§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0207201309434400
DOI 10.6846/TKU.2013.00045
論文名稱(中文) 一掠食者-兩被掠食者食物網模型的動態行為研究
論文名稱(英文) Dynamics of One-Predator-Two-Prey Food Web Models with Holling type II Functional Response
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 數學學系碩士班
系所名稱(英文) Department of Mathematics
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 2
出版年 102
研究生(中文) 王靜雯
研究生(英文) Ching-Wen Wang
學號 600190119
學位類別 碩士
語言別 英文
第二語言別
口試日期 2013-06-27
論文頁數 31頁
口試委員 指導教授 - 楊定揮
委員 - 許正雄
委員 - 楊智烜
關鍵字(中) 食物鏈
Holling法則
一掠食者-兩被掠食者
關鍵字(英) Food Web Models
Holling type II
One-Predator-Two-Prey
第三語言關鍵字
學科別分類
中文摘要
在這項研究中,我們考慮一掠食者-兩被掠食者模型依據Holling type II功能性反應且兩被掠食者之間不存在競爭關係。首先建立有界且有正解的初始條件,然後證明所有的邊界平衡點的存在性和穩定性在三維中。此外,我們利用掠食者的死亡率푑作為參數,分類我們的動態系統(1.2),以及正平衡點存在性和穩定性的分析,最後利用我們的分類,進行一些數值模擬。
英文摘要
In this work, we consider the one-predator-two-prey models with Holling type II functional response without competition between the two renewable base resource. We first establish the boundedness and positivity of solution with positive initial conditions. Then the existence and local stability of all boundary equilibria are clarified in ℝ3. Moreover, we use the death rate of predator 푑 as a parameter to classify the dynamics of system (1.2) as well as the existence and local stability of positive equilibrium. Finally, some numerical simulations are performed for each region of our classification.
第三語言摘要
論文目次
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Boundedness of Solutions. . . . . . . . . . . . . . . . . . . . . 3
2.2 Subsystems and its Equilibria . . . . . . . . . . . . . . . . . . 4
3 Existence of Boundary Equilibria and its Stability in R3 . . . . . . 7
3.1 Su cient Condition for Extinction of the Predator in R3 . . . . . 7
3.2 Stability Analysis in of Boundary Equilibria R3 . . . . . . . . . 8
4 Existence of Coexistence States and Stability of quilibria . . . . . 12
4.1 Existence of Positive Equilibrium . . . . . . . . . . . . . . . . 12
4.2 Stability Analysis of Positive Equilibria . . . . . . . . . . . . 19
5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 20
6 Conclusions, Discussions and Future Works . . . . . . . . . . . . . 30
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

List of Figures
3.1 The region of parameters pace with various a1, a2 and  xed m1, m2,
r, m, d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1 Typical pictures of parameter space with varied d. . . . . . . . . . . 13
4.2 Typical pictures of parameter space with parameter 0 < d < m2 < m1. 14
4.3 Typical pictures of P1 and P2 with parameter m2 < d <m1. . . . . 17
4.4 Typical pictures of P1 and P2 with parameter m1 < d < m1/(1+a1)+ m2/(1+a2). 18
5.1 Solutions with parameters in the class (a)-(2)-(i) of Fig. 4.1 are periodic on the x1-y plane and x2 dies out. . . . . . . . . . . . . . . 21
5.2 Solutions with parameters in the class (a)-(2)-(ii) of Fig. 4.1 converge to E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Solutions with parameters in the class (a)-(3) of Fig. 4.1 converge to E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4 Solutions with parameters in the class (a)-(4) of Fig. 4.1 converge to E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.5 Solutions with parameters in the class (a)-(1) of Fig. 4.1 converge to Ex1x2 and y dies out. . . . . . . . . . . . . . . . . . . . . . . . . 23
5.6 Solutions with parameters in the class (b)-(2)-(i) of Fig. 4.1 are periodic on the x1-y plane and x2 dies out. . . . . . . . . . . . . . . 24
5.7 Solutions with parameters in the class (b)-(2)-(ii) of Fig. 4.1 converge to Ex1y and x2 dies out. . . . . . . . . . . . . . . . . . . . . . 24
5.8 Solutions with parameters in the class (b)-(3) of Fig. 4.1 converge to E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.9 Solutions with parameters in the class (b)-(1) of Fig. 4.1 converge to Ex1x2 and y dies out. . . . . . . . . . . . . . . . . . . . . . . . . 25
