§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0301200708535000
DOI 10.6846/TKU.2007.00081
論文名稱(中文) 銦錫氧化物微電極電化學行為研究以及對阿黴素之偵測
論文名稱(英文) The electrochemical behavior of indium tin oxide microelectrode and it’s application for doxorubicin detection.
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 95
學期 1
出版年 96
研究生(中文) 葉秀炫
研究生(英文) Hsiu-Hsuan Yeh
學號 693170051
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2006-12-13
論文頁數 85頁
口試委員 指導教授 - 林孟山(mslin@mail.tku.edu.tw)
委員 - 陳壽椿
委員 - 傅明仁
委員 - 蔡東湖
關鍵字(中) 銦錫氧化物
微電極
阿黴素
關鍵字(英) Indium Tin Oxide
Microelectrode
Doxorubicin
第三語言關鍵字
學科別分類
中文摘要
本研究的主要目的是利用黃光微影之大量製程技術將銦錫氧化物(indium tin oxide, ITO)導電玻璃製成微電極,並探討ITO微電極的電化學行為,並且用來偵測抗癌藥物-阿黴素。在過去並未有人利用黃光微影技術將ITO電極製成各式電極,尤其是微電極並且以此探討微電極對於阿黴素的分析研究,所以實驗中開發微機電系統技術,將ITO電極蝕刻成直徑50 的微電極,研究ITO微電極電化學行為,並且探討ITO微電極對於阿黴素的電化學行為。
  ITO微電極製造方式是以轉速2000 rpm將正光阻劑AZ P4620均勻塗佈在ITO玻璃表面,用光源波長365 nm曝光機將微電極圖案曝光至正型光阻劑上,以35 %鹽酸蝕刻三分鐘即可在ITO電極表面蝕刻出微電極,再以負型光阻劑SU-8 2025封裝電極,即完成電極製備,取10支ITO微電極重複量測1 mM K3Fe(CN)6,相對標準偏差值為4.12 %。電化學實驗選擇以微差脈衝伏安法 (Differential Pulse Voltammetry)進行抗癌藥物阿黴素的偵測,阿黴素還原電位為-530 mV (vs. Ag/AgCl),在溶液環境為0.1 M、pH8磷酸緩衝溶液,內含0.01 M的氯化鉀條件下,脈衝振幅大小25 mV、脈衝時間25 msec、脈衝周期為200 msec、取樣時間17 msec,線性範圍可達25 μM (R=0.998),靈敏度為1.899×10-4 A/M,本系統的偵測極限 (S/N=3)為15.5 nM,重複操作的相對標準偏差為2.987 % (n=15)。
目前一片七公分見方的ITO玻璃可以製造出16支ITO微電,相對於傳統製造微電極技術,電極面積大小更為精準,製作效率更高,期望在未來增加電極面積使用率,降低成本,未來可將此微型ITO微電極用於小樣品分析技術上的研究。
英文摘要
In history, many kinds of microelectrode were produced and discussed. In this study, we used the photolithographic technique to develop a new type of indium tin oxide (ITO) microelectrode with 50 μm diameter, and the electrochemical behavior of ITO microelectrode was investigated. Finally, this ITO microelectrode was used to detect the anticancer drug- Doxorubicin.
In the photolithographic process, positive photo resist AZ P4620 was spin coated on ITO electrode at 2000 rpm. The patterns of microelectrode were exposed to positive photo resist. Then the ITO electrode was immersed into a 35 % HCl solution for 180 seconds, the unmasked ITO can be etched away and ITO microelectrode patterns were accomplished. Subsequently, the ITO microelectrodes were insulated and packaged by negative photo resist SU-8 to maintain and restrict at a constant area of working electrode the conducting wire, which affect the working electrode. 
Doxorubicin was measured by Differential Pulse Voltammetry at the optimum condition at buffer solution: 0.1 M, pH8 phosphate buffer containing 0.01 M potassium chloride. The response peak potential is at -530 mV (vs. Ag/AgCl). In differential pulse Voltammetry optimal study, pulse amplitude is 25 mV; pulse width is 25 msec; pulse period is 200 msec; sample width is 17 msec. According to optimum operation conditions, the analytical performances of the ITO microelectrode are listed in the following contents. The linear range of Doxorubicin is obtained up to 25 μM (R=0.998), and the obtained sensitivity is 1.899×10-4 A/M. The estimated detection limited is 15.5 nM (S/N=3). The relative standard deviation of fifteen repetitive detections is 2.987 %.
