淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0207201212195900
中文論文名稱 第一部分:查耳酮衍生物對斑馬魚胚胎之安全評估;第二部分:rrm2基因之轉錄調控
英文論文名稱 PartI: Zebrafish as a model for safety assessments of chalcone derivatives.; PartⅡ: Transcriptional regulation of the rrm2 gene.
校院名稱 淡江大學
系所名稱(中) 化學學系碩士班
系所名稱(英) Department of Chemistry
學年度 100
學期 2
出版年 101
研究生中文姓名 李雅婷
研究生英文姓名 Ya-Ting Lee
學號 699160056
學位類別 碩士
語文別 中文
口試日期 2012-05-28
論文頁數 90頁
口試委員 指導教授-陳曜鴻
委員-曾婉芳
委員-潘惠錦
委員-蔡振寧
委員-王芸馨
中文關鍵字 斑馬魚  查耳酮  骨骼肌  核糖核酸還原酶 
英文關鍵字 zebrafish  chalcone  skeletal muscle  ribonucleotide reductase 
學科別分類 學科別自然科學化學
中文摘要 第一部分:查耳酮與其衍生物皆被認為具有許多藥理活性,包括抗發炎、抗癌及抗氧化。本篇論文利用發育中之斑馬魚胚胎來評估羥基查耳酮之安全性。我們的實驗結果顯示具羥基之查耳酮衍生物會造成胚胎軀幹彎曲、肌纖維排列不整齊等異常的表現型,其中以3′-hydroxychalcone(3′-HC)最為嚴重。結果顯示浸泡3′-HC會導致肌肉萎縮、促使骨骼肌之粒線體行自噬凋亡作用並且提升體內活性氧分子(ROS)的含量,利用TUNEL分析法也顯示3′-HC會造成細胞凋亡。若將3′-HC與可降低ROS含量的咖啡因同時浸泡可減輕胚胎畸形率,但鈣離子抑制劑-脈優則會加強其變異,最後利用即時定量RT-PCR得知咖啡因可降低3′-HC提升的肌肉萎縮相關基因Fbox32之表現。因此我們推論具羥基查耳酮能提升體內ROS含量,並使粒線體功能受損導致其肌肉萎縮且此變異與鈣離子調控有關。雖然in vivo實驗結果和細胞上有所差別,但未來或許能藉由浸泡胚胎之方式來研發更具有優異生物活性且低毒性之查耳酮衍生物。第二部分:核糖核酸還原酶(ribonucleotide reductase, RNR)之活性取決於細胞週期中M2次單元體的合成與降解且腫瘤細胞中皆能發現RNR酶有異常之活性。我們先前發表之論文證明,過度表現斑馬魚sonic hedgehog(shh)基因其內生性的gli1與rrm2的表現量也會跟著上升。經比對發現rrm2啟動子上-243/ -234之位置含有疑似Gli的結合位(GliBS),因此利用顯微注射斑馬魚胚胎探討此GliBS對於調控rrm2的重要性,啟動子 -486/ -1主要表現於胚胎肌肉與心臟,且含有GliBS之質體其螢光表現明顯強於只含TATA box(-222/-1)。接著利用含CMV TATA box之pEGFPm質體,得知似乎有轉錄因子能結合在GliBS(-243/-234)並且具有專一表現於肌肉之能力,而細胞實驗中也顯示-486/-222片段似乎具幫助rrm2進入細胞核之能力。未來或許能藉由-486/-222片段來影響rrm2之轉錄並降低RNR酶活性以加強抗癌療效,使癌細胞不易轉移並降低產生抗藥性機率。
英文摘要 PARTI:It was reported that chalcone and its derivatives possess various biological activities, including anti-inflammatory, anti-cancer and anti-oxidant properties. Aim of this study was to investigate the toxic effects of hydroxychalcones during zebrafish embryogenesis. After hydroxychalcones treatment [especially 3′-hydroxychalcone (3′-HC)], zebrafish embryos displayed deformed somite phenotypes, such as curved body and muscle fiber mis-alignment. Interestingly, those malformed phenotypes can be rescued by adding caffeine, but can be enhanced by adding amlodipine. To further investigate the cause of 3′-HC-induced deformed somite phenotypes, we carried out histocytochemistry and electron microscopy experiments. Results demonstrate that 3′-HC was able to induce muscle atrophy, mitochondrial autophagy and increased reactive oxygen species (ROS) levels. Furthermore, the increase in TUNEL-positive cells