淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-0207201614150000
中文論文名稱 資料探勘技術於客戶價值分析與行銷策略之探討-以台灣生技業銷售為例
英文論文名稱 Customer Value Assessment and Marketing Strategies through Data Mining Techniques - A Case Study of Taiwanese Biotechnology Industry
校院名稱 淡江大學
系所名稱(中) 資訊管理學系碩士在職專班
系所名稱(英) On-the-Job Graduate Program in Advanced Information Management
學年度 104
學期 2
出版年 105
研究生中文姓名 劉業萍
研究生英文姓名 Yen-Ping Liu
學號 703630219
學位類別 碩士
語文別 中文
口試日期 2016-05-28
論文頁數 96頁
口試委員 指導教授-蕭瑞祥
委員-周清江
委員-邱光輝
中文關鍵字 資料探勘  客戶價值  決策樹  生物科技業 
英文關鍵字 Data mining  Customer value  Decision tree  Biotechnology industry 
學科別分類
中文摘要 「生物經濟」將接替資通訊科技產業成為新的未來台灣經濟產業命脈。台灣生技產業面對產業目標5000億元的挑戰,如何利用電子資訊和生物經濟雙引擎動能,應用於實際銷售狀況和有效率地把手邊的資料轉化成有用的資訊,找尋出最佳行銷活動依據,合理化的進行資源分配,深耕客戶關係,以建構台灣發展生技產業的競爭優勢,有助於台灣生技產業經濟的永續成長,為目前生技業界重要的議題。
本研究應用資料探勘技術於實際交易資料庫,並參考CRISP-DM為基礎流程,規劃建立適合生技業顧客價值的分析與預測的一套標準作業程序Standard Operation Procedure(SOP)。過程中彙整客戶交易資料後,運用RFM(Recency Frequency Monetary)模型三項指標,作為客戶價值分類的基準,將醫療院所分成四種類型客戶。應用資料探勘工具的決策樹分析,挖掘出不同客戶群的銷售數據規則。最後,將資料探勘的結論交由專家訪談評估適合的解決方案,歸納不同價值的客戶群對應的行銷支援與策略規劃。研究結果,除提供生技業瞭解醫療院所的交易特性,有助於產品行銷外,亦可提供其他Business to Business (B2B)的業者,規劃銷售管理及維繫客戶關係管理的參考。

關鍵字:資料探勘、客戶價值、決策樹、生物科技業
英文摘要 “Bio-economy” will replace the information communication technology (ICT) industry as a core sector of Taiwan’s economy in the future. In the face of the NT$500-billion target of Taiwan’s biotechnology industry, using the kinetic energy of the double engines of electronic information and bio-economy in actual sales to seek the best marketing activities, reasonable resource distribution, and deeper customer relationships to construct national competitiveness for biotechnology industry development can benefit the industry’s sustainable growth. This is one of the most important issues in the industry today.
This study aims at the application of data mining technology to the actual transaction database. With process planning based on CRISP-DM, it is able to build a set of standard operating procedures (SOP) for the analysis and prediction of customer value in the biotech industry. After collecting customer transaction data, first, it takes the RFM (Recency. Frequency, and Monetary) classification model as three indicators for the benchmarks of customer value, dividing customers of medical institutes into four types. Next, through decision tree analysis of data mining tools, it can dig out different customer sales data rules. Finally, expert interviews based on the data mining results can evaluate suitable solutions, concluding marketing support and strategic planning according to different values of customer groups. The study results allow the biotech industry to understand the trading characteristics of medical institutes, and this also contributes to product marketing. As for other Business to Business (B2B) operators, the results serve as effective references for the planning of sales management as well as maintenance of customer relationship.