第三語言摘要
論文目次
目錄(Contents)
第一章 緖論……………………………………………………………1
1-1 微電極 (Microelectrode)……………………………………………1
1-1-1 微電極的發展及特性……………………………………………1
1-1-2 微電極幾何形狀及材料…………………………………………4
1-1-3 微電極製作方法…………………………………………………5
1-1-4 微機電系統………………………………………………………9
1-2 銦錫氧化物 (Indium tin oxide)………………………………………11
1-2-1 導電玻璃的製造方法…………………………………………13
1-2-2 導電玻璃蝕刻方法……………………………………………15
1-2-3 導電玻璃的應用………………………………………………17
1-3 抗癌藥物…………………………………………………………18
1-3-1 抗癌藥物的使用與發展………………………………………18
1-3-2 抗癌藥物的分類………………………………………………19
1-3-3 抗癌藥物-阿黴素 (doxorubicin)…………………………………21
1-3-4 阿黴素的毒害機制……………………………………………23
1-3-5 阿黴素的抗癌機制……………………………………………27
1-3-6 阿黴素偵測方法………………………………………………29
1-4 研究目的…………………………………………………………31

第二章 實驗…………………………………………………………32
2-1 儀器與設備………………………………………………………32
2-2 藥品………………………………………………………………33
2-3 ITO微電極蝕刻及封裝製程………………………………………34
2-4 ITO微電極製備最佳條件探討……………………………………34
2-5 阿黴素氧化還原機制……………………………………………35
2-6 ITO微電極偵測阿黴素最佳化條件探討…………………………35
2-7 微差脈衝伏安法最佳條件探討…………………………………36
2-8 分析特性…………………………………………………………37

第三章  結果與討論…………………………………………………38
3-1 ITO微電極蝕刻及封裝製程………………………………………38
3-1-1 ITO電極清潔……………………………………………………38
3-1-2 ITO微電極正光阻劑黃光微影…………………………………39
3-1-3 ITO微電極負光阻劑製程………………………………………40
3-2 ITO微電極製備最佳條件探討……………………………………41
3-2-1 蝕刻液的選擇…………………………………………………41
3-2-2 鹽酸溶液濃度探討……………………………………………42
3-2-3 封裝ITO微電極材料選擇………………………………………42
3-2-4 負型光阻劑曝光時間探討……………………………………43
3-2-5 ITO微電極電化學特性…………………………………………44
3-3 阿黴素氧化還原機制……………………………………………45
3-4 ITO微電極偵測阿黴素最佳化條件探討…………………………45
3-4-1 溶液環境pH值最佳化探討……………………………………46
3-4-2 緩衝溶液種類探討 ……………………………………………46
3-4-3 緩衝溶液濃度探討……………………………………………47
3-4-4 電解質濃度探討………………………………………………47
3-5 微差脈衝伏安法最佳條件探討…………………………………48
3-5-1 脈衝振幅大小的探討…………………………………………48
3-5-2 脈衝時間的探討………………………………………………49
3-5-3 脈衝週期的探討………………………………………………50
3-5-4 取樣時間的探討………………………………………………50
3-6 ITO微電極對於阿黴素的分析特性………………………………51
3-7 結論………………………………………………………………51
參考資料………………………………………………………………79

圖表目錄
圖1:AutoCAD繪圖軟體繪製出ITO微電極光罩的圖形。……………53
圖2:曝光顯影後AZ P4620的微電極顯微鏡照片。…………………53
圖3:蝕刻ITO微電極流程圖。………………………………………54
圖4:AutoCAD繪圖軟體繪製出固定ITO微電極面積圖形。…………55
圖5:以SU-8 2025封裝電極面積後的顯微鏡影像。………………55
圖6:以負光阻劑固定電極面積流程圖。……………………………56
圖7:ITO微電極連接裝置示意圖。…………………………………57
圖8:測試不同酸液對ITO玻璃蝕刻的影響。………………………57
圖9:鹽酸溶液濃度探討。……………………………………………58
圖10:封裝ITO微電極材料選擇。……………………………………59
圖11:負型光阻劑曝光時間探討。…………………………………60
圖12:曝光時間對負型光阻劑交聯程度的探討。…………………61
圖13:ITO微電極電化學特性。………………………………………62
圖14:ITO微電極穩定性探討。………………………………………63
圖15:阿黴素循環伏安圖譜。………………………………………64
圖16:阿黴素循環伏安圖譜(除氧20分鐘)。………………………65
圖17:阿黴素微差脈衝伏安法真實訊號。…………………………66
圖18:溶液環境pH值最佳化。………………………………………67
圖19:緩衝溶液種類探討。…………………………………………68
圖20:緩衝溶液濃度探討。…………………………………………69
