淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0208200517011000
中文論文名稱 環境載重下之輸電塔群動力分析
英文論文名稱 Dynamic Analysis of Transmission Towers Under Environmental Loads
校院名稱 淡江大學
系所名稱(中) 土木工程學系碩士班
系所名稱(英) Department of Civil Engineering
學年度 93
學期 2
出版年 94
研究生中文姓名 蔡佳宏
研究生英文姓名 Chia-Hung Tsai
電子信箱 692310732@s92.tku.edu.tw
學號 692310732
學位類別 碩士
語文別 中文
口試日期 2005-06-27
論文頁數 98頁
口試委員 指導教授-雷英暉
委員-王承順
委員-鍾立來
中文關鍵字 集集地震  輸電塔  幾何非線性  受風效應  土壤-結構互制 
英文關鍵字 Ji-Ji earthquake  transmission towers  wind effects  soil-structure interaction 
學科別分類 學科別應用科學土木工程及建築
中文摘要 對於位處高海拔及開闊地區之塔群結構而言,其附屬輸電纜線常因風力作用而產生可觀之擺動振幅,此使得彼等於強震下之動力分析,務須將常態風載所致生之纜索拉力涵計在內。本文除擬採用空間樑-柱元素來模擬各塔體構件外,並擬採用有效之纜索元素來模擬懸垂於相鄰輸電塔間之高壓電纜,期能徹底瞭解相鄰電塔於不同垂直及水平相對位置下,其各別桿件變形及受力之差異性;又為使分析結果更具可靠性及實用性,精密之土壤-結構互制模式及構件極限破壞指數將予採用。研究結果顯示,於強震作用下,纜索之質量及其橫向風載確將對塔群之動力反應造成明顯之影響。
英文摘要 For the transmission towers located at a high-elevation and open area, the significant vibration amplitude caused by the strong wind force will often be found on the affiliated high-voltage cables. Accordingly, the elaborated seismic analysis undertaken on them should be based on the consideration of the regional wind effects. In his research, 3-D beam elements and efficient cable elements will be used for modeling the tower bodies and transmission lines respectively so as to seize differences of deformed and stressed conditions among structural members for the transmission towers going through various topographies. Furthermore, to enhance the reliability and value in practice for the analytical outcome, an effective spatial soil-structure interaction model and an effective parameter called “failure index” will be utilized in the analyses. It is shown in the results that the dynamic responses of the transmission towers subjected to the heavy earthquake would be affected significantly by either the cable mass or transverse wind drag acting on the cables.
論文目次 本文目錄 Ⅰ
表目錄 Ⅳ
圖目錄 Ⅴ
符號說明 Ⅷ
第一章 前言 1
第二章 歷時風力之模擬 8
2.1 大氣邊界層流場之基本特性 8
2.2 平均風速剖面 9
2.3 擾動風速頻譜 10
2.4 擾動風速交頻譜 11
2.5 風速資料之時間序列模擬 12
2.6 風力之模擬 15
第三章 輸電塔之有限元素模擬 17
3.1 纜索元素 17
3.1.1 勁度矩陣 17
3.1.2 質量矩陣 20
3.2 空間樑-柱元素 22
3.2.1 撓曲勁度係數 23
3.2.2 軸向勁度係數 30
3.2.3 扭轉勁度係數 33
3.2.4 勁度矩陣 34
3.2.5 質量矩陣 35
3.2.6 座標轉換 36
第四章 輸電塔非線性動力分析 41
4.1 非線性數值分析方法 41
4.1.1 牛頓-勒普生法 41
4.1.2 非線性問題分析之程式流程 44
4.2 動力分析 45
4.2.1 非線性動力分析 46
4.2.2 Newmark 法分析流程 47
4-3 樑-柱元素斷面之強度 49
第五章 環境載重下之輸電塔群動力分析與討論 52
5.1 結構模型之介紹 52
5.2 輸電塔群之空間幾何配置 53
5.3 輸電纜之受風效應 54
5.4 空間幾何配置對輸電塔群之影響 55
5.4.1 平面轉角 對輸電塔群之影響 55
5.4.2 垂直仰角 對輸電塔群之影響 55
5.5 土壤性質對輸電塔群之影響 56
5.6 纜索質量對輸電塔群之影響 57
第六章 結論與展望 58
6.1 結論 58
6.2 展望 59
參考文獻 60
附表 65
附圖 68
附錄A 歷時風力模擬流程圖 96
附錄B 時間序列模擬分析流程圖 97
附錄C 幾何非線性收斂流程圖 98


表目錄
表2-1 不同地表狀況之粗糙指數.................................65
表2-2 不同地表狀況之粗糙長度值...............................65
表2-3 不同粗糙長度所對應之β值...............................66
表5-1 輸電塔桿件之斷面尺寸與材料性質.........................66
表5-2 輸電塔基樁與輸電纜索之斷面尺寸及材料性質...............67
表5-3 土壤之材料性質.........................................67