論文目次 主目錄 VI
表目錄 VIII
圖目錄 IX
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 研究流程 4
第二章 台灣生物技術產業概況 7
第一節 台灣生物技術產業 7
第二節 台灣生物技術產業的特徵 12
第三節 生技產業的銷售管理 18
第四節 非侵入性胎兒染色體基因檢測 19
第五節 NIFTY基因檢測台灣市場分析 22
第三章 文獻探討 26
第一節 生物科技定義 26
第二節 客戶價值定義 27
第三節 客戶價值衡量 28
第四節 資料探勘 30
第五節 決策樹分析 35
第六節 類神經分析 39
第七節 應用分析 41
第四章 研究流程與方法 43
第一節 研究流程 43
第二節 設計模型與比較 46
第五章 實證研究流程 48
第一節 資料收集與選取 48
第二節 資料處裡與客戶價值 49
第三節 決策樹分析 54
第四節 分析與評估 64
第五節 專家訪談 74
第六章 研究結論與建議 81
第一節 研究結論 81
第二節 管理意涵 83
第三節 研究限制 84
第四節 未來研究建議 85
參考文獻 86

表目錄
=========================
表2-1 2013~2014 年我國生技產業經營現況 11
表2-2 生技產業特性整理 13
表2-3 台灣應用生技產業之領域別及其產品 20
表3-1 各種客戶價值的衡量 29
表3-2 資料探勘的定義 31
表3-3 各種決策樹的比較 38
表5-1 研究變數欄位 48
表5-2 RFM分級與價值轉換參數說明 50
表5-3 客戶價值與命名 51
表5-4 IBM SPSS Modeler RFM 分析 54
表5-5 顧客價值五等分法決策樹模型分析說明 59
表5-6 IBM SPSS Modeler-RFM分法決策樹模型分析說明 61
表5-7 J48決策樹萃取規則結果 65
表5-8 人類專家分類方法 72
表5-9 專家背景介紹 75
表5-10 專家訪談內容彙整 76

圖目錄
=========================
圖1-1 未來五年生物經濟產業發展目標 2
圖1-2 研究流程圖 6
圖2-1 台灣物技術產業範疇 9
圖2-2 生技產業供應鏈的結構 19
圖3-1 CRISP- DM 35
圖3-2 決策樹的結構 36
圖4-1 本研究流程 45
圖5-1 IBM SPSS Modeler RFM 分析模型 53
圖5-2 IBM SPSS Modeler RFM 樣本結果 53
圖5-3 顧客價值五等分法資料匯入WEKA 56
圖5-4 IBM SPSS Modeler-RFM分法資料匯入WEKA 57
圖5-5 顧客價值五等分法採用J48決策樹分析 58
圖5-6 IBM SPSS Modeler-RFM分法採用J48決策樹分析 59
圖5-7 XLMINER決策樹分析 63
圖5-8 J48決策樹示意圖 65
圖5-9 類神經分析法 69
圖5-10 類神經分析法隱藏層 70
圖5-11 採用類神經分析法 71
圖5-12 人類專家分類方法採用J48決策樹分析 74
參考文獻 一、 中文文獻
[1] 生技醫藥產業發展策略與措施 (2014)。經濟部工業局。
[2] 生物技術之世界趨勢 (2000)。國科會科資中心。
[3] 田蔚成 (1996)。生物技術。台北:九州圖書文物。
[4] 行政院生技產業推動小組 (2015)。2015生技產業白皮書。經濟部工業局。
[5] 行政院科技會報 (2015)。行政院生技產業策略諮議委員會(BTC)會議閉幕新聞稿。生技產業策略諮議委員會議。
[6] 行政院科技會報 (2016)。臺灣生物經濟產業發展方案。
[7] 辛昱辰、侯藹玲、江志民 (2013)。『應用 Crisp-dm 建立農產價量預測模型-以甘藍為例』。Journal of Data Analysis,8(1),109-137。
[8] 高志道、江晃榮 (1991) 。『美日生物技術的競賽—兼談我國發展生技的困境』。科學月刊。
[9] 財團法人醫藥工業技術發展中心 (2015)。財團法人工業技術研究院產業經濟與趨勢研究中心。經濟部生技醫藥產業發展推動小組。
[10] 徐雅芬、趙月秀 (2003)。『生物技術產業年鑑2003』。生物技術開發中心。
[11] 孫智麗 (2000)。建構知識經濟運作之創新系統:台灣生物技術產業發展現況與策略。台灣經濟研究院出版。
[12] 袁梅宇 (2015)。『王者歸來WEKA機器學習與大數據聖經』。佳魁資訊。
[13] 梁定澎 (2009)。『決策支援系統與企業智慧』。台北:智勝文化。
[14] 陳昭義 (2004)。『政府之生物技術產業發展政策與輔導措施』。工程。頁9-14。
[15] 葉怡成 (2001)。『類神經網路模式應用與實作』。台北:儒林圖書。
[16] 廖述賢、溫志皓 (2012)。資料探勘理論與應用。新北市:博碩文化股份有限公司。
二、 英文文獻
[17] Alt, R., Österle, H., Puschmann, T., Barak, V., & Huber, T. (2003). “Customer relationship management architecture in the pharmaceutical industry,” International Journal of Healthcare Technology and Management, 5(3-5), pp.296-314.
