§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0303201711094900
DOI 10.6846/TKU.2017.00039
論文名稱(中文) 嵌入W型碳纖維板於直接接觸式薄膜蒸餾系統之理論與實驗研究
論文名稱(英文) Theoretical and experimental studies of direct contact membrane distillation modules with inserting w-shaped carbon-fiber channels
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 105
學期 2
出版年 106
研究生(中文) 賴靖元
研究生(英文) Jing-Yuan Lai
學號 604400167
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2017-01-09
論文頁數 131頁
口試委員 指導教授 - 何啟東(cdho@mail.tku.edu.tw)
委員 - 陳俊成(luke@mail.tku.edu.tw)
委員 - 涂志偉(891360033@s91.tku.edu.tw)
關鍵字(中) 直接接觸式薄膜蒸餾
透膜通量
溫度極化
碳纖維板
水力角度
關鍵字(英) Direct contact membrane distillation
Permeate flux
Temperature polarization
Carbon-fiber spacers
Hydrodynamic angles
第三語言關鍵字
學科別分類
中文摘要
薄膜蒸餾海水淡化用來製造純水提供民生及工業使用,因其優點特色為具有裝置簡潔、低能耗、可模組化、高介面面積等,為近來廣受重視的一種技術。然而,薄膜蒸餾因模組通道限制,對於系統產能有相當顯著的影響,此現象越明顯則產能相對低落。
    本研究針對薄膜蒸餾之主要設備進行效率改善的研究,目的為:(1)設計新型紊流促進因子(Eddy promoter) ,以求有效改善系統內部的溫度極化現象進而提升系統產能,並歸納出一經驗公式,描述此型式的紊流促進因子對於通道內部熱對流效應的影響;(2)藉由一維數學模型針對薄膜蒸餾設備的熱量與質量傳送機制進行研究,配合實驗分析以驗證經驗公式與數學模型的正確性;(3)探討設計參數及操作條件對於薄膜蒸餾系統之流體溫度分佈、溫度極化現象、純水透膜通量增加百分率與水力損耗提升百分率的影響。
    研究結果顯示,嵌入W型碳纖維直接接觸式薄膜蒸餾系統之理論值與實驗值的相對誤差總平均為9.17 %,而本研究設定新型擾流因子能夠有效的提升系統透膜通量,最高可達到單位面積的34.17%的增益。本研究以操作在低體積流率之設備為主,除了有效利用通道內熱側流體以降低操作成本外,經由改善後的設計可提升設備效能並得到增加透膜通量總產量的效果。
英文摘要
The modeling equations for predicting distillate flux in the flat-plate direct contact membrane distillation (DCMD) module with inserting W-shaped carbon-fiber spacers of various hydrodynamic angles in flow channels were developed theoretical and experimentally.  The pure water productivity and temperature distributions of both hot and cold feed streams are represented graphically with the volumetric flow rate, inlet saline temperature as parameters, and the experimental data was incorporated with the slot opening of the spacers and hydrodynamic angle as parameters to validate the theoretical predictions.  A description of the average Nusselt number was made to evolve a correlation for a heat transfer coefficient correction factor in incorporating with experimental data.  The effects of operating and design parameters such as volumetric flow rate, slot opening and hydrodynamic angle of the spacers, and inlet saline temperature on pure water productivity and production energy efficiency were also delineated.
第三語言摘要
論文目次
目錄
中文摘要	                                                   I
英文摘要	                                                  II
目錄	                                                 III
圖目錄	                                                  VI
表目錄	                                                 XII
第一章 緒論                                            	   1
 1-1引言	                                           1
 1-2薄膜蒸餾系統簡介	                                   5
 1-3研究動機與方向	                                   9
第二章 文獻回顧	                                       	  12
 2-1 薄膜蒸餾		                                  12
 2-2 紊流促進因子                                 	  15
第三章 理論分析	                                          18
 3-1直接接觸式薄膜蒸餾之熱量、質量傳送機制分析            	  18
  3-1-1 直接接觸式薄膜蒸餾質傳機制之理論分析	          20
  3-1-2 直接接觸式薄膜蒸餾熱傳機制之理論分析	          25
