Physics, 79 (8) 4388 (1996). 
[65]. P. Reinke and P. Oelhafen, “Photoelectron spectroscopic investigation of the bias-enhanced nucleation of polycrystalline diamond films” , Physical Review B, 56 (4) 2183 (1997). 
[66]. R. Stockel, K. Janischowsky, S. Rohmfeld, J. Ristein, M. Hundhausen, and L. Ley, “Growth of diamond on silicon during the bias pretreatment in chemical vapor deposition of polycrystalline diamond films”, Journal of Applied Physics, 79 768 (1996). 
[67]. R. Stockel, M. Stammler, K. Janischowsky, and L. Ley, “Diamond nucleation under bias conditions”, J. Appl. Phys. 83 531 (1998). 
[68]. J. Robertson, J. Gerber, S. Sattel, M. Weiler, K. Jung, and H. Ehrhardt, “Mechanism of bias-enhanced nucleation of diamond on Si”, Applied Physics Letters, 66 (24) 3287 (1995). 
[69]. S. P. McGinnis, M. A. Kelly, and S. B. Hagstrom, “Evidence of an energetic ion bombardment mechanism for bias-enhanced nucleation of diamond”, Applied Physics Letters, 66 (23) 3117 (1995). 
[70]. L. J. Huang, I. Bello, W. M. Lau, S. T. Lee, P. A. Stevens, and B. D. DeVries, “Synchrotron radiation x-ray absorption of ion bombardment induced defects on diamond(100) ”, Journal of Applied Physics 76 (11) 7483 (1994). 
[71]. S. Barrat, S. Saada, I. Dieguez, and E, Bauer-Grosse, “Diamond deposition by chemical vapor deposition process: Study of the bias enhanced nucleation step”. Journal of Applied Physics 84 (4) 1870 (1998). 
[72]. Debabrata Pradhan, Li-Ju Chen, Yen-Chih Lee, Chi-Young Lee, Nyan-Hwa Tai, I-Nan Lin, “Effect of titanium metal in the prenucleation of ultrananocrystalline diamond film growth at low substrate temperature”, Diamond and Related Materials, 15 1779 (2006). 

[73]. J. H. Je and G. Y. Lee, “Microstructures of diamond films deposited on (100) silicon wafer by microwave plasma-enhanced chemical vapor- deposition”, Journal of Materials Science, 27 (23) 6324 (1992). 
[74]. W. Zhu, “Vacuum microelectronics”, John Wiley & Sons (2001). 
[75]. I. Han, N. Lee, S. W. Lee, S. H. Kim, “Field emission of nitrogen-doped diamond films”, J. Vac. Sci. Technol. B, 16(4), 2052 (1998).
[76]. W. Zhu, G. P. Kochanski, S. Jin, “Low-Field Electron Emission from Undoped Nanostructured Diamond”, SCIENCE, 282, 1471 (1998).
[77]. Chiharu Kimura, Satoshi Koizumi, Mutsukazu Kamo, Takashi Sugino, “Behavior of electron emission from phosphorus-doped epitaxial diamond films”, Diamond and Related Materials, 8, 759 (1999).
[78]. Robert Gomer, Field emission and field ionization, American Institute of Physics, 21~29 (1993).
[79]. V. Baranauskas, B. B. Li, A. Peterlevitz, M. C. Tosin, and S. F. Durrant, “Nitrogen-doped diamond films”, J. Appl. Phys., 85, 7455 (1999).
[80]. S. B. Wang, H. X. Zhang, P. Zhu, and K. Feng, “Structural and electrical properties of chemical vapor deposited diamond films doped by B+ implantation”, J. Vac. Sci. Technol. B, 18(4), 1997 (2000).
[81]. W. B. Choi, J. J. Cuomo, V. V. Zhirnov, A. F. Myers and J. J. Hren, “ Field emission from silicon and molybdenum tips coated with diamond powder by dielectrophoresis”, Appl. Phys. Lett., 68, pp720 (1996).
[82]. I-Nan Lin, Kuoguang Preng, Lien-Hsin Lee, Chuan-Feng Shih, and Kuo-Shung Liu, “Comparison of the effect of boron and nitrogen incorporation on the nucleation behavior and electron-field-emission properties of chemical-vapor-deposited diamond films”, Appl. Phys. Lett, 77, 1277 (2000).
[83]. X. Jiang, P Willich, M. Paul, and C-P. Klages, “In situ boron doping of chemical-vapor-deposited diamond films”, Journal of Materials Research, 14, 3211 (1999).
[84]. Z. H. Huang, P. H. Culter, N. M. Miskovsky, and T. E. Sullivan, “Theoretical-Study of Field-Emission from Diamond”, Appl. Phys. Lett., 65, 2562 (1994).
[85]. V. V. Zhirnov, E. I. Givargizov, and P. S. Plekhanov, “Field-Emission from Silicon Spikes with Diamond Coatings”, J. Vac, Sci. Technol, B 13, 418 (1995).
[86]. D. A. Buck and K. R. Shoulders, “An approach to microminiature systems”, in Proc. Eastern Joint Computer Conf., pp55-59 (AIEE, New York (1958).
論文全文使用權限
校內
紙本論文於授權書繳交後3年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後3年公開
校外
同意授權
校外電子論文於授權書繳交後3年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信