§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0303202111421400
DOI 10.6846/TKU.2021.00072
論文名稱(中文) 探討甘草萃取物影響血管生成之能力
論文名稱(英文) Assessment of pro-angiogenic ability of Liquorice extract
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 109
學期 1
出版年 110
研究生(中文) 童聖雰
研究生(英文) Sheng-Fen Tung
學號 608160015
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2021-01-08
論文頁數 48頁
口試委員 指導教授 - 陳曜鴻
委員 - 蔡旻燁
委員 - 蔡振寧
關鍵字(中) 斑馬魚
血管增生
過敏煎
甘草
關鍵字(英) Zebrafish
Angiogenesis
Guo Min Jian
Liquorice
第三語言關鍵字
學科別分類
中文摘要
過敏煎主要是由甘草、五味子、銀柴胡、防風、烏梅五種中藥材所組成,此藥物具有抗過敏及抗發炎的作用,其中甘草根據先前研究發現,甘草水萃物具有有效抗血管新生及抗腫瘤的活性,推測甘草與血管生成有密切的關係,而本篇論文主要研究目的為探討甘草萃取物是否具有影響血管增生之能力。透過斑馬魚Alkaline Phosphatase staining實驗,發現浸泡過敏煎及甘草後之斑馬魚胚胎的SIV branch points在(basket inside: 對照組 vs. 過敏煎, 1.00±0.18、2.00±0.30; basket outside: 對照組 vs. 過敏煎, 0.17±0.06、0.67±0.12);(basket inside: 對照組 vs. 50 ppm甘草, 1.28±0.13、1.87±0.22; basket outside: 對照組 vs. 50 ppm甘草, 0.81±0.09、1.42±0.13),皆有明顯促進血管增生的現象。接下來使用基因轉殖斑馬魚Tg(fli1:EGFP) 觀察血管增生的效果,發現在浸泡過敏煎後caudal vein plexus血管面積增加3.6%,也發現有促進血管增生的現象。最後在基因層次的研究發現, flt1、nrp1a (皆為血管內皮生長因子受體)、cdh5(細胞連接標記)基因表現量分別為對照組的 1.99倍、0.86倍及1.21倍。根據上述實驗結果,可得知過敏煎與甘草萃取物確實具有促進血管增生的能力。
英文摘要
Guo Min Jian (GMJ) is mainly composed of five kinds of Chinese medicine include Liquorice, Wu wei zi, Yin chai hu, Fang feng, and Wu mei. This Chinese medicine has anti-allergic and anti-inflammatory effects. According to previous paper, the water extract of Liquorice has anti-angiogenic and anti-tumor activity, it is inferred that Liquorice is closely related to angiogenesis. The main purpose of this thesis is to explore the pro-angiogenic ability of Liquorice extract. Results of Alkaline Phosphatase staining experiments, showed that the SIV of GMJ and Liquorice-treated zebrafish embryos had more branch points (basket inside: mock: 1.00±0.18 vs. GMJ-treated: 2.00±0.30;basket outside: mock: 0.17±0.06 vs. GMJ-treated: 0.67±0.12);(basket inside: mock: 1.28±0.13 vs. 50 ppm Liquorice-treated: 1.87±0.22;basket outside: mock: 0.81±0.09 vs. 50 ppm Liquorice-treated: 1.42±0.13). Results of fluorescence recording of transgenic zebrafish Tg(fli1:EGFP) showed that GMJ-treated embryos displayed more broadly fluorescence expressions in the caudal vein plexus (the area of blood vessel increased by 3.6%) compared to no treatment mock group, indicating that both GMJ and Liquorice possess pro-angiogenic effects. Finally, from the genetic points of view, it was found that the expressions of flt1(VEGFR-1) and cdh5 (cell adhesion marker) genes in the GMJ-treated groups increased to 1.99 and 1.21 folds, but the expression of nrp1a (VEGFR) decreased to 0.86 folds. On the basis of these observations, we proposed that GMJ and Liquorice extract have pro-angiogenic effects.