[18] Altınçay, H. (2007). “Decision trees using model ensemble-based nodes,” Pattern Recognition, 40(12), pp. 3540-3551.
[19] Altuntas, S., Dereli, T., & Kusiak, A. (2015). “Analysis of patent documents with weighted association rules,” Technological Forecasting and Social Change, 92, pp.249-262.
[20] Anderson, E., & Schmittlein, D. C. (1984). “Integration of the sales force: An empirical examination,” Rand Journal of Economics, 15(3), pp.385-395.
[21] Belcourt, M. (2006). “Outsourcing: The benefits and risks,” Human Resource Management Review, 16(2), pp.269-279.
[22] Berry, M. J., & Linoff, G. (1997). Data mining techniques: For marketing, sales, and customer support, John Wiley & Sons, Inc.
[23] Berson A., Smith S., & Thearling K. (1999). Building data mining applications for CRM, McGraw-Hill, USA.
[24] Breiman, L., Friedman, J., Olsen, R., & Stone, C. (1984). Classification and Regression Trees, Monterey: Wadsworth and Brooks.
[25] Cabena, P. (1998). Discovering Data Mining : from Concept to Implementation, Upper Saddle River, New York:Prentice Hall.
[26] Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & et al. (2000). CRISP-DM 1.0 step-by-step data mining guide.
[27] Chen, E. Z., Chiu, R. W., Sun, H., Akolekar, R., Chan, K. A., Leung, T. Y., & et al. (2011). “Noninvasive prenatal diagnosis of fetal trisomy 18 and trisomy 13 by maternal plasma DNA sequencing,” PloS One, 6(7), e21791.
[28] Chen, I. J., & Popovich, K. (2003). “Understanding customer relationship management (CRM) people, process and technology,” Business Process Management Journal, 9(5), pp.672-688.
[29] Chen, S., Lau, T. K., Zhang, C., Xu, C., Xu, Z., Hu, P., & et al. (2013). “A method for noninvasive detection of fetal large deletions/duplications by low coverage massively parallel sequencing,” Prenatal Diagnosis, 33(6), pp.584-590.
[30] Chen, Y. L., Kuo, M. H., Wu, S. Y., & Tang, K. (2009). “Discovering recency, frequency, and monetary (RFM) sequential patterns from customers purchasing data,” Electronic Commerce Research and Applications, 8(5), pp.241-51.
[31] Cheng, C. H., & Chen, Y. S. (2009). “Classifying the segmentation of customer value via RFM model and RS theory,” Expert Systems with Applications, 36(3), pp.4176-4184.
[32] Cheng, C. J., Chiu, S.W., Cheng, C. B., & Wu, J. Y. (2012). “Customer lifetime value prediction by a Markov chain based data mining model: Application to an auto repair and maintenance company in Taiwan,” Scientia Iranica, 19(3), pp.849-855.
[33] Cheng, C., & Hsieh, C. R. (2005). “Economic analysis of NHI pharmaceutical policies and drug expenditures,” Socioeconomic Law and Institution Review, 35(1), pp.1-42.
