淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0208201211234600
中文論文名稱 在隨建即連無線網路中階梯式多頻道媒體存取協定之研究
英文論文名稱 SMC-MAC: An Efficient Stepwise Multi-channel MAC Protocol for Ad Hoc Networks
校院名稱 淡江大學
系所名稱(中) 資訊工程學系碩士班
系所名稱(英) Department of Computer Science and Information Engineering
學年度 100
學期 2
出版年 101
研究生中文姓名 蔡鏸容
研究生英文姓名 Huei-Rung Tsai
學號 600410038
學位類別 碩士
語文別 中文
第二語文別 英文
口試日期 2012-06-07
論文頁數 60頁
口試委員 指導教授-張志勇
指導教授-鄭建富
委員-廖文華
委員-張兆村
委員-游國忠
委員-張志勇
中文關鍵字 多頻道  MAC  隨意無線網路  會面問題  多頻道隱藏節點問題 
英文關鍵字 Multi-Channel  MAC  Ad-Hoc network  Rendezvous problem  Hidden Terminal Problem 
學科別分類 學科別應用科學資訊工程
中文摘要 近年來,發展多頻道媒體存取協定已受到極大的關注與討論,並被認為是開發頻寬利用率的有效方法。在發展多頻道通訊協定時所遭遇最大的挑戰便是主機會面問題(Rendezvous Problem)與多頻道隱藏節點問題(Multi-Channel Hidden Terminal Problem)。為解決會面問題,有些研究的作法是讓所有主機在一共同會面的窄頻,以便進一步協調資料傳輸該使用的頻道。然而,此種作法將可能產生多頻道隱藏主機節點問題。另外,也有一些研究的作法,是讓所有主機週期性地在特定頻道的ATIM Window共同聚集,以安排資料交換的頻道,但這樣的作法會造成其它頻道ATIM Window的頻寬利用率降低。本篇論文提出一多頻道MAC協定(SMC-MAC),以階梯式的頻道模型,利用單一天線便可解決多頻道的主機會面與多頻道隱藏主機節點問題,並節省頻寬資源浪費。
英文摘要 Multi-channel MAC protocols have recently attracted significant attention in wireless networking research because they have potential to exploit frequency resources for increasing the overall throughput of wireless Ad-Hoc networks. The most common challenge for developing the multi-channel MAC protocols is the well-known rendezvous problem. In literature, some studies assumed that each device equips one additional antenna, staying on the control channel for negotiating the channel for data exchange. However, the hardware cost has been increased. Some other works ask all devices staying on a predefined channel in ATIM window for negotiating the channel for data exchange. However, the bandwidth utilization is low since all channels other than the predefined channel are not used in the ATIM window. This thesis presents an Efficient Stepwise Multi-channel MAC Protocol, called SMC-MAC, for the Ad Hoc Network. The proposed SMC-MAC is developed based upon single antenna and applies stepwise channel model to exploit the multi-channel bandwidth resource.
論文目次 圖目錄 IV
表目錄 V
1. Introduction 1
2. Related Work 5
3. System Model and Problem Statement 9
3.1 SYSTEM MODEL 9
3.2 PROBLEM STATEMENT 10
4. Design of SMC-MAC Protocol 14
4.1 THE STEPWISE CHANNEL MODEL 14
4.2 RENDEZVOUS IN STEPWISE CHANNEL MODEL 16
4.3 CONTROL PERIOD DESIGN 17
4.4 DATA PERIOD DESIGN 27
5. Advanced Design of SMC-MAC Protocol 29
5.1 CHANNEL UTILIZATION ENHANCEMENT POLICY 29
5.2 MULTICASTING SUPPORT POLICY 32
6. Performance Evaluation 35
6.1 SIMULATION ENVIRONMENT 35
6.2 SIMULATION RESULTS 36
7. Conclusions 48
References 49
附錄-英文論文 52

圖目錄
Figure 1. Stepwise channel model. 14
Figure 2. Negotiation slots and data slots. 16
Figure 3. Receiver declaration packet. 21
Figure 4. Available slots operation. 26
Figure 5. Negotiation of transmission pair. 26
Figure 6. Channel switching during data period. 28
Figure 7. Network throughput comparison by varying the ratio of control and data periods and the offered traffics. 37
Figure 8. Packet collision comparison with different traffics. 38
Figure 9. Packet delay comparison with different offered traffics. 39
Figure 10. Packet delay comparison with different ratio of offered traffic distribution. 40
Figure 11. Fairness index at varying offered traffic. 43
Figure 12. Fairness index at different traffic ratio. 44
Figure 13. Data slot idle rate by varying offered traffics. 45
Figure 14. Network throughput by varying the number of multicast groups and the number of their members. 46
Figure 15. Average packet delay time of multicast service comparison by varying the number of multicast groups and multicast members. 47

表目錄
Table 1. Simulation settings 36
參考文獻 [1] EEE Std 802.11b-1999, Part 11: wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High Speed Physical Layer Extension in the 2.4 GHz Band, 1999.