was only observed in those which were exposed 3′-HC. Finally, the reverse transcription- PCR analysis showed that caffeine can inhibit the up regulation of expression of Fbxo32 by 3′-HC. In conclusion, we suggested that 3′-HC induces apoptosis in muscle by alteration of mitochondrial calcium signalling and generation of ROS. PARTⅡ:The activity of ribonucleotide reductase M2 subunit (Rrm2) was reported to be highly associated with the tumorgenesity in a variety of mouse and human cells. We previously demonstrated that overexpression of sonic hedgehog (Shh) in a zebrafish model leads to upregulation of rrm2. Aim of this study was to investigate whether Gli (key regulator of Shh signaling pathway) is a direct upstream regulator of rrm2 gene or not. After sequence analysis, we found that there is only one Gli-binding site (positions -243 to -234, GliBS) locates within the proximal rrm2 promoter. In this regards, two GFP-expression plasmids, pRrm2(-486/-1)-GFP and pRrm2(-222/-1)-GFP, were constructed for promoter analysis. Microinjection data showed that pRrm2(-486/-1)-GFP and pRrm2(-222/-1)-GFP-injected embryos have green fluorescent signals on muscle and heart, but the pRrm2(-486/-1)-GFP-injected embryos have higher GFP-expression rates. Furthermore, cassette -243/-234 is able to direct muscle-specific expression of the cytomegalovirus (CMV) basal promoter. On the basis of these observations, we conclude that cassette -243/-234 might be a key regulator to drive muscle-specific rrm2 expression.
論文目次 目錄
謝誌……………………………………………………………………Ⅰ
中文摘要………………………………………………………………Ⅱ
英文摘要………………………………………………………………Ⅲ
目錄……………………………………………………………………Ⅴ
圖表目錄………………………………………………………………Ⅹ

第一章 前言 2
1-1查耳酮 (Chalcone ) 來源與衍生物 2
1-2 Chalcone與其衍生物之應用 4
1-3鈣離子不正常調控對細胞的影響 7
1-4模式物種─斑馬魚的優勢 8
1-5研究動機 9
第二章 材料與方法 10
2-1野生型斑馬魚(AB strain)的飼養 10
2-2斑馬魚胚胎收集 10
2-3聚合酶連鎖反應(Polymerase Chain Reaction, PCR) 11
2-4浸泡chalcone 衍生物 11
2-5原位雜交反應和合成RNA探針 12
2-6樣品包埋及冷凍切片(Embedding and Cryosection) 17
2-7蘇木紫與伊紅染色(H&E staining) 17
2-8斑馬魚胚胎核酸( Ribonucleotide acid, RNA ) 之萃取 18
2-9反轉錄聚合酶連鎖反應(Reverse transcription-PCR, RT-PCR) 18
2-10即時偵測同步定量聚合酶連鎖反應(quantitative real-time polymerase chain reaction, Q-PCR) 19
2-11螢光抗體染色法(Fluorescent Whole-mount immunostaining) 19
2-12吖啶橙染色(Acridine Orange staining) 20
2-13 YO-PRO-1與 PI染色(YO-PRO-1 Propidium Iodide staining) 21
2-14偵測活性氧分子(Reactive oxygen species, ROS) 21
2-15螢光顯微鏡、顯微照相系統 22
第三章 結果 23
