§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0209201416371900
DOI 10.6846/TKU.2014.00076
論文名稱(中文) 行動式風力發電產氫模組之研製
論文名稱(英文) Development of Portable Hydrogen Generated Modules Powered by Wind Turbine
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系博士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 2
出版年 103
研究生(中文) 廖翊廷
研究生(英文) Yi-Ting Liao
學號 899370067
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2014-07-03
論文頁數 112頁
口試委員 指導教授 - 陳增源
委員 - 管衍德
委員 - 張文宇
委員 - 蕭照焜
委員 - 牛仰堯
關鍵字(中) 風力發電機
最大功率追蹤
電解水產氫
關鍵字(英) Small Vertical-Axis Wind Turbines
Maximum Power Point tracking
Water electrolysis
第三語言關鍵字
學科別分類
中文摘要
本論文研製行動式風力發電產氫模組,以微小化、模組化及可攜式為設計準則,利用微型風力機、搭配具控制器的發電機及電解水產氫模組,將風能、電能、氫能作系統整合。本論文之風力發電機為一具有擴散外罩水平軸式,利用擴散外罩,提高風機之進風量,進而提高風機效率,並作為安全外罩;另將小型風機葉片空氣動力特性與發電機特性作匹配探討,匹配出最佳效率之風力發電機;其次,利用ATMEGA328為控制核心,透過傳統擾動法的最大功率追蹤法則設定,控制SEPIC升降壓轉換器進行升降壓控制,實現最大功率追蹤之目標,以利風機在瞬息萬變的風速下,皆能有最大功率之輸出。最後本研究利用田口實驗設計法探討脈衝電解效應以及連續電解水各參數之影響程度,經過田口實驗分析後之最佳化參數進而設計電解水產氫模組。本研究所完成的行動式風力發電產氫模組,可配合行動車輛使用,達到再生能源應用。
英文摘要
The main purpose of this dissertation is to develop a portable hydrogen generated module powered by a wind turbine. The designed characteristic is to have miniaturization, modularization and portability. The system integrates a micro horizontal-axis wind turbine, a generator with a controller and a water electrolysis module, which transfers the wind power to electricity and to hydrogen energy. The developed micro wind turbine is shrouded with a diffuser, which is able to increase the oncoming wind velocity and, thus, increase the turbine efficiency. The diffuser is also acted as a safe shroud. The wind turbine is then matched to a generator for a better electricity output. A controller is developed using ATmega328 as the core to control the SEPIC boost and buck converter. It is able to supply high or low voltage using the maximum point tracking to achieve the optimal power output of the wind turbine under varied wind conditions. In the last, a water electrolysis module is designed using Taguchi method. This method is able to study the effects of designed factors on water electrolysis, and to obtain the optimal combination of designed factors for the water electrolysis module. The developed portable hydrogen generated module powered by wind turbine can be used with moving vehicles for renewable energy applications.