圖21:電解質濃度探討。……………………………………………70
圖22:微差脈衝伏安法電位變化圖。………………………………71
圖23:脈衝振幅大小的探討。………………………………………72
圖24:脈衝時間的探討。……………………………………………73
圖25:脈衝週期的探討。……………………………………………74
圖26:取樣時間的探討。……………………………………………75
圖27:阿黴素濃度校正曲線。………………………………………76
圖28:ITO微電極偵測阿黴素穩定性探討。…………………………77
表1:ITO微電極正光阻劑黃光微影參數。…………………………54
表2:SU-8 2025負光阻劑製程參數。………………………………56
表3:ITO微電極對於阿黴素的分析特性。…………………………78
參考文獻
1 A. J. Bard, R. F. Faulkner, ‘Electrochemical Methods’, Wiley, New York, 1980.
2 R. J. Forster, Microelectrodes: new dimensions in electrochemistry. Chem. Soc. Rev. 23 (1994) 289-297.
3 C. P. Andrieux, D. Garreau, P. Hapiot, J. M. Saveant,
Ultramicroelectrodes: cyclic voltammetry above one millions. J. Electroanal. Chem. 248 (1988) 447.
4 M. A. Dayton, J. C. Brown, K. J. Stutts, R. M. Wightman, Faradaic electrochemistry at microvoltammetric electrodes. Anal. Chem. 52 (1980) 946–950.
5 W. R. Heinman, Kissinger, P. T. ‘Laboratory Techniques in Electroanalytical Chemistry’, New York, 1984
6 X. Gao, H. S. White, Rotating microdisk voltammetry. Anal. Chem. 67 (1995) 4057–4064.
7 R. J, Forster, S. Alegret, F. Cespedes, S. Ramirez-Garcia, Carbon composite microelectrodes: charge percolation and electroanalytical performance. Anal. Chem. 76 (2004), 503–512.
8 A. J. Bard, W. Miao, Z. Ding, Solution viscosity effects on the heterogeneous electron transfer kinetics of ferrocenemethanol in dimethyl sulfoxide-water mixtures. J. Phys. Chem. B 106 (2002) 1392–1398.
9 S. Dong, H. Zhou, N. Gu, Studies of ferrocene derivative diffusion and heterogeneous kinetics in polymer electrolyte by using microelectrode voltammetry. J. Electroanal. Chem. 441 (1998) 153–160.
10 K. M. Kadish, C. H. Su, Relationships between electron-transfer rate constants of bis(ligated)(octaethylporphinato)iron(III) perchlorate and the presence of a spin equilibrium. J. Am. Chem. Soc. 105 (1983) 177–180.
11 R. J. Forster, Microelectrodes: new dimensions in electrochemistry. Chem. Soc. Rev. 23 (1994) 289-297.
12 B. Liu, J. P. Rolland, J. M. DeSimone, A. J. Bard, Fabrication of ultramicroelectrodes using a “teflon-like” coating material. Anal. Chem. 77 (2005) 3013-3017.
13 C. J. Slevin, N. J. Gray, J. V. Macpherson, M. A. Webb, P. R. Unwin, Fabrication and characterization of nanometer-sized platinum electrodes for voltammetric analysis and imaging. Electrochem. Commun. 1 (1999) 282-288.
14 A. Schulte, R. H. Chow, Cylindrically etched carbon-fiber microelectrodes for low-noise amperometric recording of cellular secretion. Anal. Chem. 70 (1998) 985-990.