3-1查耳酮 ( chalcone ) 衍生物之結構 23
3-2查耳酮衍生物之浸泡方式與存活率 24
3-3查耳酮衍生物造成肌肉損傷與畸形率 25
3-4查耳酮衍生物(3′-HC)造成肌肉萎縮 26
3-5 浸泡3′-HC導致肌肉之粒線體行自體吞噬作用 27
3-6 查耳酮衍生物促使體內ROS含量上升造成胚胎變異 28
3-7 浸泡3′-HC導致胚胎產生許多凋亡細胞 28
3-8 3′-HC對肌肉相關因子之影響 29
3-9 3′-HC可影響體內鈣離子的平衡 31
3-10 咖啡因可減緩3′-HC造成之肌肉萎縮 32
第四章 討論 34
4-1 查耳酮衍生物產生ROS導致粒線體損傷 34
4-2 查耳酮衍生物影響粒線體之功能導致肌肉萎縮 36
4-3 查耳酮衍生物藉由鈣離子造成之影響 37
4-4 結論與外來展望 38
第五章 前言 40
5-1 Ribonucleotide reductase之功能 40
5-2 RRM2在癌細胞中扮演的角色 42
5-3 Sonic hedgehog(shh)藉由Gli促進癌細胞生成 43
5-4 RRM2與Gli1之間的關係 46
5-5 模式物種─斑馬魚的優勢 47
5-6 研究動機 47
第六章 材料與方法 49
6-1 斑馬魚之實驗 49
6-2 勝任細胞(Competent cell)之備製 49
6-3 大腸桿菌轉型反應(Transformation) 49
6-4 小量質體DNA抽取 ( DNA抽取、電泳、剪切、純化及黏合) 50
6-5 質體建構 53
6-6 顯微注射(Microinjection) 54
6-7 人類表皮癌細胞(A431)之培養 54
6-8 計算活細胞數(Trypan blue exclusion assay) 55
6-9 細胞DNA轉染(Tranfection) 55
第七章 結果 57
7-1 rrm2之啟動子含有疑似Gli之結合位 57
7-2 疑似Gli結合位於斑馬魚胚胎中之表現位置 58
7-3 細胞受損時GliBS能提升rrm2進入細胞核之機率 59
第八章 討論 60
8-1 -486/ -1含有CCAAT box能增強rrm2之表現 60
8-2 斑馬魚組織中rrm2的表現 61
8-3 pEGFPm 2X(-243/-234)此質體具專一表現之能力 62
8-4 -486/-1具有幫助rrm2進入細胞核之能力 63
8-5 結論與未來展望 64
第九章 參考文獻 65
附錄 90
圖表目錄
圖A類黃酮屬於非酮羥基多酚化合物 2
圖B蘊含查耳酮之藥用植物與其結構式 3
圖C查耳酮衍生物之命名方式 23
圖D已知影響體內鈣離子物質之結構式 32
圖E Shh/Gli訊號傳遞路徑 45
圖F rrm2啟動子之簡圖 57
Fig.1 Chalcone與其衍生物之結構式 73
Fig.2浸泡方式與chalcones不同條件下之存活率 74
Fig.3 Chalcones造成肌纖維彎曲與畸形率統計 75
Fig.4 Chalcone衍生物(3′-HC)造成肌肉萎縮 76
Fig.5浸泡3′-HC讓粒線體行自體吞噬導致肌纖維不完整 77
Fig.6 Chalcones 造成胚胎內生性ROS表現上升 78
Fig.7 Chalcone衍生物(3′-HC)以細胞凋亡造成傷害 79
Fig.8 Chalcone衍生物(3′-HC)影響MyoD與α-actin 的mRNA表現 80
Fig.9咖啡因可減輕3′-HC造成之畸形率,而Amlodipine反之 81
Fig.10藉由咖啡因提升細胞內鈣離子濃度,減緩3′-HC造成之肌肉萎縮 82
Fig.11 rrm2啟動子中含有疑似Gli之結合位與質體建構圖 83
Fig.12 GliBS於斑馬魚胚胎中之表現位置 84
Fig.13 GliBS於斑馬魚胚胎中之表現位置 85
Fig.14含GliBS之啟動子能幫助rrm2修復受損細胞 86
Fig.15 rrm2啟動子之結合位比較圖 87
Table 1反轉錄聚合酶連鎖反應所用之引子 88
Table 2顯微注射質體之胚胎螢光統計表 89

參考文獻 1. Dixon, R.A., D.Y. Xie, and S.B. Sharma, Proanthocyanidins–a final frontier in flavonoid research? New Phytologist, 2005. 165(1): p. 9-28.
2. Nijveldt, R.J., et al., Flavonoids: a review of probable mechanisms of action and potential applications. The American journal of clinical nutrition, 2001. 74(4): p. 418-425.
3. Sahdeo Prasad, K.P., Vivek R. Yadav, Madan M. Chaturvedi, Bharat B. Aggarwal, Targeting Inflammatory Pathways by Flavonoids for Prevention and Treatment of Cancer. Planta Medica, 2010. 76(11): p. 1044-1063.
4. Nowakowska, Z., A review of anti-infective and anti-inflammatory chalcones. European journal of medicinal chemistry, 2007. 42(2): p. 125-137.