第三語言摘要
論文目次
第一章 緒論	1
1.1 研究動機	1
1.2 研究目的	4
1.3 文獻回顧	6
1.3.1 小型之風力發電相關文獻	6
1.3.2 最大功率追蹤相關文獻	8
1.3.3 電解水產氫相關文獻	9
1.4 論文架構	12
第二章 行動式小型風力發電機設計製作	16
2.1 風力發電概論	16
2.2 風力發電基本理論	17
2.3 研究方法與流程	21
2.4 實驗設備架設	24
2.5 實驗結果與討論	27
2.5.1風機葉片空氣動力特性量測	27
2.5.2 小型發電機性能量測	31
2.5.3 風機葉片與發電機匹配分析	36
第三章 風力發電最大功率追蹤電路之研製	43
3.1 系統架構設計	43
3.2 最大功率追蹤硬體架構	46
3.2.1 SEPIC轉換器動作原理	46
3.2.1.1 SEPIC 升降壓轉換器元件設計	50
3.2.1.2 耦合電感參數設計	51
3.2.1.3 耦合電容及輸出二極體之選用	51
3.2.1.4 功率開關元件與隔離驅動電路設計	52
3.2.2 ATmega328控制器與LCD顯示模組	54
3.2.3 電壓回授及電流回授電路設計	56
3.3 最大功率追蹤控制法簡介	58
3.4 最大功率追蹤軟體規畫	59
3.5 最大功率追蹤電路測試結果與討論	62
第四章 電解水產氫模組設計與製作	66
4.1 電解水之基本理論	66
4.1.1 電解水之過電位	67
4.1.2 電解效率計算	69
4.2 研究方法與流程	71
4.2.1 田口實驗設計法	72
4.2.2 ANOVA變異數分析法	74
4.2.3 可控因子及水準之選取	75
4.2.4 實驗設備架設	77
4.2.5 實驗流程	79
4.3 實驗結果與討論	81
4.3.1 脈衝電解之田口實驗設計與分析	81
4.3.2 連續電解之田口實驗設計與分析	85
4.3.3 連續電解之量化實驗	88
4.3.4電解水產氫之實驗結果	92
第五章 行動式風力發電產氫模組之系統組裝	94
第六章 結論	96
6.1 結論	96
6.2 建議與未來展望	98
參考文獻	100
附錄	106
論文著作目錄	111
圖1.1全球能源使用之變遷 	2
圖1.2衝壓空氣渦輪(Ram Air Turbine, RAT)	4
圖1.3 論文研究架構圖	15
圖2.1 (a)水平軸風力發電機 (b)垂直軸風力發電機	17
圖2.2 風經過葉片所能擷取之風能示意圖	21
圖2.3 葉片轉子與發電機匹配示意圖	23
圖2.4 CNC線切割機	24
圖2.5 利用CNC線切割機製作的葉片	25
圖2.6 風洞實體圖	25
圖2.7 速度量測系統	26
圖2.8 轉速與扭力量測系統	26
圖2.9 發電機性能測試動力平台	27
圖2.10 行動式風力發電機之葉片轉子	28
圖2.11 行動式風力發電機實際組合圖	29
圖2.12 葉片轉子之扭力-轉速空氣動力曲線	30
圖2.13葉片轉子之功率-轉速空氣動力曲線	30
圖2.14 20W小型發電機之扭力-轉速特性曲線	32
圖2.15 20W小型發電機之功率-轉速特性曲線	32
圖2.16 65W小型發電機之扭力-轉速特性曲線	33
圖2.17 65W小型發電機之功率-轉速特性曲線	34
圖2.18 120W小型發電機之扭力-轉速特性曲線	35
圖2.19 120W小型發電機之功率-轉速特性曲線	35
圖2.20 20W小型發電機與葉片轉子之扭力-轉速特性曲線匹配	37
圖2.21 20W小型發電機與葉片轉子之功率-轉速特性曲線匹配	37
圖2.22 65W小型發電機與葉片轉子之扭力-轉速特性曲線匹配	38
圖2.23 65W小型發電機與葉片轉子之功率-轉速特性曲線匹配	39
圖2.24 120W小型發電機與葉片轉子之扭力-轉速特性曲線匹配	40
圖2.25 120W小型發電機與葉片轉子之功率-轉速特性曲線匹配	40
圖2.26 葉片轉子與20W小型發電機匹配後功率-轉速性能曲線	42
圖3.1 最大功率追蹤電路系統架構圖	45
圖3.2 最大功率追蹤硬體電路實際完成圖	45
圖3.3 SEPIC轉換器基本電路圖 	47
圖3.4 (a)升壓模式時之SEPIC轉換器(b)降壓模式時之SEPIC轉換器 	48
圖3.5 在CCM期間SEPIC轉換器各元件相關波形	49
圖3.6  TLP250光耦合器腳位圖	53
圖3.7 功率開關驅動電路圖	54
圖3.8 LCD顯示模組電路圖	55
圖3.9 ATmega328周邊電路圖	55
圖3.10 (a)ATmega328與LCD顯示模組 (b)與LCD實際組合圖	56
圖3.11差動放大電路及二階低通濾波電路圖	57
圖3.13 MAX4080 電壓與電流換算曲線	58
圖3.14 擾動觀察法控制流程圖	61
圖3.15 最大功率追蹤硬體電路	62
圖3.16 SEPIC轉換器在不同模式下之轉換效率測試流程圖	63