15 A. A. Gewirth, D. H. Craston, A. J. Bard, Fabrication and characterization of microtips for in situ scanning tunneling microscopy. J. Electroanal. Chem, 261 (1989) 477-482.
16 P. Lustenberger, H. Rohrer, Scanning tunneling microscopy at potential controlled electrode surfaces in electrolytic environment. J. Electroanal. Chem. 243 (1988) 225-235.
17 T. G. Strein, A. G. Ewing, Characterization of submicron-sized carbon electrodes insulated with a phenol-allylphenol copolymer. Anal. Chem. 64 (1992) 1368-1373.
18 S. Chen, A. Kucernak, Fabrication of carbon microelectrodes with an effective radius of 1 nm. Electrochem. Commun. 4 (2002) 80-85.
19 R. M. Penner, M. J. Heben, N. S. Lewis, Preparation and
electrochemical characterization of conical and hemispherical ultramicroelectrodes. Anal. Chem. 61 (1989) 1630-1636.
20 J. P. Rolland, R. Michael Van Dam, D. A. Schorzman, S. R. Quake, J. M. DeSimone, Solvent-resistant photocurable “liquid teflon” for microfluidic device fabrication. J. Am. Chem. Soc. 126 (2004) 2322-2323.
21 K. Mathieson, W. Cunningham, J. Marchala, J. Melone, M. Horn, V. O’Shea, K. M. Smith , A. Litke , E. J. Chichilnisky , M. Rahman, Fabricating high-density microarrays for retinal recording. Microelectron. Eng. 67-68 (2003) 520-527.
22 T. J. Davies, S. Ward-Jones, C. E. Banks, J. del Campo, R. Mas, F. X. Muñoz , R. G. Compton, The cyclic and linear sweep voltammetry of regular arrays of microdisc electrodes: fitting of experimental data. J. Electroanal. Chem. 585 (2005) 51-62.
23 S. E. Thompson, S. Parthasarathy, Moore’s law: the future of Si microelectronics. Materialstoday 9 (2006) 20-25.
24 楊啟榮。”微系統LIGA 製程技術。” 科儀新知,19 (1998) 4-17。
25 W. Ehrfeld, Electrochemistry and microsystems. Electrochim. Acta 48 (2003) 2857-2868.
26 C. K Malek, V. Saile, Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: a review. Microelectron. J. 35 (2004) 131-143.
27 M. Matteucci, F. Pe'rénnès, B. Marmiroli, P. Miotti, L. Vaccari, A. Gosparini, A. Turchet , E. Di Fabrizio, Compact micropumping system based on LIGA fabricated microparts. Microelectron. Eng. 83 (2006) 1288-1290.
28 John D. Williams, R. Yang, W. Wang, Numerical simulation and test of a UV-LIGA-fabricated electromagnetic micro-relay for power applications. Sens. Actuator A-Phys. 120 (2005) 154-162.
29 M. Katayama, TFT-LCD technology. Thin Solid Films 341 (1999) 140-147.
30 J. R. Bosnell, R. Wagi-Iorne, On the structure of indium oxide-tin oxide transparent conducting films by electron diffraction and electron spectroscopy. Thin Solid Films 15 (1973) 141-148.
31 X. S. Peng, G. W. Meng, X. F. Wang, Y. W. Wang, J. Zhang, X. Liu, L. D. Zhang, Synthesis of oxygen-deficient indium-tin-oxide (ITO) nanofibers. Chem. Mater. 14 (2002) 4490-4493.
32 M. Quaas, C. Eggs, H. Wulff, Structural studies of ITO thin films with the rietveld method. Thin Solid Films 332 (1998) 277-281.
33 T. Konry, R. S. Marks, Physico-chemical studies of indium tin oxide-coated fiber optic biosensors. Thin Solid Films 492 (2005) 313-321.
34 C. W. Ow-Yang, D. Spinner, Y. Shigesato, D. C. Paine, A
time-resolved reflectivity study of the amorphous-to-crystalline transformation kinetics in dc-magnetron sputtered indium tin oxide. J. Appl. Phys. 83 (1998) 145-154.
35 A. Salehi, The effects of deposition rate and substrate temperature of ITO thin films on electrical and optical properties. Thin Solid Films 324 (1998) 214-218.