第三語言摘要
論文目次
謝誌......................................................I
中文摘要.................................................II
英文摘要................................................III
第一章 序論...............................................1
I.	甘草及甘草酸.......................................1
i.	介紹..............................................1
ii.	動物實驗..........................................3
II.	過敏煎............................................5
III.	血管新生..........................................6
IV.	斑馬魚的血管發育...................................8
V.	斑馬魚胚胎優勢....................................10
VI.     實驗動機.........................................10
第二章 材料與方法.........................................12
I.	斑馬魚(Danio rerio)..............................12
i.	飼養及維護.......................................12
ii.	胚胎收集.........................................12
II.	藥品製備.........................................13
i.	斑馬魚試驗.......................................13
a.	甘草(liquorice)..................................13
b.	甘草酸(Glycyrrhizin).............................13
c.	過敏煎(Guo Min Jian, GMJ)........................13
ii.	高效液相層析法....................................14
a.	甘草(liquorice)..................................14
b.	甘草酸(Glycyrrhizin).............................14
c.	過敏煎(GuoMinJian, GMJ)..........................14
III.	藥物浸泡.........................................15
IV.	RNA萃取(RNA extraction)..........................16
V.	反轉錄聚合酶連鎖反應(Reverse Transcription PCR,RT-PCR)....................................................16
VI.	即時聚合酶連鎖反應(Real-Time PCR, qPCR)...........17
VII.	鹼性磷酸酶染色Alkaline Phosphatase staining.......18
VIII.	雞胚絨毛膜試驗Chorioallantoic Membrane (CAM) Assay	........................................................19
IX.	螢光顯微鏡、照相系統及影像處理.....................20
X.	高效液相層析法(High Performance Liquid Chromatography, HPLC)...................................21
第三章 結果..............................................22
I.	證實過敏煎中含有甘草酸............................22
II.	觀察斑馬魚胚胎在浸泡不同濃度的藥物之存活率..........23
III.	觀察過敏煎對於Tg(fli1:EGFP)斑馬魚胚胎節間血管 (ISV)的影響.....................................................26
IV.	過敏煎對於斑馬魚胚胎腸下靜脈(SIV)血管發育的影響.....27
V.	甘草對於斑馬魚胚胎腸下靜脈(SIV)血管發育的影響.......28
VI.	甘草酸對於斑馬魚胚胎腸下靜脈(SIV)血管發育的影響.....30
VII.	過敏煎與甘草酸對於早期血管發育基因的影響............33
VIII.	甘草酸對於雞胚的血管發育影響.......................37
第四章 討論..............................................39
I.	過敏煎與甘草酸對於血管增生的效果及機制..............39
II.	甘草中影響血管發育的活性物質.......................40
III.	異甘草苷Isoliquiritin對於血管增生的影響............41
IV.	過敏煎各成分及甘草萃取物對於血管增生未來的發展.......42
第五章 參考資料...........................................44

圖表目錄
圖 一 過敏煎成分圖.........................................6
圖 二 斑馬魚藥物浸泡方法..................................15
圖 三 斑馬魚SIV branch points統計方式示意圖................19
圖 四 雞胚示意圖..........................................20
圖 五 過敏煎、甘草、甘草酸之HPLC分析.......................23
圖 六 過敏煎各濃度之存活率.................................24
圖 七 甘草各濃度之存活率..................................25
圖 八 甘草酸各濃度之存活率.................................25
圖 九 Tg(fli1:EGFP)斑馬魚ISV血管發育......................27
圖 十 過敏煎對於斑馬魚胚胎SIV的影響........................28
圖 十一 甘草對於斑馬魚胚胎SIV的影響........................30
圖 十二 甘草酸對於斑馬魚胚胎SIV的影響......................32
圖 十三 過敏煎對於flt1、cdh5以及nrp1a之qPCR分析............35
圖 十四 甘草酸對於flt1、cdh5、nrp1a、vegfaa以及kdrl之qPCR分析	........................................................36
圖 十五 甘草酸對於雞胚血管發育的影響........................38
圖 十六 甘草中的活性物質..................................41
表 一 qPCR 之引子序列.....................................18
參考文獻
Adachi, M., Suzuki, Y., Mizuta, T., Osawa, T., Adachi, T., Osaka, K., Suzuki, K., Shiojima, K., Arai, Y., Masuda, K., Uchiyama, M., Oyamada, T., & Clerici, M. (2007). The “Prunus mume Sieb. et Zucc” (Ume) is a rich natural source of novel anti-cancer substance. International Journal of Food Properties, 10(2), 375-384.