[34] Chien, C. F., & Chen, L. F. (2008). “Data mining to improve personnel selection and enhance human capital: A case study in high-technology industry,” Expert System with Applications, 34(1), pp.280-290.
[35] Chiu, R. W., Akolekar, R., Zheng, Y. W., Leung, T. Y., Sun, H., Chan, K. C., & et al. (2011). “Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: Large scale validity study,” BMJ (Clinical Research Ed.), 342, pp. c7401.
[36] Craven, M. W., & Shavlik, J. W. (1997). “Using neural networks for data mining,” Future Generation Computer Systems, 13(2), pp.211-229.
[37] Dana, J., Dawes, R., & Peterson, N. (2013). “Belief in the unstructured interview: The persistence of an illusion,” Judgment and Decision Making, 8(5), pp.512.
[38] Davis, S., & Meyer, C. (2000). “What will replace the tech economy? ” Time, 155(21), pp.76-77.
[39] Desiraju, R., Nair, H., & Chintagunta, P. (2004). “Diffusion of new pharmaceutical drugs in developing and developed nations,” International Journal of Research in Marketing, 21(4), pp.341-357.
[40] Dibb, S., & Simkin, L. (2001). “Marketing segmentation: Diagnosing and treating the barriers,” Industrial Marketing Management, 30(8), pp.609-625.
[41] Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification, New York: Wiley.
[42] Dubinsky. A. J. (1999). “Salesperson Failure: Sales management is the key,” Industrial Marketing Management, 28(1), pp.7-17.
[43] Fayyad, U. M. (1996). “Data mining and knowledge discovery: Making sense out of data,” IEEE Intelligent Systems, (5), pp.20-25.
[44] Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1992). “Knowledge discovery in databases: An overview,” AI Magazine, 13(3), pp.57.
[45] Freytag, P. V., Clarke, A. H., & Evald, M. R. (2012). “Reconsidering outsourcing solutions,” European Management Journal, 30(2), pp.99-110.
[46] Grupe, F. H., & Mehdi Owrang, M. (1995). “Data base mining discovering new knowledge and competitive advantage,” Information System Management, 12(4), pp.26-31.
[47] Guenzi, P. & Troilo, G. (2007). “The joint contribution of marketing and sales to the creation of superior customer value,” Journal of Business Research, 60(2), pp.98-107.
[48] Ha, S. H. (2007). “Applying knowledge engineering techniques to customer analysis in the service industry,” Advanced Engineering Informatics, 21(3), pp.293-301.
[49] Hadaya, P., & Cassivi, L. (2007). “The role of joint collaboration planning actions in a demand-driven supply chain,” Industrial Management & Data Systems, 107(7), pp.954-978.
[50] Hall C. (1995). “The devil’s in the details: techniques, tools, and application for database mining and knowledge discovery part II,” Intelligent Software Strategies, pp.1-16.
[51] Han J. and Kamber M. (2000). Data Mining:Concepts and Techniques, San Francisco, CA, USA:Morgan Kaufmann.
[52] Han, S. H., Lu, S. X., & Leung, S. C. (2012). “Segmentation of telecom customers based on customer value by decision tree model,” Expert Systems with Applications, 39(4), pp.3964-3973.
[53] Hand, D. J. (1998). “Data mining: Statistics and more?” The American Statistician, 52(2), pp.112-118.
[54] Hawkes, V. A. (2000). “The heart of the matter: The challenge of customer lifetime value,” Paper presented at the CRM Forum Resources, 13, pp. 2-10.
[55] He, Y., & Hui, S. C. (2009). “Exploring ant-based algorithms for gene expression data analysis,” Artificial Intelligence in Medicine, 47(2), pp.105-119.
[56] Hiziroglu, A., & Sengul, S. (2012). “Investigating two customer lifetime value models from segmentation perspective,” Procedia-Social and Behavioral Sciences, 62, pp.766-774.
[57] Hughes, A. M. (1994). “Strategic Database Marketing,” Chicago: Probus Publishing Company.