36 T. Omata, M. Kita, H. Okada, S. Otsuka-Yao-Matsuo, N. Ono, H. Ikawa, Characterization of indium-tin oxide sputtering targets showing various densities of nodule formation. Thin Solid Films 503 (2006) 22-28.
37 Y. Leterrier , L. Medico, F. Demarco, J.-A. E. Månson , U. Betz, M. F. Escolà, M. Kharrazi Olssonb, F. Atamnyb, Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays. Thin Solid Films 460 (2004) 156–166.
38 R. Bel Hadj Tahar, T. Ban, Y. Ohya, Y Takahashi, Tin doped indium oxide thin films: electrical properties. J. Appl. Phys. 83 (1998) 2631-2645.
39 S. Tamanaka, T. Oohashi, Preparation of SnO2 films by D. C. glow discharges sputtering. J. Appl. Phys. 8 (1969) 1058-1058.
40 M. G. Zebaze Kana, E. Centurioni, D. Iencinella, C. Summonte, Influence of the sputtering system’s vacuum level on the properties of indium tin oxide films. Thin Solid Films 500 (2006) 203-208.
41 Y. S. Kim, Y. C. Park, S. G. Ansari, B. S. Lee, H. S. Shin, Effect of substrate temperature on the bonded states of indium tin oxide thin films deposited by plasma enhanced chemical vapor deposition. Thin Solid Films 426 (2003) 124–131.
42 P. K. Biswasa, A. Dea, N. C. Pramanika, P. K. Chakrabortya, K. Ortnerb, V. Hockb, S. Korderc, Effects of tin on IR reflectivity, thermal emissivity, Hall mobility and plasma wavelength of sol–gel indium tin oxide films on glass. Mater. Lett. 57 (2003) 2326–2332.
43 M. A. Aegerter, N. AL-Dahoudi, Wet-chemical processing of transparent and antiglare conducting ITO coating on plastic substrates. J. Sol-Gel Sci. Technol. 27 (2003) 81-89.
44 羅文雄、蔡榮輝、鄭岫盈。半導體製造技術。台北市:台灣培生教育出版股份有限公司,2004。
45 M. Scholten, J. E. A. M. van den Meerakker, On the mechanism of ITO etching: the specificity of halogen acids. J. Electrochem. Soc. 140 (1993) 471-475.
46 C. J. Huang, Y. K. Su, S. L. Wu, The effect of solvent on the etching of ITO electrode. Mater. Chem. Phys. 84 (2004) 146-150.
47 T. H. Tsaia, Y. F. Wub, Organic acid mixing to improve ITO film etching in flat panel display manufacturing. J. Electrochem. Soc. 153 (2006) C86-C90.
48 Y. J. Lee, J. W. Bae, H. R. Han, J. S. Kim, G. Y. Yeom, Dry etching characteristics of ITO thin films deposited on plastic Substrates. Thin Solid Films 383 (2001) 281-283.
49 J. Y. Park, H. S. Kim, D. H. Lee, K. H. Kwon, G. Y. Yeom, A study on the etch characteristics of ITO thin film using inductively coupled plasmas. Surf. Coat. Technol. 131 (2000) 247-251.
50 J. Suehiroy, R. Pethig, The dielectrophoretic movement and positioning of a biological cell using a three-dimensional grid electrode system. J. Phys. D-Appl. Phys. 31 (1998) 3298-3305.
51 T. Meziani, P. Colpo, V. Lambertini, G. Ceccone, F. Rossi, Dry etching of ITO by magnetic pole enhanced inductively coupled plasma for display and biosensing devices. Appl. Surf. Sci. 252 (2006) 3861-3870.
52 J. Zhang, J. Q. Hu, F. R. Zhu, H. Gong, S. J. O’Shea, ITO thin films coated quartz crystal microbalance as gas sensor for NO detection. Sens. Actuator B-Chem. 87 (2002) 159-167.
53 D. R. Cairns, G. P. Crawford, Electromechanical properties of transparent conducting substrates for flexible electronic displays. Proc. IEEE 93 (2005) 1451-1458.