5. Jain, A., H.P. Bhartiya, and A.N. Vishwakarma, A Chalcone glycoside from the heartwood of Shorea robusta. Phytochemistry, 1982. 21(4): p. 957.
6. Su, H.C., L.M. Hung, and J.K. Chen, Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. American Journal of Physiology-Endocrinology And Metabolism, 2006. 290(6): p. E1339-E1346.
7. Kohno, Y., et al., Metabolism of the α, β-unsaturated ketones, chalcone and trans-4-phenyl-3-buten-2-one, by rat liver microsomes and estrogenic activity of the metabolites. Drug Metabolism and Disposition, 2005. 33(8): p. 1115-1123.
8. Liu, Y.-C., et al., Chalcone inhibits the activation of NF-κB and STAT3 in endothelial cells via endogenous electrophile. Life Sciences, 2007. 80(15): p. 1420-1430.
9. Shen, K.-H., et al., Chalcone Arrests Cell Cycle Progression and Induces Apoptosis through Induction of Mitochondrial Pathway and Inhibition of Nuclear Factor Kappa B Signalling in Human Bladder Cancer Cells. Basic & Clinical Pharmacology & Toxicology, 2007. 101(4): p. 254-261.
10. Echeverria, C., et al., Structural Antitumoral Activity Relationships of Synthetic Chalcones. International Journal of Molecular Sciences, 2009. 10(1): p. 221-231.
11. Orlikova, B., et al., The aromatic ketone 4′-hydroxychalcone inhibits TNFα-induced NF-κB activation via proteasome inhibition. Biochemical Pharmacology, 2011. 82(6): p. 620-631.
12. Foresti, R., et al., Differential Activation of Heme Oxygenase-1 by Chalcones and Rosolic Acid in Endothelial Cells. Journal of Pharmacology and Experimental Therapeutics, 2005. 312(2): p. 686-693.
13. Abuarqoub, H., et al., Heme oxygenase-1 mediates the anti-inflammatory actions of 2'-hydroxychalcone in RAW 264.7 murine macrophages. American Journal of Physiology - Cell Physiology, 2006. 290(4): p. C1092-C1099.
14. Monika Mueller, V.B., Alois Jungbauer, PPARα Activation by Culinary Herbs and Spices. Planta Medica, 2011. 77(05): p. 497-504.
15. Koh, E.H., et al., Peroxisome Proliferator-Activated Receptor (PPAR)-α Activation Prevents Diabetes in OLETF Rats. Diabetes, 2003. 52(9): p. 2331-2337.
16. Louis C, M., Large enhancement of skeletal muscle cell glucose uptake and suppression of hepatocyte glucose-6-phosphatase activity by weak uncouplers of oxidative phosphorylation. Biochimica et Biophysica Acta (BBA) - General Subjects, 2012. 1820(2): p. 133-150.
17. Jarvill-Taylor, K.J., R.A. Anderson, and D.J. Graves, A Hydroxychalcone Derived from Cinnamon Functions as a Mimetic for Insulin in 3T3-L1 Adipocytes. Journal of the American College of Nutrition, 2001. 20(4): p. 327-336.
18. Sabzevari, O., et al., Molecular cytotoxic mechanisms of anticancer hydroxychalcones. Chemico-biological interactions, 2004. 148(1-2): p. 57-67.
19. Kachadourian, R. and B.J. Day, Flavonoid-induced glutathione depletion: potential implications for cancer treatment. Free Radical Biology and Medicine, 2006. 41(1): p. 65-76.
20. Assaily, W. and S. Benchimol, Differential utilization of two ATP-generating pathways is regulated by p53. Cancer Cell, 2006. 10(1): p. 4-6.
21. Ma, J., et al., Apoptosis induced by isoliquiritigenin in human gastric cancer MGC-803 cells. Planta Medica, 2001. 67(8): p. 754-756.
22. Lin, C.-N., et al., Chalcones as potent antiplatelet agents and calcium channel blockers. Drug Development Research, 2001. 53(1): p. 9-14.
23. Territo, P.R., et al., Ca2+ activation of heart mitochondrial oxidative phosphorylation: role of the F0/F1-ATPase. American Journal of Physiology - Cell Physiology, 2000. 278(2): p. C423-C435.
24. Hajnóczky, G., et al., Mitochondrial calcium signalling and cell death: Approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium, 2006. 40(5–6): p. 553-560.