Adair, T. H., & Montani, J. P. (2010). Angiogenesis. Morgan & Claypool Life Sciences.
Bae, S. J., Choi, J. W., Park, B. J., Lee, J., Jo, E. K., Lee, Y. H., Kim, S. B., & Yuk, J. M. (2018). Protective effects of a traditional herbal extract from Stellaria dichotoma var. lanceolata against Mycobacterium abscessus infections. Plos One, 13(11), e0207696.
Bailly, C. (2020). Anticancer properties of Prunus mume extracts (Chinese plum, Japanese apricot). Journal of Ethnopharmacology, 246, 112215.
Chiej, R. (1984). The Macdonald Encyclopedia of Medicinal Plants. Macdonald & Co (Publishers) Ltd.
Chen, Y. H., Chang, C. Y., Chang, C. F., Chen, P. C., Lee, Y. T., Chern, C. Y., & Tsai, J. N. (2015). Pro-angiogenic effects of chalcone derivatives in zebrafish embryos in vivo. Molecules, 20(7), 12512-12524.
Chávez, M. N., Aedo, G., Fierro, F. A., Allende, M. L., & Egaña, J. T. (2016). Zebrafish as an emerging model organism to study angiogenesis in development and regeneration. Frontiers in Physiology, 7, 56.
Chuda, Y., Ono, H., Ohnishi-Kameyama, M., Matsumoto, K., Nagata, T., & Kikuchi, Y. (1999). Mumefural, citric acid derivative improving blood fluidity from fruit-juice concentrate of Japanese apricot (Prunus mume Sieb. et Zucc). Journal of Agricultural and Food Chemistry, 47(3), 828-831.
Dong, S., Inoue, A., Zhu, Y., Tanji, M., & Kiyama, R. (2007). Activation of rapid signaling pathways and the subsequent transcriptional regulation for the proliferation of breast cancer MCF-7 cells by the treatment with an extract of Glycyrrhiza glabra root. Food and Chemical Toxicology, 45(12), 2470-2478.
Denton, C. P. (2015). Systemic sclerosis: from pathogenesis to targeted therapy. Clinical Experimental Rheumatology, 33(4 Suppl 92), S3-7.
Fenwick, G. R., Lutomski, J., & Nieman, C. (1990). Liquorice, Glycyrrhiza glabra L.—Composition, uses and analysis. Food Chemistry, 38(2), 119-143.
Fiore, C., Eisenhut, M., Krausse, R., Ragazzi, E., Pellati, D., Armanini, D., & Bielenberg, J. (2008). Antiviral effects of Glycyrrhiza species. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 22(2), 141-148.
Folkman, J., & Shing, Y. (1992). Angiogenesis. The Journal of Biological Chemistry, 267(16), 10931–10934.
Gao, X., Wang, W., Wei, S., & Li, W. (2009). Review of pharmacological effects of Glycyrrhiza radix and its bioactive compounds. Zhongguo Zhong Yao Za Zhi, 34(21), 2695-2700.
Gao, L., Tang, H., He, H., Liu, J., Mao, J., Ji, H., Lin, H., & Wu, T. (2015). Glycyrrhizic acid alleviates bleomycin-induced pulmonary fibrosis in rats. Frontiers in pharmacology, 6, 215.
Hayashi, H., & Sudo, H. (2009). Economic importance of licorice. Plant Biotechnology, 26(1), 101-104.