  3-1-3 溫度極化現象與溫度極化係數	                  28
 3-2納賽數經驗公式建立與模型	                          30
 3-3直接接觸式薄膜蒸餾系統一維理論模型之建立	          33
  3-3-1直接接觸式薄膜蒸餾系統一維理論模型	          33
  3-3-2 理論數據取得與計算分析流程-朗吉庫塔數值解析方法	  38
  3-3-3 實驗數據之取得與分析計算流程	                  43
 3-4 系統水力損耗	                                  47
 3-5 數學模擬參數之設定             	                  49
第四章 實驗分析	                                          52
 4-1 嵌入W型碳纖維板接觸式薄膜蒸餾系統		          52
 4-2 實驗步驟	                                          62
第五章 結果與討論	                                  63
 5-1 新型擾流直接接觸式薄膜蒸餾系統之納賽數經驗公式迴歸
分析	                                                  63
 5-2 平板型直接接觸式薄膜蒸餾系統	                          67
  5-2-1 系統操作變因對於透膜通量之影響	                  67
  5-2-2 溫度分佈與溫度極化現象	                          67
 5-3 添加紊流促進因子之平板型直接接觸式薄膜蒸餾系統	  81
  5-3-1 紊流促進因子對於透膜通量之影響	                  81
  5-3-2 溫度分佈與溫度極化現象	                          82
 5-4 模組設計參數於透膜通量與水力損耗之影響	         108
  5-4-1 透膜通量增益程度與水力損耗提升程度	         108
  5-4-2 透膜通量與水力損耗提升程度之比較	                 110
第六章 結論	                                         117
 6-1 新型紊流促進因子之納賽數經驗公式		         117
 6-2 平板型直接接觸式薄膜蒸餾系統	                         118
 6-3 添加紊流促進因子之平板型直接接觸式薄膜蒸餾系統	 118
 6-4 模組設計參數於透膜通量與水力損耗之影響	         119
符號說明	                                                 120
參考文獻	                                                 125
圖目錄
圖1-1-1	世界海水淡化使用技術比例	                           3
圖1-1-2	海水淡化成本	                                   3
圖1-2-1	薄膜蒸餾之操作型態	                           7
圖1-2-2	薄膜蒸餾之模組型式	                           7
圖1-3-1	研究架構圖	                                  11
圖3-1-1	薄膜蒸餾系統熱量及質量傳送機制示意圖	          19
圖3-1-2	薄膜蒸餾於薄膜內之質量傳送阻力模式	                  22
圖3-1-3	薄膜蒸餾之質量傳送阻力示意圖	                  25
圖3-1-4	熱量傳送之阻力串聯模式	                          25
圖3-1-5	溫度極化示意圖	                                  28
圖3-3-1	順流操作之平板型直接接觸式薄膜蒸餾系統示意圖	  34
圖3-3-2	逆流操作之平板型直接接觸式薄膜蒸餾系統示意圖	  36
圖3-3-3	朗吉庫塔法求解聯立方程組之計算示意圖 	          40
圖3-3-4	順流平板型薄膜蒸餾系統運算流程圖	                  41
圖3-3-5	逆流平板型薄膜蒸餾系統運算流程圖	                  42
圖3-3-6	不同操作流態之溫度分佈示意圖		          43
圖3-3-7	熱對流係數運算流程圖	                          46
圖4-1-1	順流平板型直接接觸式薄膜蒸餾系統簡圖	          53
圖4-1-2	逆流平板型直接接觸式薄膜蒸餾系統簡圖	          54
圖4-1-3	嵌入W型碳纖維板直接接觸式薄膜蒸餾系統實驗設備圖	  55
圖4-1-4	溢流桶實際圖	                                  56
圖4-1-5	嵌入W型碳纖維板直接接觸式薄膜蒸餾模組分解圖	          59
圖4-1-6	尼龍纖維支撐層示意圖碳纖維板規格圖	                  60
圖4-1-7	碳纖維板規格圖	                                  60
圖5-1-1	納賽數理論值與實驗值比較圖	                  66
圖5-2-1	順流操作下且熱側流體為純水時,不同操作參數對於透膜通量之影響	                                                  70
圖5-2-2	順流操作下且熱側流體為鹽水時,不同操作參數對於透膜通量之影響	                                                  71
圖5-2-3	逆流操作下且熱側流體為純水時,不同操作參數對於透膜通量之影響		                                          72
圖5-2-4	逆流操作下且熱側流體為鹽水時,不同操作參數對於透膜通量之影響		                                          73
圖5-2-5	順流狀態下且熱側流體為鹽水時,不同體積流率於主流區域與薄膜表面溫度分佈之影響	                                  76
圖5-2-6	逆流狀態下且熱側流體為鹽水時,不同體積流率於主流區域與薄膜表面溫度分佈之影響		                          77
圖5-2-7	順流狀態下且熱側流體為鹽水時,不同操作參數於溫度極化係數之影響	                                                  78
圖5-2-8	逆流狀態下且熱側流體為鹽水時,不同操作參數於溫度極化係數之影響	                                                  79