54 T. Kuwana, R. K. Darlington, D, W. Leedy, Electrochemical studies using conducting glass indicator electrodes. Anal. Chem. 36 (1964) 2023-2025.
55 K. Levon, Y. Zhou, B. Yu, E. Shiu, Potentiometric sensing of chemical warfare agents: surface imprinted polymer integrated with an indium tin oxide Electrode. Anal. Chem. 76 (2004) 2689-2693.
56 T. Konry, A. Novoa, S. Cosnier, R. S. Marks, Development of an “Electroptode” immunosensor: indium tin oxide-coated optical fiber tips conjugated with an electropolymerized thin film with conjugated indium tin oxide films on glass. Mater. Lett. 57 (2003) 2326–2332.
43 M. A. Aegerter, N. AL-Dahoudi, Wet-chemical processing of transparent and antiglare conducting ITO coating on plastic substrates. J. Sol-Gel Sci. Technol. 27 (2003) 81-89.
44 羅文雄、蔡榮輝、鄭岫盈。半導體製造技術。台北市:台灣培生教 育出版股份有限公司,2004。
45 M. Scholten, J. E. A. M. van den Meerakker, On the mechanism of ITO etching: the specificity of halogen acids. J. Electrochem. Soc. 140 (1993) 471-475.
46 C. J. Huang, Y. K. Su, S. L. Wu, The effect of solvent on the etching of ITO electrode. Mater. Chem. Phys. 84 (2004) 146-150.
47 T. H. Tsaia, Y. F. Wub, Organic acid mixing to improve ITO film etching in flat panel display manufacturing. J. Electrochem. Soc. 153 (2006) C86-C90.
48 Y. J. Lee, J. W. Bae, H. R. Han, J. S. Kim, G. Y. Yeom, Dry etching characteristics of ITO thin films deposited on plastic Substrates. Thin Solid Films 383 (2001) 281-283.
49 J. Y. Park, H. S. Kim, D. H. Lee, K. H. Kwon, G. Y. Yeom, A study on the etch characteristics of ITO thin film using inductively coupled plasmas. Surf. Coat. Technol. 131 (2000) 247-251.
50 J. Suehiroy, R. Pethig, The dielectrophoretic movement and positioning of a biological cell using a three-dimensional grid electrode system. J. Phys. D-Appl. Phys. 31 (1998) 3298-3305.
51 T. Meziani, P. Colpo, V. Lambertini, G. Ceccone, F. Rossi, Dry etching of ITO by magnetic pole enhanced inductively coupled plasma for display and biosensing devices. Appl. Surf. Sci. 252 (2006) 3861-3870.
52 J. Zhang, J. Q. Hu, F. R. Zhu, H. Gong, S. J. O’Shea, ITO thin films coated quartz crystal microbalance as gas sensor for NO detection. Sens. Actuator B-Chem. 87 (2002) 159-167.
53 D. R. Cairns, G. P. Crawford, Electromechanical properties of transparent conducting substrates for flexible electronic displays. Proc. IEEE 93 (2005) 1451-1458.
54 T. Kuwana, R. K. Darlington, D, W. Leedy, Electrochemical studies using conducting glass indicator electrodes. Anal. Chem. 36 (1964) 2023-2025.
55 K. Levon, Y. Zhou, B. Yu, E. Shiu, Potentiometric sensing of chemical warfare agents: surface imprinted polymer integrated with an indium tin oxide Electrode. Anal. Chem. 76 (2004) 2689-2693.
56 T. Konry, A. Novoa, S. Cosnier, R. S. Marks, Development of an “Electroptode” immunosensor: indium tin oxide-coated optical fiber tips conjugated with an electropolymerized thin film with conjugated 67 W. H. Koppenol, The Haber-Weiss cycle –70 years later. Redox Rep. 6 (2001) 229-234.
68 J. L. Zweier, Reduction of O2 by iron-adriamycin. J. Biol. Chem. 259 (1984) 6056-6058.
69 C. E. Myers, L. Gianni, C. B. Simone, R. Klecker, R. Greene, Oxidative destruction of erythrocyte ghost membranes catalyzed by the doxorubicin-iron complex. Biochemistry 21 (1982) 1707-1713.