25. Hood, D.A., Invited Review: Contractile activity-induced mitochondrial biogenesis in skeletal muscle. Journal of Applied Physiology, 2001. 90(3): p. 1137-1157.
26. Freyssenet, D., et al., Calcium-regulated changes in mitochondrial phenotype in skeletal muscle cells. American Journal of Physiology - Cell Physiology, 2004. 286(5): p. C1053-C1061.
27. Decuypere, J.-P., et al., IP3 Receptors, Mitochondria, and Ca2+ Signaling: Implications for Aging. Journal of Aging Research, 2011. 2011.
28. Li, Z., et al., Desmin Is Essential for the Tensile Strength and Integrity of Myofibrils but Not for Myogenic Commitment, Differentiation, and Fusion of Skeletal Muscle. The Journal of Cell Biology, 1997. 139(1): p. 129-144.
29. Iimura, T., et al., Dual mode of paraxial mesoderm formation during chick gastrulation. Proceedings of the National Academy of Sciences, 2007. 104(8): p. 2744-2749.
30. Kablar, B., et al., MyoD and Myf-5 differentially regulate the development of limb versus trunk skeletal muscle. Development, 1997. 124(23): p. 4729-4738.
31. Laing, N.G., et al., Mutations and polymorphisms of the skeletal muscle α‐actin gene (ACTA1). Human mutation, 2009. 30(9): p. 1267-1277.
32. Chanoit, G., et al., Inhibition of Phosphodiesterases Leads to Prevention of the Mitochondrial Permeability Transition Pore Opening and Reperfusion Injury in Cardiac H9c2 Cells. Cardiovascular drugs and therapy, 2011: p. 1-8.
33. Usenko, C.Y., et al., Hydroxylated PBDEs induce developmental arrest in zebrafish. Toxicology and applied pharmacology, 2012.
34. Khetan, S.K. and T.J. Collins, Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chemical Reviews-Columbus, 2007. 107(6): p. 2319-2364.
35. Mason, R.P., et al., Comparison of location and binding for the positively charged 1, 4-dihydropyridine calcium channel antagonist amlodipine with uncharged drugs of this class in cardiac membranes. Molecular pharmacology, 1989. 36(4): p. 634-640.
36. Viola, H.M. and L.C. Hool, Cross‐talk between L‐type Ca2+ channels and mitochondria. Clinical and Experimental Pharmacology and Physiology, 2010. 37(2): p. 229-235.
37. Shen, T., et al., Regulation of the nuclear export of the transcription factor NFATc1 by protein kinases after slow fibre type electrical stimulation of adult mouse skeletal muscle fibres. The Journal of Physiology, 2007. 579(2): p. 535-551.
38. Macian, F., NFAT proteins: key regulators of T-cell development and function. Nature Reviews Immunology, 2005. 5(6): p. 472-484.
39. Hanai, J., et al., The muscle-specific ubiquitin ligase atrogin-1/MAFbx mediates statin-induced muscle toxicity. Journal of Clinical Investigation, 2007. 117(12): p. 3940.
40. Turrens, J.F., Mitochondrial formation of reactive oxygen species. The Journal of Physiology, 2003. 552(2): p. 335-344.
41. Nury, D., C. Doucet, and O. Coux, Roles and potential therapeutic targets of the ubiquitin proteasome system in muscle wasting. BMC biochemistry, 2007. 8(Suppl 1): p. S7.
42. Nakae, J., M. Oki, and Y. Cao, The FoxO transcription factors and metabolic regulation. FEBS letters, 2008. 582(1): p. 54-67.
43. Fulco, M., et al., Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Developmental cell, 2008. 14(5): p. 661-673.
44. Lagirand-Cantaloube, J., et al., Inhibition of atrogin-1/MAFbx mediated MyoD proteolysis prevents skeletal muscle atrophy in vivo. PLoS One, 2009. 4(3): p. e4973.
45. Csordás, G., et al., Calcium transport across the inner mitochondrial membrane: Molecular mechanisms and pharmacology. Molecular and Cellular Endocrinology, 2012. 353(1–2): p. 109-113.
46. Deniaud, A., Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene, 2007. 27(3): p. 285-299.
47. Daly, J., Caffeine analogs: biomedical impact. Cellular and molecular life sciences, 2007. 64(16): p. 2153-2169.
48. Elledge, S.J., Z. Zhou, and J.B. Allen, Ribonucleotide reductase: regulation, regulation, regulation. Trends in biochemical sciences, 1992. 17(3): p. 119-123.