圖5-3-1	順流操作下且熱側流體為鹽水時,裝載寬度2 mm 90。之碳纖維支撐條,不同操作參數對於透膜通量之關係圖	                  83

圖5-3-2	順流操作下且熱側流體為鹽水時,裝載寬度2 mm 120。之碳纖維支撐條,不同操作參數對於透膜通量之關係圖	                  84
圖5-3-3	順流操作下且熱側流體為鹽水時,裝載寬度3 mm 90。之碳纖維板支撐條,不同操作參數對於透膜通量之關係圖	                  85
圖5-3-4	順流操作下且熱側流體為鹽水時,裝載寬度3 mm 120。之碳纖維支撐條,不同操作參數對於透膜通量之關係圖	                  86
圖5-3-5	逆流操作下且熱側流體為鹽水時,裝載寬度2 mm 90。之碳纖維支撐條,不同操作參數對於透膜通量之關係係圖                      88
圖5-3-6	逆流操作下且熱側流體為鹽水時,裝載寬度2 mm 120。之碳纖維支撐條,不同操作參數對於透膜通量之關係圖	                  88
圖5-3-7	逆流操作下且熱側流體為鹽水時,裝載寬度3 mm 90。之碳纖維板支撐條,不同操作參數對於透膜通量之關係圖	                  89
圖5-3-8	逆流操作下且熱側流體為鹽水時,裝載寬度3 mm 120。之碳纖維支撐條,不同操作參數對於透膜通量之關係圖	                  90
圖5-3-9	順流操作下(2mm)且熱側流體為鹽水時,不同水力角度與操作參數對於透膜通量之關係圖	                                  91
圖5-3-10 順流操作下(3mm)且熱側流體為鹽水時,不同水力角度與操作參數對於透膜通量之關係圖	                                  92
圖5-3-11 逆流操作下(2mm)且熱側流體為鹽水時,不同水力角度與操作參數對於透膜通量之關係圖	                                  93
圖5-3-12 逆流操作下(3mm)且熱側流體為鹽水時,不同水力角度與操作參數對於透膜通量之關係圖	                                  94
圖5-3-13 順流狀態下且熱側流體為鹽水時,不同碳纖維度支撐條寬度於主流區域與薄膜表面溫度分佈之影響	                         103
圖5-3-14 逆流狀態下且熱側流體為鹽水時,不同碳纖維度支撐條寬度於主流區域與薄膜表面溫度分佈之影響	                         104
圖5-3-15 順流狀態下且熱側流體為鹽水時,不同碳纖維板支撐條寬度與操作參數於溫度極化係數之影響	                         105
圖5-3-16 逆流狀態下且熱側流體為鹽水時,不同碳纖維板支撐條寬度與操作參數於溫度極化係數之影響	                         106
圖5-4-1	順流與逆流鹽水操作下,不同模組設計參數之理論透膜通量增益程度與水力耗損提升程度比較圖	                         115
表目錄
表1-1-1	地球表面受海洋及陸地覆蓋比例	                   2
表1-2-1	不同操作型態之薄膜蒸餾應用領域	                   8
表3-2-1	經驗式參數表	                                  30
表3-5-1	模組相關參數		                          49
表3-5-2	疏水性薄膜(聚四氟乙烯+聚丙烯複合膜)相關參數		  49
