淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-0208201616415400
中文論文名稱 奈米銀棒的製造暨導電性的探討
英文論文名稱 Fabrication and conductive property of silver nanorods
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 104
學期 2
出版年 105
研究生中文姓名 陳奕勳
研究生英文姓名 Yi-Hsun Chen
學號 604350024
學位類別 碩士
語文別 中文
口試日期 2016-07-09
論文頁數 67頁
口試委員 指導教授-林清彬
委員-張天立
委員-劉承揚
中文關鍵字 奈米銀線  奈米銀棒  氯化銀  銀導電乙醇墨水  片電阻 
英文關鍵字 silver nanowires  silver nanorods  silver chloride  silver conductive ethanol ink  sheet resistance 
學科別分類 學科別應用科學機械工程
中文摘要 本研究提出一種新穎製程用以製造奈米銀導電乙醇墨水的奈米銀棒,我們使用晶種合成法以UV曝光後的奈米氯化銀顆粒作為晶種,在120℃環境下加入聚乙烯吡咯烷酮(PVP)及硝酸銀合成高展弦比約1055的奈米銀線溶液,在室溫下利用磁石攪拌通過孔隙率94.8%平均孔洞大小約2mm的多孔性發泡鋁,經4天後得到展弦比約130的奈米銀棒,利用奈米銀棒調配25wt%臨界濃度的奈米銀導電乙醇墨水,以鋼筆在紙張上繪製成寬度為1毫米的導電線段,其片電阻約為0.018Ω/sq。
英文摘要 The present study has been purposed a novel process for manufacturing conductive ink consists of silver nanorods with ethanol and coated it on the paper to a conductive line with low sheet resistance. First, we synthesized the silver nanowires solution using the irradiated nano silver chloride particles by UV irradiation as a seed crystal and seed synthesis method. Then the silver nanowires solution was magnetic agitated and passed through a foamed aluminum with porosity about 95% and average pore size about 2mm at 25°C for 96 hours. The average aspect ratio of silver nanowires will be decreased from 1055 to 130 via. silver nanowires were chopped by erosion with foamed aluminum and we fabricated successful a conductive ink which consist of 26wt% of ethanol mixed with nano silver rods and then coated a conductive line with width of 1mm on the matte paper by pen which the sheet resistance of conductive line reached 0.018 Ω/sq.
論文目次 第1章 導論 1
1 1前言 1
1 2文獻回顧 4
1 2 1奈米銀線性質 4
1 2 2奈米銀線的製備方法 4
1 2 2 1模板合成法 4
1 2 2 2晶種合成法 7
1 2 2 3 多元醇合成法 11
1 2 3俱旗幟型奈米銀線 14
1 2 4 滲透理論 16
1 2 5奈米銀導電墨水 18
1 3研究動機 25
第2章 實驗設計 26
2 1實驗材料與設備 26
2 1 1實驗材料 26
2 1 2實驗設備 27
2 2實驗步驟 28
2 2 1氯化銀晶種的製備 28
2 2 2奈米銀線的製作 29
2 2 3奈米銀線的純化 29
2 2 4奈米銀線的PVP去除及重新成長 30
2 3顯微結構觀察 31
2 3 1 穿透式電子顯微鏡(TEM) 31
2 3 2共軛焦顯微鏡 31
2 3 3四點探針測試儀 32
第3章 結果與討論 33
3 1晶種合成法之奈米銀線 33
3 2不同轉速對奈米銀線展弦比的影響 36
3 3低展弦比奈米銀線的導電測試 53
3 4低展弦比奈米銀線印刷 60
圖目錄
圖1-1 (a)AAO模板AFM圖;(b)AAO模板截面的FE-SEM圖[11] 5
圖1-2 AAO模板移除後的奈米銀線陣列SEM圖(a)上視圖;(b)上視放大圖;(c)橫截面;(d)較短的奈米銀線圖[11] 6
圖1-3 銀的製備SEM圖 (a)加熱速率40℃/h 、0 1mol/L硝酸銀溶液; (b)加熱速率40℃/h 、0 5mol/L硝酸銀溶液;(c) 加熱速率40℃/h 、1 0mol/L硝酸銀溶液;(d) 加熱速率240℃/h 、0 1mol/L硝酸銀溶液[12] 7
圖1-4 晶種合成法步驟示意圖:利用銀晶種合成奈米銀線[13] 8