圖3.17 SEPIC轉換器在不同模式下之轉換效率測試	64
圖3.18 行動式風力發電機與最大功率追蹤電路實際功率輸出範圍	65
圖4.1 傳統電解水示意圖	66
圖4.2 VersaSTAT3恆電位儀	78
圖4.3 電解水產氫實驗設備架設	79
圖4.4 電解電壓與電解時間積分示意圖	80
圖4.5 脈衝電解示意圖	81
圖4.6 脈衝電解因子響應圖	84
圖4.7 連續電解因子響應圖	88
圖4.8 不同電解時間下電解之平均電壓	90
圖4.9 不同電極片間距下電解之平均電壓	90
圖4.10 不同電流密度下電解之平均電壓	91
圖4.11 不同電解液濃度下電解之平均電壓	91
圖5.1將微型風力發電模組掛載於機車之範例	94
圖5.2 行動式風力發電產氫模組	95
表2.1 葉片轉子與20W小型發電機匹配後結果	41
表2.2 特性曲線匹配結果與實際風洞測試結果之比較	42
表3.1 行動式風力發電機規格	50
表4.1  L16 (45)直交表	74
表4.2 脈衝電解之因子水準表	82
表4.3 脈衝電解之實驗結果與S/N值	82
表4.4 脈衝電解各因子之平均S/N值(dB)	83
表4.5 脈衝電解ANOVA變異數分析	84
表4.6 連續電解之因子水準表	86
表4.7 連續電解之實驗結果與S/N值	86
表4.8 連續電解各因子之平均S/N值(dB)	87
表4.9 連續電解ANOVA變異數分析	88
參考文獻
[1]	S. Dunn, “Hydrogen futures: toward a sustainable energy system,”Hydrogen Energy, Vol.27, pp. 235-264, 2002.
[2]	RA Hefner, Presentation at the 10th Repsol-Harvard Seminar on Energy Policy, Madrid, Spain, 1999.
[3]	Boeing 777 Aircraft Maintenance Manual
[4]	T. Matsushima, S. Takagi, S. Muroyama, “Characteristics of a highly efficient propeller type small wind turbine with a diffuser”, Renewable Energy, 31, 1343-1354, 2006.
[5]	K. Abe, M. Nishida, A. Sakurai, Y. Ohya, H. Kihara, E. Wada, K. Sato, “Experimental and numerical investigations of flow fields behind a small wind turbine with a flanged diffuser”, Journal of Wind Engineering and Industrial Aerodynamics 93, 951-970, 2005.
[6]	Wang, L. Bai, J. Fletcher, J. Whiteford, D. Cullen, “The methodology for aerodynamic study on a small domestic wind turbine with scoop”, Journal of Wind Engineering and Industrial Aerodynamics 96, 1-24, 2008.
[7]	Bet, H. Grassmann, “Upgrading conventional wind turbines”, Renewable Energy 28, 71-78, 2003.
[8]	B. Framlpvoc, I. Vrsalovic, “New high profitable wind turbines”, Renewable Energy 24, 491-499, 2001.
[9]	Y. Ohya, T. Karasudani, A. Sakurai, K. I. Abe, M. Inoue, “Development of a shrouded wind turbine with a flanged diffuser”, Journal of Wind Engineering and Industrial Aerodynamics 96 , 524-539, 2008.
[10]	J.W. Van Bussel, “The Science of making more torque from wind: Diffuser experiments and theory revisited”, Journal of Physics: Conference Series 75, 1-12, 2007.