圖目錄
圖2-1 斷面上任意點之應力-應變模式.........................68
圖2-2 纜索受風示意圖......................................68
圖3-1(a) 纜索元素示意圖......................................69
圖3-1(b) 纜索元素示意圖......................................69
圖3-2(a) 空間梁-柱元素對應元素座標之位移.....................70
圖3-2(b) 空間梁-柱元素對應元素座標之節點力...................70
圖3-3(a) 考慮元素節點旋轉之變形圖(XY平面)..................71
圖3-3(b) 考慮元素節點旋轉之變形圖(XZ平面)..................71
圖3-4(a) 考慮元素在XY平面節點側向位移之變形圖 (產生u之位移)2.....................................72
圖3-4(b) 考慮元素在XY平面節點側向位移之變形圖 (產生u之位移)8.....................................72
圖3-5(a) 考慮元素在XZ平面節點側向位移之變形圖 (產生u3之位移).....................................73
圖3-5(b) 考慮元素在XZ平面節點側向位移之變形圖 (產生u9之位移).....................................73
圖3-6 桿件自由度編號(XY平面)............................74
圖3-7 空間樑柱元素局部座標x-y-z與大域座標X-Y-Z之關係....74
圖4-1(a) 空間梁-柱元素對應大域座標之位移增量.................75
圖4-1(b) 空間梁-柱元素對應元素座標之內力增量.................75
圖4-2 角形斷面降伏強度包絡面..............................76
圖5-1 集集地震﹙TCU084﹚E-W向地表加速度歷時圖.............77
圖5-2 集集地震﹙TCU084﹚傅氏頻普圖........................77
圖5-3 集集地震﹙TCU084﹚擬加速度反應譜....................78
圖5-4 輸電塔結構與地震輸入角間之關係圖....................78
圖5-5(a) 輸電塔之基樁配置圖..................................79
圖5-5(b) 輸電塔結構尺寸......................................79
圖5-6 輸電塔三維有限元素分析模式..........................80
圖5-7(a) 輸電塔結構與近域土壤之有限元素分析模式..............81
圖5-7(b) 近域土壤有限元素模式................................81
圖5-8 三塔與端點束制彈簧串聯示意圖........................82
圖5-9(a) 單一端點束制彈簧配置示意圖..........................82
圖5-9(b) 端點束制彈簧計算方式示意圖..........................83
圖5-10 平面轉角θ與塔群位置關係圖..........................83
圖5-11 仰角ψ與塔群位置關係圖..............................84
圖5-12 纜索與塔N平均連結高度處之風速頻譜圖................84
圖5-13 纜索與塔N平均連結高度處之風速歷時圖................85
圖5-14 改變塔群水平幾何纜索受風示意圖......................85
圖5-15 考慮纜索受風與與未受風之塔頂位移歷時圖..............86
圖5-16 未考慮纜索受風之基腳破壞指數........................86
圖5-17 考慮纜索受風之基腳破壞指數..........................87
圖5-18 在土壤性質與不同風速下Leg A破壞指數之比較..........87
圖5-19 改變塔群水平幾何θ,Leg C破壞指數之比較.............88
圖5-20 改變塔群水平幾何θ,Leg D破壞指數之比較.............88
圖5-21 改變塔群垂直仰角φ,Leg B破壞指數之比較.............89
圖5-22 改變塔群垂直仰角φ,Leg C破壞指數之比較.............89
圖5-23 在風速為0 mps下,不同土壤性質Leg C之破壞指數比較..90
圖5-24 在風速為12 mps下,不同土壤性質Leg C之破壞指數比較.90
圖5-25 在風速為24 mps下,不同土壤性質Leg C之破壞指數比較.91
圖5-26 在風速為48 mps下,不同土壤性質Leg C之破壞指數比較.91
圖5-27 風速為12 mps時,考慮不同土壤性質對於纜索受風與未受 風Leg C之破壞指數比較............................92
圖5-28 風速為24 mps時,考慮不同土壤性質對於纜索受風與未受風Leg C之破壞指數比較............................92
圖5-29 風速為48 mps時,考慮不同土壤性質對於纜索受風與未受風Leg C之破壞指數比較............................93
圖5-30 考慮纜索質量之影響,Leg C破壞指數之比較.............93
圖5-31 在Soil type I下,考慮纜索質量之影響對於纜索受風與未受風Leg C破壞指數之比較..........................94
圖5-32 在Soil type II下,考慮纜索質量之影響對於纜索受風與未受風Leg C破壞指數之比較........................94
圖5-33 在Soil type III下,考慮纜索質量之影響對於纜索受風與未受風Leg C破壞指數之比較........................95
參考文獻 1. Lardies, J., “Analysis of A Multivariate Autpregessive Process,” Mechanical Systems and Signal Processing, 10(6), pp. 747-761 (1996).