圖1-5 ITO先浸漬在種子溶液2小時後,浸漬在含有0 12ml抗壞血酸的生長溶液24小時後(a)倍率較大;(b)倍率較小 含有奈米銀顆粒的FE-SEM照片[16] 10
圖1-6 通過加入不同濃度的硝酸銀生長出不同展弦比的銀[19] 12
圖1-7 雙五面體銀晶種成長為奈米銀線[19] 12
圖1-8 多元醇合成法製備奈米銀線,加入銅鹽之反應[20] 13
圖1-9 多元醇法利用鉑晶種製備奈米銀線步驟示意圖[21] 14
圖1-10 (a)奈米銀棒 (b~f) 在不同之DMF溶液中不同的[AgNO3]1/[AgNO3]2比值生長的旗幟型態奈米銀結構[22] 16
圖1-11 (a)乾燥後均勻的銀產物;(b)銀晶體的尺寸大小之SEM照片[24] 19
圖1-12 相對時間給予墨水的溫度分佈導致的質量損失百分比[24] 20

圖1-13 製備樣品的圖案與尺寸[25] 22
圖1-14 導電墨水A、B在不同基材上的片電阻[25] 22
圖1-15 三種加熱的方法用不同時間乾燥後的片電阻測量[26] 24
圖2-1 奈米銀線利用磁石攪拌機流經發泡鋁多孔性結構的示意圖 30
圖3-1 繞射分析儀(X-ray diffractometer,XRD)分析奈米氯化銀顆粒表面銀原子簇的晶相 34
圖3-2 在120℃環境下合成具有高展弦比奈米銀線的(a)共軛焦顯微照片;(b)TEM顯微照片 35
圖3-3 奈米銀線溶液以不同轉速通過多孔性發泡鋁後再生長之共軛顯照片;轉速為(a)0 rpm;(b)200 rpm ;(c)400 rpm; (d)600 rpm; (e)800 rpm; (f)1000rpm 37
圖3-4 奈米銀線以不同轉速通過多孔性發泡鋁的共軛顯微照片(a)0 rpm;(b)200 rpm ;(c)400 rpm; (d)600 rpm; (e)800 rpm; (f)1000 rpm 38
圖3-5 奈米銀線PVP刮除及再成長示意圖 39
圖3-6 流場A為水平快速與發泡鋁碰撞或穿過,流場B為上下對流的示意圖 40
圖3-7 奈米銀線以400rpm經過多孔性發泡鋁同時出現折彎及折斷的共軛顯微照片 41
圖3-8 奈米銀線溶液以400 rpm磁石攪拌通過多孔性發泡鋁,時間為 (a)0 小時(b)1 小時;(c)2小時; (d)3小時;(e) 4小時;(f)5小時;(g)6小時;(h)7小時;(i)8小時; (j)9時;(k)10小時;(l) 11小時;(m)12小時的共軛焦照片 49
圖3-9 奈米銀線溶液以400 rpm磁石攪拌通過多孔性發泡鋁,時間為(a)0小時;(b)12小時; (c)1天;(d) 2天;(e)3天;(f)4天的共軛焦照片 52
圖3-10 奈米銀線在0小時、12小時、1天、2天、3天、4天平均展弦比與攪拌時間的關係圖 54
圖3-11 奈米銀線溶液;奈米銀棒含量(a)5wt%;(b)10wt%;(c)15wt%;(d)20wt%;(e)25wt%;(f)30wt%;(g)35wt%;(h)40wt%,厚度3微米的塗層的共軛焦顯微結構 59
圖3-12 (a)一般A4紙張;(b)西卡紙紙張;(c)雪銅紙纖維的共軛焦顯微照片 62
圖3-13 在雪銅紙上以26wt%奈米銀棒溶液利用鋼筆繪製線段的共軛焦顯微照片 63
圖3-14 以26wt%奈米銀棒溶液利用鋼筆繪製的簡易電路圖 63
表目錄
表1-1 不同濃度奈米銀線的片電阻及可見光穿透率[7] 2
表1-2 三種導電墨水性質[25] 21
表3-1 低展弦比奈米銀棒溶液25~40wt%,於玻璃基板塗佈3微米塗層的片電阻值(Ω/sq) 55
參考文獻 [1] Lewis, B. G., and David C. P., “ Applications and processing of transparent conducting oxides,” Mrs Bulletin Vol. 25, No. 8 (2000) pp. 22-27.
[2] Wu, Z., Chen, Z., Du, X., Jonathan M. L., Jennifer S., Maria N., Katalin K., John R. R., David B. T., Arthur F. H., and Andrew G. R., “ Transparent, conductive carbon nanotube films,” Science Vol. 305, No. 5688 (2004) pp. 1273-1276.
[3] Liu, Cai-Hong, and Xun Y., “ Silver nanowire-based transparent, flexible, and conductive thin film,” Nanoscale Research Letters Vol. 6, No. 1 (2011) pp. 1.
[4] Hecht, D. S., Liangbing H., and Glen I., “ Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Advanced Materials Vol. 23, No. 13 (2011) pp. 1482-1513.
[5] Murphy, C. J., and Nikhil R. J., “ Controlling the aspect ratio of inorganic nanorods and nanowires,” Advanced Materials Vol. 14, No. 1 (2002) pp. 80.