49. Rova, U., et al., Evidence by mutagenesis that Tyr370 of the mouse ribonucleotide reductase R2 protein is the connecting link in the intersubunit radical transfer pathway. Journal of Biological Chemistry, 1999. 274(34): p. 23746-23751.
50. Nordlund, P. and P. Reichard, Ribonucleotide reductases. Annu. Rev. Biochem., 2006. 75: p. 681-706.
51. Tanaka, H., et al., A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature, 2000. 404(6773): p. 42-49.
52. Guittet, O., et al., Mammalian p53R2 Protein Forms an Active Ribonucleotide Reductasein Vitro with the R1 Protein, Which Is Expressed Both in Resting Cells in Response to DNA Damage and in Proliferating Cells. Journal of Biological Chemistry, 2001. 276(44): p. 40647-40651.
53. Chabes, A.L., S. Björklund, and L. Thelander, S Phase-specific transcription of the mouse ribonucleotide reductase R2 gene requires both a proximal repressive E2F-binding site and an upstream promoter activating region. Journal of Biological Chemistry, 2004. 279(11): p. 10796-10807.
54. Chabes, A.L., et al., Mouse ribonucleotide reductase R2 protein: a new target for anaphase-promoting complex-Cdh1-mediated proteolysis. Proceedings of the National Academy of Sciences, 2003. 100(7): p. 3925.
55. Engström, Y., et al., Cell cycle-dependent expression of mammalian ribonucleotide reductase. Differential regulation of the two subunits. Journal of Biological Chemistry, 1985. 260(16): p. 9114.
56. Håkansson, P., A. Hofer, and L. Thelander, Regulation of mammalian ribonucleotide reduction and dNTP pools after DNA damage and in resting cells. Journal of Biological Chemistry, 2006. 281(12): p. 7834-7841.
57. Nakano, K., et al., A ribonucleotide reductase gene is a transcriptional target of p53 and p73. Oncogene, 2000. 19(37): p. 4283.
58. Chang, L., et al., ATM-mediated serine 72 phosphorylation stabilizes ribonucleotide reductase small subunit p53R2 protein against MDM2 to DNA damage. Proceedings of the National Academy of Sciences, 2008. 105(47): p. 18519.
59. Ali, M.A., et al., Enhanced malignant transformation induced by expression of a distinct protein domain of ribonucleotide reductase large subunit from herpes simplex virus type 2. Proceedings of the National Academy of Sciences, 1991. 88(18): p. 8257.
60. Björklund, S., et al., Structure and promoter characterization of the gene encoding the large subunit (R1 protein) of mouse ribonucleotide reductase. Proceedings of the National Academy of Sciences, 1993. 90(23): p. 11322.
61. Zhang, K., et al., Overexpression of RRM2 decreases thrombspondin-1 and increases VEGF production in human cancer cells in vitro and in vivo: implication of RRM2 in angiogenesis. Molecular cancer, 2009. 8(1): p. 11.
62. Duxbury, M.S. and E.E. Whang, RRM2 induces NF-κB-dependent MMP-9 activation and enhances cellular invasiveness. Biochemical and biophysical research communications, 2007. 354(1): p. 190-196.
63. Yun, H.J., et al., Transcriptional targeting of gene expression in breast cancer by the promoters of protein regulator of cytokinesis 1 and ribonuclease reductase 2. Experimental & Molecular Medicine, 2008. 40(3): p. 345.
64. Liu, X., et al., Nuclear factor Y regulation and promoter transactivation of human ribonucleotide reductase subunit M2 gene in a Gemcitabine resistant KB clone. Biochemical Pharmacology, 2004. 67(8): p. 1499-1511.
65. Pereira, S., et al., Computational studies on class I ribonucleotide reductase: understanding the mechanisms of action and inhibition of a cornerstone enzyme for the treatment of cancer. European Biophysics Journal, 2006. 35(2): p. 125-135.
66. Zhou, B.S., et al., Overexpression of ribonucleotide reductase in transfected human KB cells increases their resistance to hydroxyurea: M2 but not M1 is sufficient to increase resistance to hydroxyurea in transfected cells. Cancer research, 1995. 55(6): p. 1328.
67. McMahon, A.P., P.W. Ingham, and C.J. Tabin, 1 Developmental roles and clinical significance of Hedgehog signaling. Current topics in developmental biology, 2003. 53: p. 1-114.