[2] IEEE Std 802.11a-1999, Part 11: wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High Speed Physical Layer Extension in the 5 GHz Band, 1999.
[3] IEEE Std 802.11-1999, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE, Aug. 1999.
[4] H. J. Lei, C. Gao, Y. C. Guo and Z. Z. Zhang, “Survey of multi-channel MAC protocols for IEEE 802.11-based wireless Mesh networks,” The Journal of China Universities of Posts and Telecommunications, vol. 18, no. 2, pp. 33-44, Apr. 2011.
[5] J. Lee, J. Mo, T. M. Trung, J. Walrand, H.-S.W. So, “Design and Analysis of a Cooperative Multichannel MAC Protocol for Heterogeneous Networks,” IEEE Transactions on Vehicular Technology (IEEE TVT), vol. 59, no. 7, pp. 3536-3548, Sep. 2010.
[6] J. Mo, H.-S.W. So, J. Walrand, “Comparison of Multichannel MAC Protocols” IEEE Transactions on Mobile Computing (IEEE TMC), vol. 7, no. 1, pp. 50-65, Jan. 2008.
[7] D. Nguyen, G. L. Aceves and K. Obraczka, “Collision-Free Asynchronous Multi-Channel Access in Ad Hoc Networks,” IEEE Global Communications Conference (IEEE GLOBECOM), pp. 1–6, Dec. 2009.
[8] Y. H. Wan, X. Chen and J. H. Lu, “Broadcast Enhanced Cooperative Asynchronous Multichannel MAC for Wireless Ad Hoc Network,” The 7th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM), pp. 1-5, Sep. 2011.
[9] S. L. Wu, C. Y. Lin, Y. C. Tseng and J. P. Sheu, “A new multi-channel mac protocol with on-demand channel assignment for multi-hop mobile ad hoc networks,” The 5th International Symposium on Parallel Architectures, Algorithms, and Networks (I-SPAN), pp. 232–237, 2000.
[10] K. H. Almotairi, X. Shen, “MMAC-HR: Multi-Channel Medium Access Control with Hopping Reservation for Multi-Hop Wireless Networks,” IEEE Global Communications Conference (IEEE GLOBECOM), pp. 1–5, Dec. 2010.
[11] A. Tzamaloukas and J. Garcia-Luna-Aceves, “Channel-hopping multiple access,” IEEE International Conference on Communications (IEE ICC), vol. 1, pp. 415–419, 2000.
[12] F. Hou, L. X. Cai, X. (Sherman) Shen and J. Huang, “Asynchronous Multichannel MAC Design With Difference-Set-Based Hopping Sequences,” IEEE Transactions on Vehicular Technology (IEEE TVT), vol. 60, no. 4, pp. 1728-1739, May. 2011.
[13] P. Bahl, R. Chandra, and J. Dunagan, “Ssch: slotted seeded channel hopping for capacity improvement in ieee 802.11 ad-hoc wireless networks,” The 5th ACM international symposium on Mobile ad hoc networking and computing (ACM MobiHoc), pp. 216–230, 2004.
[14] K. Bian, J.-M. Park, and R. Chen, “A quorum-based framework for establishing control channels in dynamic spectrum access networks ,” The 15th Annual International Conference on Mobile Computing and Networking (MobiCom), pp. 25–36, 2009.
[15] J. So and N. Vaidya, “MultiChannel MAC for Ad Hoc Networks:Handling MultiChannel Hidden Terminals Using A Single Transceiver,” The 5th ACM International Symposium on Mobile Networking and Computing (ACM MobiHoc), pp. 222-233, May 2004.
[16] J. Zhang, G. Zhou, C. Huang, S. H. Son, and J. A. Stankovic, “TMMAC: An Energy Efficient Multi-Channel MAC Protocol for Ad Hoc Networks,” IEEE International Conference on Communications (IEE ICC), pp.3554-3561, Jun. 2007.
[17] W.-T. Chen and J.-C. Liu and T.-K. Huang and Yu-Chu Chang, “TAMMAC: An adaptive multi-channel MAC protocol for MANETs,” IEEE Transactions on Wireless Communications, vol. 7, no. 11, pp. 4541–4545, 2008
[18] W. H. Liao, K. P. Shih, W. C. Chung, “Multi-channel medium access control protocol with channel distribution for mobile ad hoc networks,” IET Communications, vol. 3, no. 12, pp. 1821-1831, Dec. 2009
[19] L. Le, “Practical Multi-Channel MAC for Ad Hoc Networks,” The 7th IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (IEEE SECON), pp. 1-9, Jun. 2010.
[20] Rajendra K. Jain, Dab-Ming W. Chiu, and William R. Hawe, “A quantitative measure of fairness and discrimination for resource allocation in shared computer systems,” DEC Research Report TR-301, September 1984.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2017-08-06公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-08-06起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信