5.10 Solutions with parameters in the class (a)-(2)-(i) of Fig. 4.1 converge to Ex1y and x2 dies out. . . . . . . . . . . . . . . . . . . . . . 27
5.11 Solutions with parameters in the class (a)-(2)-(ii) of Fig. 4.1 are periodic in R3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.12 Solutions with parameters in the class (a)-(3) of Fig. 4.1 are periodic in R3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.13 Solutions with parameters in the class (b)-(2)-(i) of Fig. 4.1 converge to Ex1y and x2 dies out. . . . . . . . . . . . . . . . . . . . . . 28
5.14 Solutions with parameters in the class (b)-(2)-(ii) of Fig. 4.1 converge to E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.15 Solutions with parameters in the class (b)-(3) of Fig. 4.1 converge to Ex1y and x2 dies out. . . . . . . . . . . . . . . . . . . . . . . . . 29

List of Tables
2.1 Subsystems, equilibria and its stability for system (1.2) . . . . . . . 6
5.1 Figure 4.1 (a)m1 < m1/(1+a1)+ m2/(1+a2). Fixed r = m = 1:0, a1 = 0:6,a2 = 0:5, m1 = 2:0 and m2 = 1:5 . . . . . . . . . . . . . . . . . . . . 20
5.2 Figure 4.1 (b)m1>=m1/(1+a1)+ m2/(1+a2). Fix r = m = 1:0, a1 = 0:6,a2 = 0:5, m1 = 2:5 and m2 = 1:2 . . . . . . . . . . . . . . . . . . . . 21
5.3 Compare Figure 3.1 with Figure 4.1. Fixed r = 1:0, m = 0:5 . . . . 26
參考文獻
References
[1] K. S. Ch^eng. Uniqueness of a limit cycle for a predator-prey system. SIAM
Journal on Mathematical Analysis, 12(4):541{548, 1981.
[2] N. F. Cramer and R. M. May. Interspeci c competition, predation and species
diversity: A comment. Journal of Theoretical Biology, 34:289{293, 1972.
[3] A. El-Gohary and A. S. Al-Ruzaiza. Chaos and adaptive control in two prey,
one predator system with nonlinear feedback. Chaos, Solitons and Fractals,
34(2):443{453, 2007.
[4] K. Fujii. Complexity-stability relationship of two-prey-one-predator species
system model: local and global stability. Journal of Theoretical Biology,
69(4):613{623, Dec. 1977.
[5] S. Gakkhar and R. K. Naji. Existence of chaos in two-prey, one-predator
system. Chaos, Solitons and Fractals, 17(4):639{649, 2003.
[6] M. E. Gilpin. Spiral Chaos in a Predator-Prey Model. The American Natu-
ralist, 113(2):306{308, 1979.
[7] A. Klebano  and A. Hastings. Chaos in one-predator, two-prey models: gen-
eral results from bifurcation theory. Mathematical Biosciences, 122(2):221{
233, 1994.
30
[8] N. Krikorian. The Volterra model for three species predator-prey systems:
boundedness and stability. Journal of Mathematical Biology, 7(2):117{132,
1979.
[9] R. K. Naji and A. T. Balasim. On the dynamical behavior of three species
food web model. Chaos, Solitons and Fractals, 34(5):1636{1648, 2007.
[10] R. T. Paine. Food Web Complexity and Species Diversity. The American
Naturalist, 100:65{75, 1966.
[11] J. D. Parrish and S. B. Saila. Interspeci c competition, predation and species
diversity. Journal of Theoretical Biology, 27:207{220, 1970.
[12] W. Schnabl, P. F. Stadler, C. Forst, and P. Schuster. Full Characterization
of a Strange Attractor - Chaotic Dynamics in Low-Dimensional Replicator
Systems. Physica D. Nonlinear Phenomena, 48(1):65{90, Feb. 1991.
[13] Y. Takeuchi and N. Adachi. Existence and bifurcation of stable equilibrium
in two-prey, one-predator communities. Bulletin of Mathematical Biology,
45(6):877{900, 1983.
[14] R. R. Vance. Predation and Resource Partitioning in One Predator-Two Prey
Model Communities. . The American Naturalist, 112:797{813, 1978.
[15] H.-C. Wei. Numerical Revisit to a Class of One-Predator, Two-Prey Models.
International Journal of Bifurcation and Chaos, 20(8):2521{2536, 2010.
[16] A. Yamauchi and N. Yamamura. E ects of Defense Evolution and Diet
Choice on Population Dynamics in a One-Predator-Two-Prey System. Ecol-
ogy, 86(9):2513{2524, Sept. 2005.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信