表3-5-3	流體相關參數	                                  50
表3-5-4	流體相關參數式	                                  51
表4-1-1	PTFE/PP複合膜之薄膜性質		                  61
表5-1-1	納賽數經驗公式所需實驗數據之操作變因表	          64
表5-2-1	順流操作下平板型直接接觸式薄膜蒸餾系統實驗值與理論值之相對誤差比較表	                                          74
表5-2-2	逆流操作下平板型直接接觸式薄膜蒸餾系統實驗值與理論值之相對誤差比較表	                                          75
表5-2-3	不同操作流向對於平均溫度極化係數之影響比較表	  80
表5-3-1	順流純水操作下嵌入W型碳纖維板直接接觸式薄膜蒸餾系統,實驗值與理論值之相對誤差比較表	                          95
表5-3-2	順流純水操作下嵌入W型碳纖維板直接接觸式薄膜蒸餾系統,實驗值與理論值之相對誤差比較表	                          96
表5-3-3	逆流純水操作下嵌入W型碳纖維板直接接觸式薄膜蒸餾系統,實驗值與理論值之相對誤差比較表	                          97
表5-3-4	逆流純水操作下嵌入W型碳纖維板直接接觸式薄膜蒸餾系統,實驗值與理論值之相對誤差比較表	                          98
表5-3-5	順流鹽水操作下嵌入W型碳纖維板直接接觸式薄膜蒸餾系統,實驗值與理論值之相對誤差比較表	                          99
表5-3-6	順流鹽水操作下嵌入W型碳纖維板直接接觸式薄膜蒸餾系統,實驗值與理論值之相對誤差比較表	                         100
表5-3-7	逆流鹽水操作下嵌入W型碳纖維板直接接觸式薄膜蒸餾系統,實驗值與理論值之相對誤差比較表	                         101
表5-3-8	逆流鹽水操作下嵌入W型碳纖維板直接接觸式薄膜蒸餾系統,實驗值與理論值之相對誤差比較表	                         102
表5-3-9	不同操作流向與模組於平均溫度極化係數之影響比較表	 107
表5-4-1	順流鹽水操作下嵌入W型碳纖維板直接接觸式薄膜蒸餾模組,不同碳纖維板支撐條寬度之理論透膜通量增益比例表	                 111
表5-4-2	逆流鹽水操作下嵌入W型碳纖維板直接接觸式薄膜蒸餾模組,不同碳纖維板支撐條寬度之理論透膜通量增益比例表	                 111
表5-4-3	順流鹽水操作下嵌入W型碳纖維板直接接觸式薄膜蒸餾模組,不同水力角度之理論透膜通量增益比例表	                         112
表5-4-4	逆流鹽水操作下嵌入W型碳纖維板直接接觸式薄膜蒸餾模組,不同水力角度之理論透膜通量增益比例表	                         113
表5-4-5	不同碳纖維板支撐條寬度之水力損耗提升程度比較表	 114
表5-4-6	順流及逆流鹽水操作下,不同模組設計參數之理論透膜通量增益程度與水力損耗提升程度比值表	                         116
參考文獻
參考文獻
1.G.W. Meindersma, C.M. Guijt, A.B. de Haan Desalination and water recycling by air gap membrane distillation, Desalination, 187  (2006) 291-301.