[58] Hwang, H., Jung, T., & Suh, E. (2004). “An LTV model and customer segmentation based on customer value: A case study on the wireless telecommunication industry,” Expert Systems with Applications, 26(2), pp.181-188.
[59] Jason, D., Robyn, D., & Nathanial, P. (2013). “Belief in the unstructured interview: The persistence of an illusion,” Judgment & Decision Making, 8(5), pp.512-520.
[60] Jiang, F., Ren, J., Chen, F., Zhou, Y., Xie, J., Dan, S., & et al. (2012). “Noninvasive fetal trisomy (NIFTY) test: An advanced noninvasive prenatal diagnosis methodology for fetal autosomal and sex chromosomal aneuploidies,” BMC Medical Genomics, 5, 57-8794-5-57.
[61] Kargarfard, F., Sami, A., & Ebrahimie, E. (2015). “Knowledge discovery and sequence-based prediction of pandemic influenza using an integrated classification and association rule mining (CBA) algorithm,” Journal of Biomedical Informatics, 57, pp.181-188.
[62] Kass, G. (1980). “An exploratory technique for investigating large quantities of categorical data,” Applied Statistics, 29(2), pp.119-127.
[63] Kaymak, U. (2001). “Fuzzy target selection using RFM variables. Paper presented at the IFSA World Congress and 20th NAFIPS International Conference,” 2001. Joint 9th, 2. pp.1038-1043.
[64] Keane, T. J., & Wang, P. (1995). “Applications for the lifetime value model in modern newspaper publishing,” Journal of Direct Marketing, 9(2), pp.59-66.
[65] Kim, S. Y., Jung, T. S., Suh, E. H., & Hwang, H. S. (2006). “Customer segmentation and strategy development based on customer lifetime value: A case study,” Expert Systems with Applications, 31(1), pp.101-107.
[66] Kleissner, C. (1998). “Data mining for the enterprise,” Paper presented at the System Sciences, Proceedings of the Thirty-First Hawaii International Conference on, (7), pp.295-304.
[67] Koch, R. (1998). The 80/20 principle. the secret of achieving more with less, Crown Business.
[68] Kotler, P., & Gary, A. (2000). Principles of Marketing (7th ed.), Prentice Hall International.
[69] Lau, T. K., Jiang, F., Chan, M. K., Zhang, H., Salome Lo, P. S., & Wang, W. (2013). “Non-invasive prenatal screening of fetal down syndrome by maternal plasma DNA sequencing in twin pregnancies,” The Journal of Maternal-Fetal & Neonatal Medicine, 26(4), pp.434-437.
[70] Lerer, L. (2002). “Pharmaceutical marketing segmentation in the age of the internet,” Journal of Medical Marketing: Device, Diagnostic and Pharmaceutical Marketing, 2(2), pp.159-166.
[71] Liu, D. R. & Shih, Y. Y. (2005). “Integrating AHP and data mining for product recommendation based on customer lifetime value,” Information & Management, 42(3), pp.387-400.
[72] Lutz, S. & Ritter, T. (2009). “Outsourcing, supply chain upgrading and connectedness of a firm's competencies,” Industrial Marketing Management, 38 (4), pp.387-393.
[73] Mary, M., & Elizabth, R. (2012). “National bioeconomy blueprint released,” White House Press.
[74] Masiakowski, P., & Wang, S. (2013). “Integration of software tools in patent analysis,” World Patent Information, 35(2), pp.97-104.
[75] McCarty, J. A., & Hastak, M. (2007). “Segmentation approaches in data-mining: A comparison of RFM, CHAID, and logistic regression,” Journal of Business Research, 60(6), pp.656-662.
[76] McSherry, D. (1999). “Strategic induction of decision trees,” Knowledge-Based Systems, 12(5), pp. 269-275.
[77] Oakey, R. P. (1993). “Predatory Networking : The Role of Small Firms in the Development of the British Biotechnology Industry,” International Small Business Journal, 11(4), pp.9-22.
[78] Peacock, P. R. (1998). “Data mining in marketing: Part 1,” Marketing Management, 6(4), pp. 8-18.