[11]	T. Y. Chen, Y. T. Liao, C. C. Cheng, “Development of small wind turbines for moving vehicles:  Effects of flanged diffusers on rotor performance”, submitted to Experimental Thermal and Fluid Science, 2011.
[12]	S. Li, T. A. Haskew and L. Xu, “Conventional and novel control designs for direct driven PMSG wind turbines”, Electric Power Systems Research, 80, 328-338, 2010.
[13]	蔡宗翰,2006年7月,“風力用永磁發電機之特性分析”,國立成功大學電機工程學系碩士學位論文。
[14]	Y. Xia, K. H. Ahmed and B. W. Williams, “Wind turbine power coefficient analysis of a new maximum power point tracking technique”,IEEE Transactions on Industrial Electronics, Vol. 60, No. 3, 2013。 
[15]	G. Jeong, R. H. Seung and K. B. Lee, “An improved maximum power point tracking method for: Wind power systems”,Energies, 1339-1354, 2012。
[16]	B. D. Ri-na and Z. Wan-xiang, “Power Control Strategy Investigation on Small-Scale Wind Turbine”, IEEE Conference, 2009.
[17]	R. Datta and V. T. Ranganathan, “A method of tracking the peak power points for a variable speed wind energy conversion system”, IEEE Transactions on Energy Conversion, Vol. 18, No.1, 163-168, 2003.
[18]	T. Nakamura, S. Morimoto, M. Sanada and Y. Takeda, “Optimum control of IPMSG for wind generation system”, IEEE Proceedings Power Conversion, Vol. 3, No. 2-5, 1435-1440, 2002.
[19]	R. Garcia-Valverde, N. Espinosa, and A. Urbina, “Simple PEM water electrolyzer model and experimental validation”, International Journal of Hydrogen Energy, 37, 1927-1938, 2012.
[20]	S. Siracusano, V. Baglio, N. Briguglio, G. Brunaccini, A. Di Blasi, A. Stassi, R. Ornelas, E. Trifoni, V. Antonucci and A. S. Arico, “An electrochemical study of a PEM stack for water electrolysis” , International Journal of Hydrogen Energy, 37, 1939-1946, 2012.
[21]	H. Ito , T. Maeda, A. Nakano, C. M. Hwang, M. Ishida, A. Kato, and T. Yoshida, “Experimental study on porous current collectors of PEM electrolyzers”, International Journal of Hydrogen Energy, 37, 7418-7428, 2012.
[22]	P. Millet, N. Mbemba, S. A. Grigoriev, V. N. Fateev, A. Aukauloo and C. Etievant, “Electrochemical performances of PEM water electrolysis cells and perspectives”, International Journal of Hydrogen Energy, 36, 4134-4142, 2011. 
[23]	H. Ito, , T. Maeda, A. Nakano, Y. Hasegawa, N. Yokoi, C.M. Hwang, M. Ishida, A. Kato and T. Yoshida, “Effect of flow regime of circulating water on a proton exchange membrane electrolyzer”, International Journal of Hydrogen Energy, 35,  9550-9560, 2010.
[24]	曾士彥,“加氨對電解水產氫效應之研究”,成功大學碩士論文,2011年.
[25]	沈世勳,“質子交換膜產氫反應器與自加壓設計高壓性能研究”,中央大學機械工程學系碩士論文,2009年.
[26]	方議樂,“多電極質子交換膜型純水電解產氫器之設計製造研究”,臺灣大學機械工程碩士論文,2007年.
[27]	Richa Kothari , D. Buddhi , R.L. Sawhney, ”Studies on the effect of temperature of the electrolytes on the rate of production of hydrogen,” Journal of Hydrogen Energy, 30, 261-263, 2005.
[28]	Dragica Lj. Stojic , Milica P. Marceta, Sofija P. Sovilj, Scepan S. Miljanic, ”Hydrongen generation from water electrolysis-possibilities of energy saving,” Journal of Power Sources 118, 315-319, 2003.
[29]	Ashraf Balabel, Mohamed S. Zaky, ”Experimental investigation of solar-hydrogen energy system performance,” Journal of Hydrogen Energy XXX, I-II, 2011.