2.United Nation Population Fund, The Power of 1.8 Billion, United Nation Population Fund (2014).

3.United Nations Environment Programme, Global Environment Outlook 4, United Nations Environment Programme (2007).

4.Committee on Advancing Desalination Technology, National Research Council, Desalination: A National Perspective, National Academy of Sciences (2008).

5.M. Pidwirny, Introduction to the Oceans, Fundamentals of Physical Geography, 2nd Edition. Date Viewed, (2006).

6.S. Lattemann, M.D. Kennedy, J.C. Schippers, G. Amy, Chapter 2 Global desalination situation, Sustainability Science and Engineering, 2, (2010)   7-39.

7.T.M. Pankratz, IDA Desalination Yearbook 2010-2011, Media Analytics Ltd, 2010.

8.S.A. Kalogirou, Seawater desalination using renewable energy sources, Prog. Energy Combstion Sci., 31 (2005) 242-281.

9.G. W. Meindersma, C.M. Guijt, A. B. De Haan, Desalination and water recycling by air gap membrane (2006).

10.M.S. El-Bourawi, Z. Ding, R. Ma, M. Khayet, A framework for better understanding membrane distillation separation process, J. Membr. Sci., 285 (2006) 4–29.

11.M. Asghari, A. Harandizadeh, M. Dehghani, H.R. Harami, Persian Gulf desalination using air gap membrane distillation: Numerical simulation and theoretical study, Desalination, 374 (2015) 92-100.

12.J. Phattaranawik, R. Jiraratananon, A.G. Fane, Effects of net-type spacers on heat and mass transfer in direct contact membrane distillation and comparison with ultrafiltration studies, J. Membr. Sci., 217 (2003) 193-206.

13.V. Calabro, E. Drioli, F. Matera, Membrane distillation in the textile wastewater treatment, Desalination, 83 (1991) 209–224.

14.J. L. Cartinella, T. Y. Cath, M. T. Flynn, G. C. Miller, K. W. Hunter, A. E. Childress, Removal of natural steroid hormones from wastewater using membrane contactor processes, Environ. Sci. Technol., 40 (2006) 7381–7386.

15.V. Calabro, B. L. Jiao, E. Drioli, Theoretical and experimental study on membrane distillation in the concentration of orange juice, Ind. Eng. Chem. Res., 33 (1994) 1803–1808.

16.P. Onsekizoglu, K. S. Bahceci, J. Acar, The use of factorial design for modeling membrane distillation, J. Membr. Sci., 349 (2010) 225–230.

17.M. Tomaszewska, M. Gryta, A. W. Morawski, Study on the concentration of acids by membrane distillation, J. Membr. Sci., 102 (1995) 113–122.

18.M. Tomaszewska, M. Gryta, A. W. Morawski. Mass transfer of HCl and H2O across the hydrophobic membrane during membrane distillation, J. Membr. Sci., 166 (2000) 149–157.

19.K. Sakai, T. Muroi, K. Ozawa, S. Takesawa, M. Tamura, T. Nakane,  Extraction of solute-free water from blood by membrane distillation, Trans. Am. Soc. Artif. Intern. Organs , 32 (1986) 397-400.

20.K. W. Lawson, D. R. Lloyd, Membrane distillation. J. Membr. Sci., 124 (1997) 1-25.

21.M. Gryta, M. Tomaszewska, J. Grzechulska, A. W. Morawski, Membrane distillation of NaCl solution containing natural organic matter, J. Membr. Sci., 181 (2001) 279–287.

22.M. Khayet, J. I. Mengual, T. Matsuura, Porous hydrophobic/hydrophilic composite membranes: Application in desalination using direct contact membrane distillation, J. Membr. Sci., 252 (2005) 101–113.

23.F. A. Banat, F. A. Abu Al-Rub, R. Jumah, M. Al-Shannag, Modeling of desalination using tubular direct contact membrane distillation modules, Sep. sci. technol., 34 (1999) 2191-2206.