Hwang, I. K., Lim, S. S., Choi, K. H., Yoo, K. Y., Shin, H. K., Kim, E. J., Yoon-Park, J. H., Kang, T. C., Kim, Y. S., Kwon, D. Y., Kim, D. W., Moon, W. K., & Won, M. H. (2006). Neuroprotective effects of roasted licorice, not raw form, on neuronal injury in gerbil hippocampus after transient forebrain ischemia. Acta Pharmacologica Sinica, 27(8), 959-965.
Hisaoka, K. K., & Battle, H. I. (1958). The normal developmental stages of the zebrafish, Brachydanio rerio (Hamilton‐Buchanan). Journal of Morphology, 102(2), 311-327.
Isogai, S., Horiguchi, M., & Weinstein, B. M. (2001). The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Developmental Biology, 230(2), 278-301.
Jin, S. W., Beis, D., Mitchell, T., Chen, J. N., & Stainier, D. Y. (2005). Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development, 132(23), 5199-5209.
Kim, K. J., Choi, J. S., Kim, K. W., & Jeong, J. W. (2013). The anti‐angiogenic activities of glycyrrhizic acid in tumor progression. Phytotherapy Research, 27(6), 841-846.
Krueger, J., Liu, D., Scholz, K., Zimmer, A., Shi, Y., Klein, C., Siekmann, A., Schulte-Merker, S., Cudmore, M., Ahmed, A., & le Noble, F. (2011). Flt1 acts as a negative regulator of tip cell formation and branching morphogenesis in the zebrafish embryo. Development, 138(10), 2111-2120.
Lim T. K. (2015). Glycyrrhiza glabra. Edible Medicinal and Non-Medicinal Plants: Volume 10, Modified Stems, Roots, Bulbs, 354–457.
Li, Y. Q. (2012). Antiangiogenic activity of Glycyrrhiza extract. Physics Procedia, 33, 144-149.
Lawson, N. D., & Weinstein, B. M. (2002). In vivo imaging of embryonic vascular development using transgenic zebrafish. Developmental Biology, 248(2), 307-318.
Lee, P., Goishi, K., Davidson, A. J., Mannix, R., Zon, L., & Klagsbrun, M. (2002). Neuropilin-1 is required for vascular development and is a mediator of VEGF-dependent angiogenesis in zebrafish. Proceedings of the National Academy of Sciences, 99(16), 10470-10475.
Mukhopadhyay, M., & Panja, P. (2008). A novel process for extraction of natural sweetener from licorice (Glycyrrhiza glabra) roots. Separation and Purification Technology, 63(3), 539-545.
Moro, T., Shimoyama, Y., Kushida, M., Hong, Y. Y., Nakao, S., Higashiyama, R., Sugioka, Y., Inoue, H., Okazaki, I., & Inagaki, Y. (2008). Glycyrrhizin and its metabolite inhibit Smad3-mediated type I collagen gene transcription and suppress experimental murine liver fibrosis. Life Sciences, 83(15-16), 531-539.
Mei, J., Liu, S., Li, Z., & Gui, J. F. (2010). Mtmr8 is essential for vasculature development in zebrafish embryos. BMC Developmental Biology, 10(1), 1-11.
Nomura, T., Fukai, T., & Akiyama, T. (2002). Chemistry of phenolic compounds of licorice (Glycyrrhiza species) and their estrogenic and cytotoxic activities. Pure and Applied Chemistry, 74(7), 1199-1206.
Nitalikar, M. M., Munde, K. C., Dhore, B. V., & Shikalgar, S. N. (2010). Studies of antibacterial activities of Glycyrrhiza glabra root extract. International Journal of PharmTech Research, 2(1), 899-901.
Nowak, A., Zakłos-Szyda, M., Błasiak, J., Nowak, A., Zhang, Z., & Zhang, B. (2019). Potential of Schisandra chinensis (Turcz.) Baill. in human health and nutrition: a review of current knowledge and therapeutic perspectives. Nutrients, 11(2), 333.
Naik, M., Brahma, P., & Dixit, M. (2018). A cost-effective and efficient chick ex-ovo CAM assay protocol to assess angiogenesis. Methods and Protocols, 1(2), 19.
Oliver, G. (2004). Lymphatic vasculature development. Nature Reviews Immunology, 4(1), 35-45.