[79] Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Mateo: Morgan Kaufmann.
[80] Rapp, A. (2009). “Outsourcing the sales process: Hiring a mercenary sales force,” Industrial Marketing Management, 38(4), pp.411-418.
[81] Robert, E.B. & R. Mizouchi, (1989), “Inter-firm technological collaboration: The case of Japanese biotechnology,” International Journal of Technology Management, 4(1), pp.49-61.
[82] Roopa, G., Madhusudhan, M., Sunil, K., Lisa, N., Calvin, R., Poornima, R., & et al. (2015). “Identification of taxol-producing endophytic fungi isolated from salacia oblonga through genomic mining approach,” Journal of Genetic Engineering and Biotechnology, 13(2), pp.119-127.
[83] Roxanna, G., & Debbie S. (2008). “The guide to biotechnology is compiled by the biotechnology industry organization (BIO),” In BIO. (Ed.).
[84] Shah, N. (2004). “Pharmaceutical supply chain: Key issues and strategies for optimization,” Computers & Chemical Engineering, 28(6/7), pp.929-941.
[85] Siguaw, J. A., Kimes, S. E., & Gassenheimer, J. B. (2003). “B2B sales force productivity: Applications of revenue management strategies sales management,” Industrial Marketing Management, 32(7), pp.539-551.
[86] Slywotzky, A. J., & Migration, V. (1996). How to think several moves ahead of the competition, Harvard Business Review Press.
[87] Spalding, B. J. (1986). “How biotechnology is farming as an industry,” Chemical Week, 139(23), pp.9-13.
[88] Spiteri, J. M., & Dion, P. A. (2004). “Customer value, overall satisfaction, end-user loyalty, and market performance in detail intensive industries,” Industrial Marketing Management, 33(8), pp.675-687.
[89] Triguero, I., del Río, S., López, V., Bacardit, J., Benítez, J. M., & Herrera, F. (2015). “ROSEFW-RF: The winner algorithm for the ECBDL’14 big data competition: An extremely imbalanced big data bioinformatics problem,” Knowledge-Based Systems, 87, pp.69-79.
[90] Ulaga, W., & Eggert, A. (2002). “Customer perceived value: A substitute for satisfaction in business market,” Journal of Business & Industrial Marketing, 17(2/3), pp.107-118.
[91] Verhoef, P. C., & Donkers, B. (2001). “Predicting customer potential value an application in the insurance industry,” Decision Support Systems, 32(2), pp.189-199.
[92] Verhoef, P. C., & Lemon, K. N. (2013). “Successful customer value management: Key lessons and emerging trends,” European Management Journal, 31(1), pp.1-15.
[93] Woo, J. Y., Bae, S. M., & Park, S. C. (2005). “Visualization method for customer targeting using customer map,” Expert Systems with Applications, 28(4), pp.763-772.
[94] Woodruff, R. B. (1997). “Customer value: The next source for competitive advantage,” Journal of the Academy of Marketing Science, 25(2), pp.139-153.
[95] Yada, K. (2011). “String analysis technique for shopping path in a supermarket,” Journal of Intelligent Information Systems, 36(3), pp.385-402.
[96] Yeh, I. C., Yang, K. J., & Ting, T. M. (2009). “Knowledge discovery on RFM model using Bernoulli sequence,” Expert Systems with Applications, 36(3), pp.5866-5871.
[97] Yu, X., Li, C., Shi, Y., & Yu, M. (2010). “Pharmacutical supply chain in China: Current issues and implications for health system reform,” Health Policy, 97(1), pp.8-15.
[98] Zhang, X., Edwards, J., & Harding, J. (2007). “Personalised online sales using web usage data mining,” Computer in Industry, 58(8), pp.772-782.
[99] Zweiger, G. (1999). “Knowledge discovery in gene-expression-microarray data: Mining the information output of the genome,” Trends in Biotechnology, 17(11), pp.429-43.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2021-07-07公開。
  • 同意授權瀏覽/列印電子全文服務,於2021-07-07起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信