2. Yasui, H., MaruKawa, H., Katagiri J., Katsumura, A., Tamura, Y. and Eatanabe, K., “Study of Wind-induced Response of Long-Span Structure,” Journal of Wind Engineering and Industrial Aerodynamics, 83, pp. 277-288(1999).
3. Ying-hong C., Haifan X. and Ying Z., “Simulation of Stochastic Wind Velocity Field on Long-Span Bridges,” Journal of Engineering Mechanics, Vol. 126, No. 1, pp. 1-6 (2000).
4. Yuh-Yi L.n and Yen-Lung L., “Geometrically Nonlinear Analysis of Cable-Stayed Bridges Subject to Wind Excitations,” Journal of the Chinese Institute of Engineers, Vol. 26, No. 4, pp. 503-511 (2003).
5. Ronaldo C. B., Rosangela S. R. and Michele S. P., “Dymanic Behavior and Stability of Transmission Line Towers under Wind Force,” Journal of Wind Engineering and Industrial Aerodymanics, 91, pp. 1051-1067 (2003).
6. Riccardo R., Massimiliano L. and Renato V., “Wind Field Simulation for Structurel Engineering Purposes,” International Journal for Numerical Methods in Engineering, 61, pp. 738-763 (2004).
7. Roy, S., Fang, S. J. and Rossow, E. C., “Secondary Stresses on Transmission Tower Structures,” Journal of Energy Engineering, Vol. 110, No. 2, pp.157-171 (1984).
8. AlBermani, F. G. A. and Kitipornchai, S., “Nonlinear Finite Element Analysis of Latticed Transmission Towers,” Engineering Structure, Vol. 15, No. 4, pp.259-269 (1993).
9. Knight, G. M. S. and Santhakumar, A. R., “Joint Effects on Behavior of Transmission Towers,” Journal of Structural Engineering, Vol. 119, No. 3, pp. 698-712 (1993).
10. Kitipornchai, S., AlBermani, F. G. A., and Peyrot A. H., “Effect of Bolt Slippage on The Ultimate Strength of Latticed Structures,” Journal of Structural Engineering, Vol. 120, No. 8, pp. 2281-2287 (1994).
11. Alam, M. J. and Santhakumar, A. R., “Reliability Analysis and Full-Scale Testing of Transmission Tower,” Journal of Structural Engineering, Vol. 122, No.3, pp. 338-344 (1996).
12. Dagher, H. J., Lu, Q., and Peyrot, A. H., “Reliability of Transmission Structures Including Nonlinear Effects,” Journal of Structural Engineering, Vol24, No.8, pp. 966-973 (1998).
13. Oran, C., “Tangent Stiffness in Space Frames,” Journal of the Structure Division, Vol. 99, ST 6, pp. 987-1001 (1973).
14. See, T. and McConnel, R. E., “Large Displacement Elastic Buckling of Space Structures,” Journal of Structure Engineering, Vol. 112, No. 5, pp. 1052-1069 (1987).
15. Bathe, K. J., Finite Element Procedure in Engineering Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J. (1982).
16. Crisfield, M. A., “A Fast Incremental/Iterative Solution Procedure That Handles Snap-Through,” Computers and Structures, Vol. 13, pp. 55-62 (1981).
17. Meek, J. L. and Loganathan, S., “Large Displacement Analysis of Space-Frame Structures,” Computer Methods in Applied Mechanics and Engineering, Vol. 72, pp. 57-75 (1979).
18. Emil S., P. E. and Robert H., ” Wind Effects On Structures, Second Edition”,(1986).
19. O’Brien, T., “General Solution of Suspended Cable Problems,” J. Structural Div. ASCE 93, pp. 1-26 (1967).
20. Peyrot, A. H. and Goulois, A. M., “Analysis of Flexible transmission lines,” J. Struct. Div. ASCE 104, pp. 763-779 (1978).