70 A. R. Eder, E. A. Arriaga, Micellar electrokinetic capillary chromatography reveals differences in intracellular metabolism between liposomal and free doxorubicin treatment of human leukemia cells. J. Chromatogr. 829 (2005) 115–122.
71 R. J. Boucek, R. D. Olsonll, D. E. Brennerll, E. M. Ogunbunmi, M. Inui, S. Fleischer, The major metabolite of doxorubicin is a potent inhibitor of membrane-associated ion pumps. J. Biol. Chem. 262 (1987) 15851-15856.
72 J. L. Speyer, M. D. Green, A. Zeleniuch-Jacquotte, J. C. Wernz, M. Rey, J. Sanger, E. Kramer, V. Ferrans, H. Hochster, M. Meyers, R. H. Blum, F. Feit, M. Attubato, W. Burrows, F. M. Muggia, ICRF-187 permits longer treatment with doxorubicin in women with breast cancer. J. Clin. Oncol. 10 (1992) 117–127.
73 K. Hellmann, Preventing the cardiotoxicity of anthracyclines by dexrazoxane. BMJ 319 (1999) 1085-1086.
74 G. Minotti, P. Menna, E. Salvatorelli, G. Cairo, L. Gianni, Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 56 (2004) 185-229.
75 D. A. Gewirtz, A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol. 57 (1999) 727-741.
76 M. Binaschi, R. Farinosi, M. Evelina Borgnetto, G. Capranico, In vivo site specificity and human isoenzyme selectivity of two topoisomerase II-poisoning anthracyclines. Cancer Res. 60 (2000) 3370-3376. 77 L. J. Marnett, J. N. Riggins, J. D. West, Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA andprotein. J. Clin. Invest. 111 (2003) 583-593.
78 陳皓君、洪嘉良。”內生的DNA 加成產物之形成與其在體內含量
之分析。” CHEMISTRY (THE CHINESE CHEM. SOC.),59 (2001)
299-310。
79 D. J. Taatjes, T. H. Koch, Nuclear targeting and retention of anthracycline antitumor drugs in sensitive and resistant tumor cells. Curr. Med. Chem. 8 (2001) 15-29.
80 S. N. Mahnik, B. Rizovski, M. Fuerhacker, R. M. Mader, Development of an analytical method for the determination of anthracyclines in hospital effluents. Chemosphere (2006) in pressed.
81 C. M. Gilbert, R. P. McGeary, L. J. Filippich, R. L.G. Norris, B. G. Charles, Simultaneous liquid chromatographic determination of doxorubicin and its major metabolite doxorubicinol in parrot plasma. J. Chromatogr. B 826 (2005) 273-276.
82 J. P. Tassin, J. Dubois, G. Atassl, M. Hanocq, Simultaneous determination of cytotoxic (adriamycin, vincristine) and modulator of resistance (verapamil, S 9788) drugs in human cells by high-performance liquid chromatography and ultraviolet detection. J. Chromatogr. B 691 (1997) 449-456.
83 W. X. Lu, J. Chen, Continuous monitoring of adriamycin in vivo using fiber optic-based fluorescence chemical sensor. Anal. Chem. 75 (2003) 1458-1462.
84 M. T. Galceran, L. Puignou, Capillary electrochromatographic techniques for the analysis of biological fluids. Trac-Trends Anal. Chem. 24 (2005) 743-758.
85 何佳安、 楊重熙、 曾惠芬。"毛細管電泳色層分析法簡介。"
CHEMISTRY (THE CHINESE CHEM. SOC.),59 (2001) 399-408。
86 S. Nagaraj, H. T. Karnes, Visible diode laser induceduorescence detection of doxorubicin in plasma using pressurized capillary electrochromatography. Biomed. Chromatogr. 14 (2000) 234-242.
87 http://www.delta-technologies.com/default.asp
88 G. M. Rao, J. W. Lown, J. A. Plambeck, Electrochemical studies of antitumor antibiotics Ⅲ. daunorubicin and adriamycin. J. Electrochem. Soc. 125 (1978) 534-539.
論文全文使用權限
校內
校內紙本論文延後至2017-01-03公開
同意電子論文全文授權校園內公開
校內電子論文延後至2017-01-03公開
校內書目立即公開
校外
同意授權
校外電子論文延後至2017-01-03公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信