24.B.R. Bodell, Silicone rubber vapor diffusion in saline water distillation, United States Patent Application Serial, 285 (1963) 32.

25.P.K. Weyl, Recovery of demineralized water form saline waters, United States Patent 3, 340 (1967) 186.

26.M.E. Findley, Vaporization through porous membranes, Ind. Eng. Chem. Process Des. Dev., 6 (1967) 226-230.

27.R.W. Schofield, A.G. Fane, C.J.D. Fell, Heat and mass transfer in membrane distillation, J. Membr. Sci., 33 (1987) 299-313.

28.G.C. Sarti, C. Gostoli, S. Matulli, Low energy cost desalination processes using hydrophobic membranes, Desalination, 56 (1985) 277-286.

29.W.T. Hanbury, T. Hodgkiess, Membrane distillation - An assessment, Desalination, 56 (1985) 287-297.

30.E. Drioli, Y. Wu, Membrane distillation:An experimental study, Desalination, 53 (1985) 339-346.

31.A.S. Jönsson, R. Wimmerstedt, A.C. Harrysson, Membrane distillation - a theoretical study of evaporation through microporous membranes, Desalination, 56 (1985) 237-249.

32.Tomaszewska, M., Gryta, M. and Morawski, A. W., A study of separation by the direct-contact membrane distillation process, Separations Technology, 4 (1994) 244-248.

33.K. W.Lawson, D. R. Lloyd, Membrane distillation. Journal of membrane Science, 124(1) (1997) 1-25.

34.J. Phattaranawik, R. Jiraratananon, Direct contact membrane distillation:effect of mass transfer on heat transfer, J. Membr. Sci., 188 (2001) 137-143.

35.M. Gryta, M. Tomaszewska, A.W. Morawski, Membrane distillation with laminar flow, Sep. Purif. Technol., 11 (1997) 93-101.

36.V.A. Bui, L.T.T. Vu, M.H. Nguyen, Modelling the simultaneous heat and mass transfer of direct contact membrane distillation in hollow fibre modules, J. Membr. Sci., 353 (2010) 85-93.

37.M. Khayet, M.P. Godino, J.I. Mengual, Theoretical and experimental studies on desalination using the sweeping gas membrane distillation method, Desalination, 157 (2003) 297-305.

38.L. Martínez-Díez, M.I. Vázquez-González, Effects of polarization on mass transport through hydrophobic porous membranes, Ind. Eng. Chem. Res., 37 (1998) 4128-4135.

39.J. Phattaranawik, R. Jiraratananon, AG. Fane, Heat transport and membrane distillation coefficients in direct contact membrane distillation, J. Membr. Sci., 212 (2003) 177-193.

40.K.W. Lawson, D.R. Lloyd, Membrane distillation. II. Direct contact MD, J. Membr. Sci., 120 (1996) 123-133.

41.S. Srisurichan, R. Jiraratananon, A.G. Fane, Mass transfer mechanisms and transport resistances in direct contact membrane distillation process, J. Membr. Sci., 277 (2006) 186-194.

42.M. Gryta, M. Tomaszewska, Heat transport in the membrane distillation process., J. Membr. Sci., 144 (1998) 211-222.

43.C. Fernández-Pineda, M.A. Izquierdo-Gil, M.C. García-Payo, Gas permeation and direct contact membrane distillation experiments and their analysis using different models, J. Membr. Sci., 198 (2002) 33-49.

44.D. Zhongwei, L. Liying, M. Runyu, Study on the effect of flow maldistribution on the performance of the hollow fiber modules used in membrane distillation, J. Membr. Sci., 215 (2003) 11-23.

45.T.C. Chen, C.D. Ho, H.M. Yeh, Theoretical modeling and experimental analysis of direct contact membrane distillation, J. Membr. Sci., 330 (2009) 279-287. 

46.R.W. Schofield, A.G. Fane, C.J.D. Fell, Gas and vapour transport through microporous membranes. II. Membrane distillation, J. Membr. Sci., 53 (1990) 173-185.