21. Jayaraman, H. B. and Knudson, W. C., “A Curved Element for the Analysis of Cable Structure,” Computers & Structures, Vol.14, No.3-4, pp. 325-333 (1981).
22. Desai, Y. M., Popplewell, N., Shah, A. H. and Buragohain, D. N., “Geometric Nonlinear Static Analysis of Cable Supported Structural,” Computers & Structures, Vol. 29, No. 6, pp. 1001-1009 (1988).
23. Desai, Y. M., Yu, P., Popplewell, N. and Shah, A. H., “Finite Element Modelling of Transmission Line Galloping,” Computers & Structures, Vol.57, No.3, pp. 407-420 (1995).
24. Raid K., “Some Modeling Aspect in The Nonlinear Finite Element Analysis of Cable Supported Bridge,” Computer and Structures, 71, pp. 397-412(1999).
25. Wei-Xin R. and Makoto O., “Elastic-Plastic Seismic Behavior of Long Span Cable-Stayed Bridge,” Journal of Bridge Engineering, Vol.4, No.3, pp. 194-203 (1999).
26. Yasui, H., Marukawa, H., Momomura, T. and Ohkuma, T., “Analytical Study on Wind-Induced Vibration of Power Transmission Towers,” Journal of Energy Engineering, Vol. 83, pp.431-441 (1999).
27. Wolf, J. P. and Song, C., “Dynamic-Stiffness Matrix In Time Domain of Unbounded Medium by Infinitesimal Finite Element Cell Method,” Earthquake Engineering and Structural Dynamics, Vol.23, No.11, pp. 1181-1198 (1994).
28. Song, C. and Wolf, J. P., “Consistent Infinitesimal Finite-Element-Cell Method: Three-Dimensional Vector Wave Equation,” International Journal for Numerical Methods in Engineering, Vol.39, pp. 2189-2208 (1996).
29. Wolf, J. P. and Song, C., “Finite-Element Modelling of Unbounded Media, John Wiley & Sons Ltd.,” New york, N. Y. (1997).
30. Kaimal, A. C., “Spectrum Charactertics of Surface-Layer Turblence.” Journal Roysl Meteorol.Soc., 98, pp. 563-589(1972).
31. 曾恭慶,「斜張橋之非線性分析」,碩士論文,淡江大學土木工程研究所,淡水(1996)。
32. Paz, Mario., Structure Dynamic Theory and Computation, Prentice Hall, Second Edition, Van Nostrand Reinhold, New York, (1991)
33. Adeli, H., Gere, J. M., and Weaver, W. J., “Algorithms for Nonlinear Structural Dynamics,” Journal of the Structure Division, Vol. 94, ST2, pp.263-280 (1978).
34. Bathe, K. J., Ramm, E. and Wilson, E. L., “Finite Element Formulations for Large Deformation Dynamic Analysis,” International Journal of Numerical Methods in Engineering, Vol. 9, pp.353-386 (1975).
35. Argyris, J. H., Doltsinis, J. S., Knudson, W. C., Vaz, L. E., and Willam, K. J., “Numerical Solution of Transient Nonlinear Problems,” Computer Methods in Applied Mechanics and Engineering, pp.341-409 (1979).
36. Sander, G., Geradin, M. Nyssen, C. and Hogge, M., “Accuracy Versus Computational Efficiency in Nonlinear Dynamics,” Computer Methods in Applied Mechanics and Engineering, pp.315-340 (1979).
37. Chopra, Anil K., Dynamic of Structural – Theory and Applications to Earthquake Engineering, Prentice Hall, Second Edition, (2001)
38. Kitipornchai, S., Zhu, K., Xiang, Y. and Al-Bermani, F. G. A., “Single-Equation Yield Surfaces for Monosymmetric and Asymmetric Section,” Engineering Structure, Vol. 13, pp.366-370 (1991).
39. 林溢賢,「輸電塔之非線性震力分析-考慮土壤結構互制效應」,碩士論文,淡江大學土木工程研究所,淡水(2001)。
40. 葉信汎,「輸電塔於不同幾何配置下之震力分析-考慮土壤結構互制效應」,碩士論文,淡江大學土木工程研究所,淡水(2002)。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2005-08-04公開。
  • 同意授權瀏覽/列印電子全文服務,於2005-08-04起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信