[6] Sukanta, D., Thomas, M. H.,Philip,E. L., Evelyn, M. D.,Peter,N. N., Werner, J. B., John, J. B., and Jonathan, N. C., “ Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios,” ACS Nano Vol. 3, No. 7 (2009) pp. 1767-1774.
[7] Huang ,C. Y., Chiu W. M., “ A studying for preparation and characterization of graph en E oxide / silver nano wire conductive composite film,” Technology Journal Vol. 31,No. 1 (2016) pp. 43-49.
[8] Lee, P., Lee, J, Lee, H., Yeo, J., Hong, S., Koo, H. N., Lee, D., Lee, S. S., and Ko, S. H., “ Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network,” Advanced Materials Vol. 24, No. 25 (2012) pp. 3326-3332.
[9] Rahul, G., Sri, P., “ What's the difference between silver nanowire and ITO for touch screens?” Electronic Design,(Aug 5, 2013)
[10] Yang, R., Sui, C., Gong, J., and Qu, L., “ Silver nanowires prepared by modified AAO template method,” Materials Letters Vol. 61, No. 3 (2007) pp. 900-903.
[11] Sun, X. Y., Xu, F. Q., Li, Z. M., Zhang, W. H., “ Cyclic voltammetry for the fabrication of high dense silver nanowire arrays with the assistance of AAO template,” Materials Chemistry and Physics Vol. 90, No. 1 (2005) pp. 69-72.
[12] Yang, R., Sui, C., Gong, J., and Qu, L., “ Silver nanowires prepared by modified AAO template method,” Materials Letters Vol.61, No.3 (2007) pp. 900-903.
[13] Jana, N. R., Latha G., and Catherine J. M., “ Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chemical Communications Vol.7 (2001) pp. 617-618.
[14] Brendan, P., Matthew, M., and Vladimir, K., “ Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods,” ACS nano Vol.3, No.1 (2008) pp. 21-26.
[15] Nikoobakht, B., and Mostafa A. E. S., “ Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chemistry of Materials Vol.15, No.10 (2003) pp. 1957-1962.
[16] Chang, G., Zhang, J., Munetaka, O., and Kazuyuki, H., “ Silver-nanoparticle-attached indium tin oxide surfaces fabricated by a seed-mediated growth approach,” The Journal of Physical Chemistry B Vol.109, No.3 (2005) pp. 1204-1209.
[17] Prieto, P.,Valentin, N., Khalid, N., Munetaka, O., Mohammed, A. L., and Raquel, D., “ XPS study of silver, nickel and bimetallic silver–nickel nanoparticles prepared by seed-mediated growth,” Applied Surface Science Vol.258, No.22 (2012) pp. 8807-8813.
[18] Sun, Y, and Younan, X., “ Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process,” Nature Vol.353, No.1991 (1991) pp. 737.
[19] Tang, X., and Masaharu, T., “ Syntheses of silver nanowires in liquid phase,” Intech. Open Access Publisher (2010) pp. 25-42
[20] Korte, K. E., Sara, E. S., and Younan X., “ Rapid synthesis of silver nanowires through a CuCl-or CuCl2-mediated polyol process,” Journal of Materials Chemistry Vol.18, No.4 (2008) pp. 437-441.
[21] Sun, Y., Yin, Y., Brian, T. M., Thurston, H., and Younan, X., “ Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone),” Chemistry of Materials Vol.14, No.11 (2002) pp. 4736-4745.
[22] Tsuji, M., Tang, X., Matsunaga, M., Yoshinori, M., and Midori, W., “ Shape evolution of flag types of silver nanostructures from nanorod seeds in PVP-assisted DMF solution,” Crystal Growth & Design Vol.10,No.12 (2010) pp. 5238-5243. [23] Hsu, Y. I., “ The study of compound conductive effect of silver flake and carbon black to epoxy resin,” (2009). [24] Angela, L. D.,Patrick, J. S., Shin, D. Y., Nuno, R., Brian, D., and Paul, O. B., “ A low curing temperature silver ink for use in ink jet printing and subsequent production of conductive tracks,” Macromolecular Rapid Communications Vol.26, No.4 (2005) pp. 315-318. [25] Merilampi, S., T. Laine, M., and Pekka, R., “ The characterization of electrically conductive silver ink patterns on flexible substrates,” Microelectronics Reliability Vol.49, No.7 (2009) pp. 782-790. [26] Martyn, C., Tim, C. C., David, D.,Ian, M., Trystan, W., and David, W., “ Ultrafast near-infrared sintering of a slot-die coated nano-silver conducting ink,” Journal of Materials Chemistry Vol.21, No.21 (2011) pp. 7562-7564.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2021-08-04公開。
  • 同意授權瀏覽/列印電子全文服務,於2021-08-04起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信