[30]	N.Nagai, M.Takeuchi, T.Kimura, T. Oka, ”Existence of optimum space brtween electrodes on hydrogrn production bywater electrolysis,” Journal of Hydrogen Energy 28, 35-41, 2003.
[31]	Kenji Kikuchi , Yoshinori Tanaka , Yasuhiro Saihara , Miho Maeda , Masaaki Kawamura , Zempachi Ogumi, ”Concentration of hydrogen nanobubbles in electrolyzed water,” Journal of Colloid Interface Science 298 , 914-919, 2006.
[32]	Kenji Kikuchi , Shoichi Nagata, Yoshinori Tanaka, Yasuhiro Saihara, Zempachi Ogumi, ”Characteristics of hydrogen nanobubbles in solutions obtained with water electrolysis,” Journal of Electroanalytical Chemistry 600 , 303-310, 2007.
[33]	C. Ganley, “High temperature and pressure alkaline electrolysis”, International Journal of Hydrogen Energy, 34, 3604-3611, 2009.
[34]	蔡宗澤,“高溫高壓之電解水產氫效率分析”,中央大學能源工程研究所碩士論文,2009年。
[35]	R. F. de Souza, J. C. Padilha, R. S. Goncalves,, M. O. de Souza , J. Rault-Berthelot, “Electrochemical hydrogen production from water electrolysis using ionic liquid as electrolytes: Towards the best device”, Journal of Power Sources 164, 792–798, 2007.
[36]	V. M. Nikolic, G. S. Tasic, A D. Maksic, D. P. Saponjic, S. M. Miulovic, and M. P. Marceta Kaninski, “Rasing efficiency of hydrogen generation from alkaline water electrolysis – Energy saving”, International Journal of Hydrogen Energy, 35, 12369-12373, 2010.
[37]	H. Matsushima, T. Nishida, Y. Konishi, Y. Fukunaka, Y. Ito, and K. Kuribayashi, “Water electrolysis microgravity Part 1. experimental technique”, Electrochimica Acta 48, 4119-4125, 2003.
[38]	H. Matsushima , Y. Fukunaka and K. Kuribayashi, “Water electrolysis under microgravity Part II. Description of gas bubble evolution phenomena”, Electrochimica Acta 51, 4190-4198, 2006.
[39]	M. Wang, Z. Wang and Z. Guo, “Water electrolysis enhanced by super gravity field for hydrogen production”, International Journal of Hydrogen Energy, 35 (2010) 3198-3205.
[40]	T. Iida, H. Matsushima and Y. Fukunaka, “Water electrolysis under a magnetic field”, Journal of the Electrochemical Society, 154 (8) E112-E115, 2007.
[41]	D. R. Stanisavljev, T. D. Grozdic , M. P. M. Kaninski, A. R. Djordjevic and D. L. Stojic, “The microwave influence on the electrolytic decomposition of KOH water solution”, Electrochemistry Communications 9, 901-904, 2007.
[42]	N. Shimizu, S. Hotta, T. Sekiya and O. Oda, “A novel method of hydrogen generation by water electrolysis using an ultra-short-pulse power supply”, Journal of Applied Electrochemistry, 36, 419–423, 2006.
[43]	Kaveh Mazloomi, Nasri b. Sulaiman, Hossein Moayedi, “An Investigation into the Electrical Impedance of Water Electrolysis Cells – With a View to Saving Energy”, International Journal of Electrochemical Science, 7,  3466-3481, 2012.
[44]	Betz, A, “Introduction to the Theory of Flow Machines.” (D. G. Randall, Trans.), 1st ed, 236-237. Oxford: Pergamon Press, 1966.
[45]	Jeff Falin, Designing DC/DC converters based on SEPIC topology, Texas Instruments, 2008.
[46]	W. Alan, “Robust Design Using Taguchi Methods”, Workshop Manual. American Supplier Institute, Version 3.0, 2001.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信