68. Echelard, Y., et al., Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell, 1993. 75(7): p. 1417-1430.
69. Hebrok, M., Hedgehog signaling in pancreas development. Mechanisms of development, 2003. 120(1): p. 45-57.
70. Kalderon, D., The mechanism of hedgehog signal transduction. Biochemical Society Transactions, 2005. 33(Pt 6): p. 1509.
71. Athar, M., et al., Hedgehog signalling in skin development and cancer. Experimental dermatology, 2006. 15(9): p. 667-677.
72. Altaba, A.R., P. Sánchez, and N. Dahmane, Gli and hedgehog in cancer: tumours, embryos and stem cells. Nature Reviews Cancer, 2002. 2: p. 361-372.
73. Quinn, A.G. and E. Epstein Jr, Patched, hedgehog, and skin cancer. Methods Mol Biol, 2003. 222: p. 85-95.
74. Tang, J.Y., P.L. So, and E.H. Epstein Jr, Novel Hedgehog pathway targets against basal cell carcinoma. Toxicology and applied pharmacology, 2007. 224(3): p. 257-264.
75. i Altaba, A.R., The works of GLI and the power of hedgehog. Nature Cell Biology, 1999. 1(6): p. E147-E148.
76. Kasper, M., et al., GLI transcription factors: mediators of oncogenic Hedgehog signalling. European Journal of Cancer, 2006. 42(4): p. 437-445.
77. Bonifas, J.M., et al., Activation of expression of hedgehog target genes in basal cell carcinomas. Journal of investigative dermatology, 2001. 116(5): p. 739-742.
78. Xie, J., et al., mutations in sporadic basal-cell carcinoma. Nature, 1998. 391: p. 91.
79. Bigelow, R.L.H., et al., Transcriptional regulation of bcl-2 mediated by the sonic hedgehog signaling pathway through gli-1. Journal of Biological Chemistry, 2004. 279(2): p. 1197-1205.
80. Ho, L. and B. Alman, Protecting the hedgerow p53 and hedgehog pathway interactions. Cell cycle, 2010. 9(3): p. 506-511.
81. Lauth, M., et al., Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proceedings of the National Academy of Sciences, 2007. 104(20): p. 8455.
82. Chen, Y.H., et al., Transgenic zebrafish line with over-expression of Hedgehog on the skin: a useful tool to screen Hedgehog-inhibiting compounds. Transgenic research, 2009. 18(6): p. 855-864.
83. Nagai, S., et al., Gli1 contributes to the invasiveness of pancreatic cancer through matrix metalloproteinase‐9 activation. Cancer science, 2008. 99(7): p. 1377-1384.
84. Wu, X., et al., Purmorphamine induces osteogenesis by activation of the hedgehog signaling pathway. Chemistry & biology, 2004. 11(9): p. 1229-1238.
85. Hegde, G.V., et al., Hedgehog-induced survival of B-cell chronic lymphocytic leukemia cells in a stromal cell microenvironment: a potential new therapeutic target. Molecular Cancer Research, 2008. 6(12): p. 1928.
86. Winklmayr, M., et al., Non-consensus GLI binding sites in Hedgehog target gene regulation. BMC molecular biology, 2010. 11(1): p. 2.
87. Xue, L., et al., Wild-type p53 regulates human ribonucleotide reductase by protein-protein interaction with p53R2 as well as hRRM2 subunits. Cancer research, 2003. 63(5): p. 980.
88. Shang, H., et al., Identification and Characterization of Alternative Promoters, Transcripts and Protein Isoforms of Zebrafish R2 Gene. PLoS One, 2011. 6(8): p. e24089.
89. Von Hofsten, J. and P.E. Olsson, Zebrafish sex determination and differentiation: involvement of FTZ-F1 genes. Reproductive Biology and Endocrinology, 2005. 3(1): p. 63.
90. Du, S.J. and M. Dienhart, Gli2 mediation of hedgehog signals in slow muscle induction in zebrafish. Differentiation, 2001. 67(3): p. 84-91.
91. Zhang, Y.W., et al., Implication of checkpoint kinase-dependent up-regulation of ribonucleotide reductase R2 in DNA damage response. Journal of Biological Chemistry, 2009. 284(27): p. 18085-18095.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2017-07-24公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-07-24起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信