Phytochemical and Pharmacological Review. Chinese Journal of Integrative Medicine, 1-8.
Qin, L., Lan, Y., & Shuran, M. A. (2015). Modern Research Progress on Guo-Min Decoction. World Science and Technology-Modernization of Traditional Chinese Medicine, (11), 2394-2397.
Qiu, J., Fan, X., Wang, Y., Jin, H., Song, Y., Han, Y., Huang, S., Meng, Y., Tang, F., & Meng, A. (2016). Embryonic hematopoiesis in vertebrate somites gives rise to definitive hematopoietic stem cells. Journal of Molecular Cell Biology, 8(4), 288-301.
Selyutina, O. Y., & Polyakov, N. E. (2019). Glycyrrhizic acid as a multifunctional drug carrier–From physicochemical properties to biomedical applications: A modern insight on the ancient drug. International Journal of Pharmaceutics, 559, 271-279.
Størmer, F. C., Reistad, R., & Alexander, J. (1993). Glycyrrhizic acid in liquorice—evaluation of health hazard. Food and Chemical Toxicology, 31(4), 303-312.
Sheela, M. L., Ramakrishna, M. K., & Salimath, B. P. (2006). Angiogenic and proliferative effects of the cytokine VEGF in Ehrlich ascites tumor cells is inhibited by Glycyrrhiza glabra. International Immunopharmacology, 6(3), 494-498.
Sunaga, N., Hiraishi, K., Ishizuka, T., Kaira, K., Iwasaki, Y., Jimma, F., Adachi, M., & Mori, M. (2011). MK615, A Compound extract from the Japanese apricot “Prunus mume” inhibits in vitro cell growth and interleukin-8 expression in non-small cell lung cancer cells. Journal of Cancer Science and Therapy, 11, 002.
Sakurai, T., & Kudo, M. (2011). Signaling pathways governing tumor angiogenesis. Oncology, 81(Suppl. 1), 24-29.
Szopa, A., Ekiert, R., & Ekiert, H. (2017). Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) as a medicinal plant species: a review on the bioactive components, pharmacological properties, analytical and biotechnological studies. Phytochemistry Reviews, 16(2), 195-218.
Westerfield, M. (2000). The zebrafish book: a guide for the laboratory use of zebrafish. 
Xing, G. X., Li, N., Wang, T., & Yao, M. Y. (2003). Advances in studies on flavonoids of licorice. Zhongguo Zhong Yao Za Zhi, 28(7), 593-597.
Yamashita, T., Asano, Y., Taniguchi, T., Nakamura, K., Saigusa, R., Miura, S., Toyama, T., Takahashi, T., Ichimura, Y., Yoshizaki, A., Trojanowska, M., & Sato, S. (2017). Glycyrrhizin ameliorates fibrosis, vasculopathy, and inflammation in animal models of systemic sclerosis. Journal of Investigative Dermatology, 137(3), 631-640.
Yang, M., Wang, C. C., Wang, W. L., Xu, J. P., Wang, J., Zhang, C. H., & Li, M. H. (2020). Saposhnikovia divaricata-An Ethnopharmacological, Phytochemical and Pharmacological Review. Chinese journal of Integrative Medicine, 26(11), 873–880.
Zhang, G., Yun, X., & Gao, Y. (2019). Phytochemical Constituents from Stellaria dichotoma var. lanceolata. Chemistry of Natural Compounds, 55(1), 135-137.
Zhang, J., Gao, B., Zhang, W., Qian, Z., & Xiang, Y. (2018). Monitoring antiangiogenesis of bevacizumab in zebrafish. Drug Design, Development and Therapy, 12, 2423.
Zhang, X. H., Li, C. Y., Lin, Q. H., He, Z. H., Feng, F., & He, M. F. (2019). Pro-angiogenic activity of isoliquiritin on HUVECs in vitro and zebrafish in vivo through Raf/MEK signaling pathway. Life Sciences, 223, 128-136.
涂慶業(民108)。中藥之國老—甘草。藥師週刊, 2146~2147期
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信