47.M. Khayet, Membrane and theoretical modeling of membrane distillation: review, Advances in Colloid and Interface Science, 164 (2011) 56-88.

48.L. Martínez-Díez, M.I. Vázquez-González, F.J. Florido-DõÂaz, Study of membrane distillation using channel spacers, J. Membr. Sci., 144 (1998) 45-56.

49.J. Phattaranawik, R. Jiraratananon, A.G. Fane, C. Halim, Mass flux enhancement using spacer filled channels in direct contact membrane distillation, J. Membr. Sci., 187 (2001) 193-201.

50.J. Phattaranawik, R. Jiraratananon, A.G. Fane, Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation, J. Membr. Sci., 215 (2003) 75-85.

51.M. Shakaib, S. M. F. Hasani, I. Ahmed, R.M. Yunus, A CFD study on the effect of spacer orientation on temperature polarization in membrane distillation modules, Desalination, 284 (2012) 332-340.

52.C.D. Ho, H. Chang, C.L. Chang, C.H. Huang, Theoretical and experimental studies of flux enhancement with roughened surface in direct contact membrane distillation desalination, J. Membr. Sci., 433 (2013) 160-166.

53.M. S. El-Bourawi, Z. Ding, R. Ma, M. Khayet, A framework for better understanding membrane distillation separation process, Journal of Membrane Science, 285(1) (2006) 4-29.

54.A.R. Da Costa, A.G. Fane, C.J.D. Fell, A.C.M. Franken, Optimal channel spacer design for ultrafiltration, J. Membr. Sci., 62 (1991) 275-291.

55.A.R. Da Costa, A.G. Fane, D.E. Wiley, Spacer characterization and pressure drop modeling in spacer-filled channels for ultrafiltration, J. Membr. Sci., 87 (1994) 79-98.

56.Z.W. Ding, R.Y. Ma, A.G. Fane, A new model for mass transfer in direct contact membrane distillation. Desalination, 151 (2003) 217.

57.F.A. Banat, J. Simandl, Desalination by membrane distillation:a parametric study, Sep. Sci. Technol., 33 (1998) 201-226.

58.S.B. Iversen, V.K. Bhatia, K. Dam-Jphasen, G. Jonsson, Characterization of microporous membranes for use in membrane contactors, J. Membr. Sci., 130 (1997) 205-217.

59.E.N. Fuller, P.D. Schettler, J.C. Giddings, New method for prediction of binary gas-phase diffusion coefficients, Industrial & Engineering Chemistry, 58 (1966) 18-27.

60.J. Schwinge, D.E. Wiley, A.G. Fane, R. Guenther, Characterization of a zigzag spacer for ultrafiltration, J. Membr. Sci., 172 (2000) 19-31.

61.J.R. Welty, C.E. Wick, R.E. Wilson, Fundamentals of Momentum, Heat and Mass Transfer, third ed. John Wiley & Sons, New York, (1984).

62.S.G. Kandlikar, D. Schmitt, Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels, Physics Of Fluids, 17 (2005) 100606.

63.R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, second ed., John Wiley & Sons, New York, (2007).

64.H. Ozbek, S.L. Phillips, Thermal conductivity of aqueous sodium chloride solutions from 20 to 330°C, J. Chem. Eng. Data, 25 (1980) 263-267.

65.F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, fourth ed.,: John Wiley & Sons Inc., New York, (1996).

66.F. Chenlo, R. Moreira, G. Pereira, A. Ampudia, Viscosities of aqueous solutions of sucrose and sodium chloride of interest in osmotic dehydration processes, J. Food Eng., 54 (2002) 347-352.

67.M.C.F. Magalhães, E. Königsberger, P.M. May, G. Hefter, Heat capacities of concentrated aqueous solutions of sodium sulfate, sodium carbonate, and sodium hydroxide at 25 °C, J. Chem. Eng. Data, 47 (2002) 590-598.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信